Supporting Information

Single-crystalline CoFe nanoparticles encapsulated in N-doped

carbon nanotubes as a bifunctional catalyst for water splitting

Xiaojun Zeng, ^{a,b} Myeong Je Jang, ^{c,d} Sung Mook Choi, ^c Hyun-Seok Cho, ^e Chang-

Hee Kim, e Nosang Vincent Myung *f and Yadong Yin *b

^{a.} Department of Chemistry and Biochemistry, University of California Santa Barbara,

Santa Barbara, California 93106, United States

^{b.} Department of Chemistry, University of California Riverside, Riverside, California
92521, United States

^{c.} Surface Technology Division, Korea Institute of Materials Science, Changwon
51508, Republic of Korea

 ^{d.} Advanced Materials Engineering, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Republic of Korea

^{e.} Hydrogen Laboratory, Research Institute for New and Renewable Energy, Korea
Institute of Energy Research, Yuseong, Daejeon, 34129, Republic of Korea

^{f.} Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States

E-mail: myung@engr.ucr.edu (N.V. Myung), yadong.yin@ucr.edu (Y.D. Yin)

Fig. S1. CV curves for CoFe calcined at 700 °C without urea and CoFe@N-C calcined at different temperatures from 10 mV s⁻¹ to 100 mV s⁻¹.

Fig. S2. C_{dl} of CoFe calcined at 700 °C without urea and CoFe@N-C calcined at different temperatures.

The electrochemical active surface area of the catalyst was estimated from the double-layer capacitance (C_{dl}) determined from the CV curves at different scan rates in a non-faradic region. Electrochemically active surface area (ECSA) was evaluated from the following equation; ECSA = C_{dl}/C_s , where C_{dl} was the electrochemical double-layer capacitance and C_s was the capacitance of an atomically smooth planar surface. [1-3] Here, C_s value of 0.04 mF cm⁻² was used. [4] C_{dl} were calculated by the following equation; $i = vC_{dl}$, where *i* was the double layer current measured by cyclic voltammograms at different scan rates (v).

Fig. S3. Nyquist plots of CoFe calcined at 700 °C without urea and CoFe@N-C calcined at different temperatures.

Sample	Co (at%)	Fe (at%)
CoFe@N-C-600	51.9	48.1
CoFe@N-C-700	48.6	51.4
CoFe@N-C-800	46.2	53.8

Table S1. Co, Fe quantification of CoFe@N-C obtained by ICP measurements.

References

[1] S. Oh, H. Kim, Y. Kwon, M. Kim, E. Cho and H. Kwon, Porous Co–P foam as an efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. *J. Mater. Chem. A*, 2016, 4, 18272–18277.

[2] J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman and T. F. Jaramillo, ACS Catalysis, 2012, 2, 1916–1923.

[3] Z. P. Zhang, Y. S. Qin, M. L. Dou, J. Ji, F. Wang, One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. *Nano Energy*, 2016, **30**, 426–433.

[4] C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 16977–16987.