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Figure S1. The XRD image of the as-prepared cobalt hydroxide nanoparticles by precipitation 
method without hydrothermal process. The inset is the photograph of the cobalt hydroxide 
nanosheets. 

Figure S2. The SEM image of the as-prepared cobalt hydroxide nanoparticles by precipitation 
method without hydrothermal process.
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Figure S3. SEM image of (a) Co3O4, (b) Ni-Co3O4, (c) Ru-Co3O4 and (d) Ru/Ni-Co3O4 nanoparticles 
by hydrothermal process.

Figure S4. TEM image of Ru/Ni-Co3O4 nanoparticles at different magnifications.
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Figure S5. XRD patterns of Co3O4 and Ni-Co3O4.

Figure S6. Raman spectra of the as-prepared spinel oxides.

Figure S7. a) XPS survey spectra, and (b-c) high-resolution XPS b) Co2p, c) O1s spectra of Ni-
Co3O4.
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Figure S8. High-resolution Ni2p spectra of Ni-Co3O4 and Ru/Ni-Co3O4.

Figure S9. CVs at different scan rates in a potential window range from 0 to 0.1 V versus RHE for 
(a) Co3O4, (b) Ni-Co3O4, (c) Ru-Co3O4 and (d) Ru/Ni-Co3O4.
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Figure S10. Current density as a function of the scan rate for the different electrodes.

Figure S11. Polarization curves of Ni-Co3O4.

Figure S12. Chronoamperometric durability test of Ru/Ni-Co3O4.



7

Table S1. The composition analysis of XPS spectra.

Catalyst Co (at%) O (at%) Ni (at%) Ru (at%)

Co3O4 34.77 65.23 / /

Ru-Co3O4 28.66 67.13 / 4.21

Ni-Co3O4 27.41 70.77 1.82 /

Ru/Ni-Co3O4 25.06 69.42 1.05 4.47

Table S2. Cobalt contents in the as-prepared spinel oxides.

Catalyst Co3+ (%) Co2+ (%) Co3+ / Co2+

Co3O4 60.9 39.1 1.5

Ru-Co3O4 59.0 41.0 1.4

Ni-Co3O4 53.4 46.6 1.2

Ru/Ni-Co3O4 52.0 48.0 1.1

Table S3. Nickel contents in the as-prepared spinel oxides.

Catalyst Ni2+ (%) Ni3+ (%) Ni3+ / Ni2+

Co3O4 71.7 28.3 2.5

Ru-Co3O4 54.1 45.9 1.2

Ni-Co3O4 56.3 43.7 1.3

Ru/Ni-Co3O4 44.7 55.3 0.8

Table S4. Oxygen contents in the as-prepared spinel oxides.

Catalyst Olatt (%) Oads (%) Olatt / Oads

Ni-Co3O4 56.3 43.7 1.3

Ru/Ni-Co3O4 44.7 55.3 0.8
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Table S5. Comparison of catalytic performance of the as-prepared spinel oxides to 
some reported spinel oxide catalysts.

Catalysts
η (mV) @

10 mA cm-2
Electrolyte Substrate Reference

Ru/Ni-Co3O4 290 1 M KOH Glassy carbon This work

Hierarchical NiCo2O4 hollow 
microcuboids

290 1 M KOH Ni foam 1

Co3O4/NiCo2O4 DSNCs 340 1 M KOH Ni foam 2

CoV1.5Fe0.5O4 spinel 
nanocrystals

300 1 M KOH Glassy carbon 3

NiCo2O4 nanoneedles 323 1 M KOH FTO 4

ZnCo2O4 389 1 M KOH Glassy carbon 5

NiCo2O4@MnO2 core-shell 
nanoarray

337 1 M KOH Carbon 
textile

6

Fe-NiCo2O4 nanowire 350 1 M KOH Ni foam 7

Zn-NiCo2O4 particles 560 0.1 M KOH Glassy carbon 8

MoS2/rFe-NiCo2O4 270 1 M NaOH Carbon paper 9

CoFe2O4 300 0.1 M KOH Glassy carbon 10

NiCoFe@NiCoFeO NTAs/CFC 201 1 M NaOH Carbon fiber 
cloth

11

IrO2 300 1 M KOH Glassy carbon This work
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