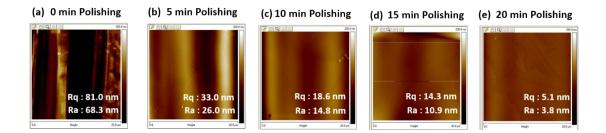
Supporting Information for:

Dimensional Anisotropic Graphene with High Mobility and High On-Off Ratio in three-terminal RRAM device

Bo Liu^{a*}, Han Hsiang Tai^b, Hanyuan Liang^b, En-Yan Zheng^c, Mamina Sahoo^b, Chih Hsien Hsu^b, Tsung-Cheng Chen^b, Chin An Huang^c, Jer-Chyi Wang^b, Tuo-Hung Hou^d, Chao-Sung Lai^{b,e,f,g*}

^a Faculty of Information Technology, College of Microelectronics, Beijing University of Technology, Beijing, 100124, People's Republic of China

^b Department of Electronic Engineering, Chang Gung University, Guishan Dist., 33302, Taoyuan, Taiwan


^c Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taoyuan, Taiwan
 ^d Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, 300, Taiwan

^e Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, Guishan Dist.,
33302, Taoyuan, Taiwan

^fDepartment of Nephrology, Chang Gung Memorial Hospital, Guishan Dist., 33305, Linkou, Taiwan ^g Department of Materials Engineering, Ming Chi University of Technology, Taishan Dist., 24301, New Taipei City, Taiwan

E-mail address: boliu.ele@bjut.edu.cn and cslai@mail.cgu.edu.tw

Key words: Graphene, Dimensional Anisotropic, Three-terminal RRAM, High mobility, High On-Off Ratio, Ultra-low Off-State Current.

Figure S1, AFM images of the Cu foil (20 μ m× 20 μ m) surface morphologies after 0 min (a), 5 min (b), 10 min (c), 15 min (d), and 20 min (e) of electrochemical polishing. The electrochemical polishing platform and process are illustrated in Figure 2 (c-e).

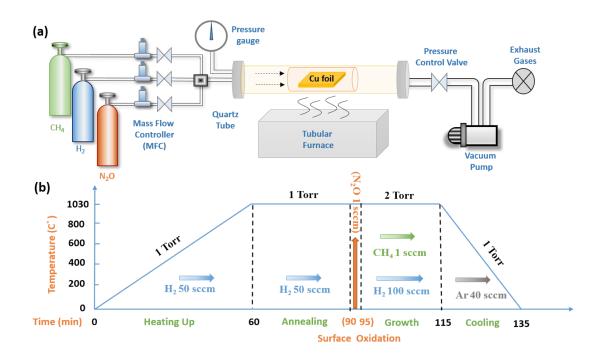
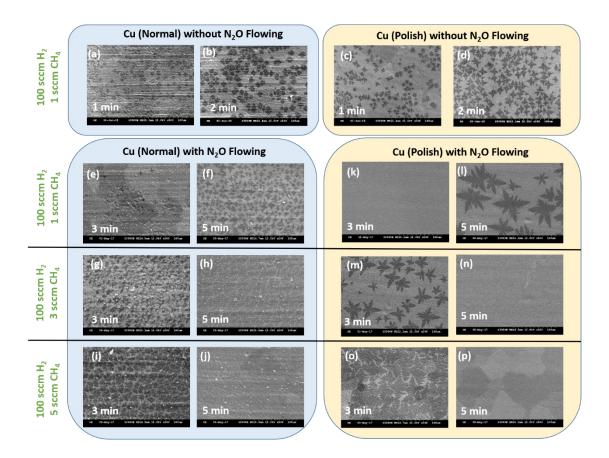



Figure S2, Illustration (a) and growth parameters (b) of chemical vapor deposition of graphene, utilizing N_2O as the oxidation gas precursor. Note that for the normal case, all conditions are the same except for the 5 min of N_2O flow.

Figure S3, SEM images of graphene growth on Cu (normal) (a-b), Cu (polish) (c-d); Cu (normal) with and Cu (polish) with a N₂O gas flow and with different H_2/CH_4 gas flow ratios. Note that (k) indicates that 1. the N2O flow completely oxidized the Cu surface, and 2. compared to (e), the rough Cu surface has a greater chance for H_2 surface reduction and carbon atom nucleation; in other words, the rough Cu surface is more chemically active. As an optimization result of those 16 SEM images, the condition (k-i) was chosen for further study.

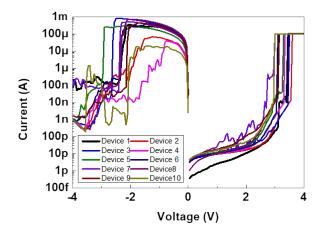


Figure S4, IV curve of Set and Reset processes of 10 different graphene-based RRAM, where CC at $100 \ \mu$ A.