Supporting information

Design and construction of bi-metal MOF-derived yolk-shell Ni₂P/ZnP₂ hollow

microspheres for efficient electrocatalytic oxygen evolution

Jinyang Zhang, Xuan Sun, Yang Liu, Linrui Hou, Changzhou Yuan*

School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R.

China

*E-mail: mse_yuancz@ujn.edu.cn; ayuancz@163.com

Fig. S1 FESEM and TEM images of (a, b) the pre-NP and pre-NZP samples.

Fig. S2 DSC and TG curves of (a) pre-NZP and (b) pre-NP samples.

Fig. S3 XPS Survey spectrum of the yolk-shell NZP HMSs.

Fig. S4 (a) FESEM, (b) TEM, (c) STEM and corresponding EDS mapping images of the yolk-shell NZP-5 HMSs.

Fig. S5 (a) N_2 sorption isotherms and (b) PSD plots of the yolk-shell NZP HMSs, solid NP MSs, and yolk-shell NZP-5 HMSs.

Fig. S6 (a) FESEM image, (b) TEM image, and (c) XRD pattern of the ZOP HMSs.

Fig. S7 (a) FESEM and (b) TEM images of the solid NZP MSs; (c) FESEM and (d) TEM images of the hollow NP HMSs.

Fig. S8 (a) FESEM image and (b) XRD pattern of the CZP HMSs.

Fig. S9 (a) LSV curves and (b) Tafel slopes plots of the yolk-shell NZP-5 HMSs, NZP MSs, NP HMSs and ZOP HMSs.

Fig. S10 CV curves of (a) NZP HMSs, (b) NP MSs and (c) NF at different scan rates

from 20 to 100 mV s⁻¹.

-			
Catalyst	Overpotential (mV)	Tafel Slope (mV dec ⁻¹)	Reference
NZP HMSs	210	55.4	This work
Ni ₂ P	240	99.9	1
Ni ₂ P	360	153	2
Ni ₂ P nanoparticles	290	59	3
NF-P	350	112.1	4
Ni ₂ P@C	340	68	5
Ni-P	300	64	6
NiCoP	340	86	7

Table S1 Comparison of the electrocatalytic activity of Ni-P based OER catalysts

References

- H. Q. Zhou, F. Yu, J. Y. Sun, R. He, S. Chen, C. W. Chu and Z. F. Ren. Highly active catalyst derived from a 3D foam of Fe(PO₃)₂/Ni₂P for extremely efficient water oxidation. *Proc. Natl. Acad. Sci. U.S.A.*, 2017, **114**, 5607.
- Q. Wang, Z. Liu, H. Zhao, H. Huang, H. Jiao and Y. Du. MOF-derived porous Ni₂P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. *J. Mater. Chem. A*, 2018, 6, 18720.
- L. A. Stern, L. Feng, F. Song and X. Hu. Ni₂P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni₂P nanoparticles. *Energy Environ. Sci.*, 2015, 8, 2347.
- H. Li, Y. Du, Y. Fu, C. Wu, Z. Xiao, Y. Liu, X. Sun and L. Wang. Selfsupported Ni₂P nanotubes coated with FeP nanoparticles electrocatalyst (FeP@Ni₂P/NF) for oxygen evolution reaction. *Int. J. Hydrogen Energy*, 2020, 45, 565.
- M. Wang, M. Lin, J. Li, L. Huang, Z. Zhuang, C. Lin, L. Zhou and L. Mai. Metal-organic framework derived carbon-confined Ni₂P nanocrystals supported on graphene for an efficient oxygen evolution reaction. *Chem. Commun.*, 2017, 53, 8372.
- X. Y. Yu, Y. Feng, B. Y. Guan, X. W. D. Lou and U. Paik. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. *Energy Environ. Sci.*, 2016, 9, 1246.
- C. Wang, J. Jiang, T. Ding, G. Chen, W. Xu and Q. Yang. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. *Adv. Mater. Interfaces*, 2016, 3, 1500454.