Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supplementary Material for

Self-healable hybrids fabricated by metal complexation with imidazole-containing silsesquioxane nanoparticles

Yusuke Sasaki[†], and Hideharu Mori*[†]

†Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata

University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan

Figure S1. ¹H NMR spectra of (a) (Gly-SiO_{1.5})_n, (b) (MI/OH-SiO_{1.5})_n (DMSO- d_6), (c) (MI/Bu-SiO_{1.5})_n and (d) (MI/Ud-SiO_{1.5})_n (CDCl₃)

Figure S2. ¹³C NMR spectra of (a) (MI/OH-SiO_{1.5})_n (b) (MI/MT-SiO_{1.5})_n (DMSO- d_6), (c) (MI/Bu-SiO_{1.5})_n and (d) (MI/Ud-SiO_{1.5})_n (CDCl₃)

Figure S3. FT-IR spectra of (a) $(Gly-SiO_{1.5})_n$, (b) $(MI/OH-SiO_{1.5})_n$, (c) $(MI/MT-SiO_{1.5})_n$, (d) $(MI/Bu-SiO_{1.5})_n$, and (e) $(MI/Ud-SiO_{1.5})_n$.

Entry	H ₂ O	МеОН	DMSO	DMF	Ace	THF	CHCl ₃	Et ₂ O	Hex
(Gly-SiO _{1.5}) _n ^{a)}	_	_	+	_	_	_	_	_	_
(MI/OH-SiO _{1.5})n	_	_	+	+	_	+	+	_	_
(MI/MT-SiO _{1.5}) _n	_	_	+	+	_	+	+	_	_
(MI/Bu-SiO _{1.5}) _n	_	_	+	+	_	+	+	_	_
(MI/Ud-SiO _{1.5})n	_	_	_	_	_	+	+	_	_

Table S1. Solubility of SQ-NPs.

+ = soluble at r.t. (1 mg/ml), - = insoluble at r.t., time = 1 day, a) time = 1 week.

Figure S4. FT-IR spectra of (a) (MI/MT-SiO_{1.5})_n-ZnCl₂, (b) (MI/Bu-SiO_{1.5})_n-ZnCl₂, and (c) (MI/Ud-SiO_{1.5})_n-ZnCl₂ before and after metal complexation, respectively.

Figure S5. XRD profiles of (MI/MT-SiO_{1.5})_n-ZnCl₂ before and after metal complexation.

Figure S6. TGA thermograms of the imidazole-containing dual functional silsesquioxane nanoparticles (SQ-NPs) after metal complexation with ZnCl₂.

Figure S7. G', G", and tan δ (G"/G') values of (a) (MI/Bu-SiO_{1.5})_n-ZnCl₂ and (b) (MI/Ud-SiO_{1.5})_n-ZnCl₂ recorded during the temperature dispersion tests in a range from 30 °C to 130 °C (2 °C/min) at a constant frequency of 1Hz at an applied strain (γ) of 0.01 to 0.1%.

Figure S8. Fabricated rectangular (length; 25 mm, width; 7 mm, height; 2 mm) films; (a) (MI/MT-SiO_{1.5})_n-ZnCl₂, (b) (MI/Bu-SiO_{1.5})_n-ZnCl₂, and (c) (MI/Ud-SiO_{1.5})_n-ZnCl₂ for flexural stress-strain test.

Figure S9. Preliminary self-healing test for (MI/Bu-SiO_{1.5})_n-ZnCl₂; (a) cut specimen into two pieces, (b) healed specimen after 30 s of contacting the damaged surface at 50 °C, (c) microscopic images of a film before (left) and after (right) healing at 50 °C. Scale bar 500 μm.

Figure S10. The healed specimen at 50 °C for 24 h, (MI/Bu-SiO_{1.5})_n-ZnCl₂, sustained the load of a 50 g.

Figure S11. Time-dependent change in SFM height images (z-range = $1.30 \ \mu m$) of the (MI/MT-SiO_{1.5})_n-ZnCl₂ hybrid film in the vicinity of the scratch. The sample was heated at 80 °C for (a) 0 min, (b) 5 min, and (c) 10 min.

Tuble 52. The meenanear properties of 2me/initial2010 oused hybrids.									
Entry	$\varepsilon \max(\frac{0}{2})^a$	σ max (MPa) ^b	Young's modulus (GPa) ^c						
	()	()	()						
(MI/MT-SiO _{1.5}) _n -ZnCl ₂	0.445 ± 0.22	8.55 <u>+</u> 1.46	2.13 <u>±</u> 0.59						
(MI/Bu-SiO _{1.5})n-ZnCl ₂	0.402 ± 0.11	7.378 ± 1.70	1.05 ± 0.07						
(MI/Ud-SiO _{1.5})n-ZnCl ₂	0.560 <u>±</u> 0.04	3.57 <u>±</u> 0.51	0.56 <u>±</u> 0.16						

Table S2. The mechanical properties of zinc/imidazole-based hybrids.

a) Ultimate extensibility, b) ultimate tensile stress, c) calculated from small strain region (0.05-0.25 %. The results were obtained from the flexural stress-strain tests.