Highly Selective Removal of Heterocyclic Impurities from Toluene by Nonporous Adaptive Crystals of Perethylated Pillar[6]arene

Weijie Zhu, Errui Li, Jiong Zhou, Yujuan Zhou, Xinru Sheng, and Feihe Huang*

 $\textit{State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance \ \&$

Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. Fax and Tel: +86-571-8795-3189; Email: fhuang@zju.edu.cn

Electronic Supporting Information (37 pages)

1.	Materials	S2
2.	Methods	S2
3.	Crystallographic Data	S5
4.	Characterization of Desolvated EtP6 crystals (EtP6 β)	S6
5.	Vapor-Phase Adsorption Measurements	S8
6.	Recyclability of EtP6 β Crystals	S27
7.	Toluene Purification by EtP6 β Crystals	S36
8.	References	S37

1. Materials

All reagents including toluene (**Tol**), pyridine (**Py**), 2-methylthiophene (**2-MTP**) and 3-methylthiophene (**3-MTP**) were commercially available and used as supplied without further purification. **EtP6** was synthesized as described previously.^{S1} Activated crystalline **EtP6** (**EtP6** β) was recrystallized from acetone first and dried under vacuum at 140 °C overnight.

Component	Boiling Point (°C)	Melting Point (°C)
Tol	110.6	-94.9
Ру	115.2	-41.6
2-MTP	113.0	-63.0
3-MTP	114.0	-69.0

Table S1 Physical properties of the four components.^{S2,S3}

2. *Methods*

2.1 . Solution NMR

Solution ¹H NMR spectra were recorded at 400.13 MHz using a Bruker Avance 400 NMR spectrometer.

2.2. Thermogravimetric Analysis

Thermogravimetric Analysis (TGA) was carried out using a Q5000IR analyzer (TA instruments) with an automated vertical overhead thermobalance. The samples were heated at the rate of 10 $^{\circ}$ /min using N₂ as the protective gas.

2.3. Powder X-Ray Diffraction

Powder X-ray diffraction (PXRD) data were collected on a Rigaku Ultimate-IV X-ray diffractometer operating at 40 kV/30 Ma using the Cu K α line ($\lambda = 1.5418$ Å). Data were measured over the range of 5–45 ° in 5 % min steps over 8 min.

2.4. Single Crystal Growth

All single crystals of heterocyclic compound-loaded **EtP6** were grown by slow evaporation: 5 mg of dry **EtP6** powder was put in a small vial where 2 mL of a heterocyclic compound was added. The resultant transparent solution was allowed to evaporate slowly to give nice colorless crystals in 5 to 10 days.

2.5. Single Crystal X-Ray Diffraction

Suitable crystals were selected and measured on a Bruker D8 Ventune diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) for cell determination and subsequent data collection at 293K. Supplementary CIFs, which include structure factors, are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) via https://www.ccdc.cam.ac.uk/structures/.

2.6. Gas Chromatography

Gas Chromatographic (GC) Analysis: GC measurements were carried out using an Agilent 7890B instrument configured with an FID detector and a DB-624 column (30 m $\times 0.53$ mm $\times 3.0$ µm). Samples were analyzed using headspace injections and were performed by incubating the sample at 80 °C for 10 min followed by sampling 1 mL of the headspace. The following GC method was used: the oven was programmed from 50 °C, and ramped in 10 °C/min increments to 150 °C with 15 min hold; the total run time was 25 min; injection temperature was 250 °C; detector temperature was 280 °C with nitrogen, air, and make-up flow-rates of 35, 350, and 35 mL/min, respectively; helium (carrier gas) flowrate was 3.0 mL/min. The samples were injected in the split mode (30:1).

2.7. Gas Chromatography-Mass Spectrometry

Gas Chromatographic-Mass Spectrometric (GC-MS) analysis was carried out on an HP6890 gas chromatograph instrument with an HP5973 mass spectrometric detector equipped with an electron ionization source and a single-stage quadrupole. Analytes were separated on an HP-wax capillary column, 30 m \times 0.25 mm I.D. and 0.25 µm phase thickness. The helium carrier gas was set at a constant flow-rate of 1 mL/min.

Sample injection was done with an HP 7683 autosampler. The 10 μ L syringe was washed three times with ethyl acetate before and after each run and rinsed with 8 μ L of the sample solution before 1 μ L of the sample solution was injected in the split mode. The temperatures of the GC-MS instrument were set at 250 °C at the injector and 250 °C at the transfer line. The GC oven was maintained at 60 °C for 2 min, ramped at a rate of 20 °C/min to 240 °C and held at this temperature for 2 min.

3. Crystallographic Data

	(Py)2@EtP6	(2-MTP)3@EtP6	(3-MTP)3@EtP6
Crystallization Solvent	Ру	2-MTP	3-MTP
Collection Temperature	170 K	170 K	170 K
Formula	$C_{82}H_{89}NO_{12}$	$C_{81}H_{100}O_{12}S_3$	$C_{81}H_{102}O_{12}S_3$
Mr	1280.54	1361.78	1363.80
Crystal Size [mm]	$0.05\ {\times}0.03\ {\times}0.01$	$0.35 \times 0.26 \times 0.23$	$0.35 \times 0.26 \times 0.23$
Crystal System	Trigonal	Monoclinic	Monoclinic
Space Group	P-3	<i>C2/c</i>	<i>C</i> 2/ <i>c</i>
<i>a</i> [Å]	22.4256(13)	27.179(3)	27.421(8)
<i>b</i> [Å]	22.4256(13)	12.5194(12)	12.544(4)
<i>c</i> [Å]	12.5570(10)	25.143(4)	26.222(8)
α[]			
β[]		119.830(3)	124.116(9)
γ[⁹	120		
<i>V</i> [Å ³]	5469.0(8)	7421.9(15)	7467(4)
Ζ	3	4	4
D _{calcd} [g cm ⁻³]	1.166	1.219	1.213
μ [mm ⁻¹]	0.397	0.161	0.160
F(000)	2052	2920	2928
2θ range []	6.124–110.846	4.502-52.846	4.504–56.814
Reflections collected	40179	30205	33476
Independent reflections, R _{int}	7018, 0.1278	7577, 0.0571	8204, 0.0528
Obs. Data $[I > 2\sigma(I)]$	2394	5781	6535
Data / restraints / parameters	7018 / 72 / 571	7577 / 276 / 520	8204 / 185 / 522
Final R_I values $(I > 2\sigma(I))$	0.1262	0.1233	0.1311
Final R_1 values (all data)	0.2375	0.1406	0.1461
Final $wR(F_2)$ values (all data)	0.4377	0.3198	0.3516
Goodness-of-fit on F^2	1.102	0.971	0.979
Largest difference peak and hole	0.298 / -0.285	1.172 / -0.862	0.747 / -0.772
[e.A ⁻³]			
CCDC	1958820	1958824	1958825

Table S2 Experimental single crystal X-ray data for guest-loaded **EtP6** structures.

4. Characterization of Desolvated EtP6 crystals ($EtP6\beta$)

Fig. S1 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6**β.

Fig. S2 Thermogravimetric analysis of desolvated EtP6 β .

Fig. S3 Powder X-ray diffraction patterns: (I) activated **EtP6** crystals (**EtP6** β); (II) simulated from single crystal structure of guest-free **EtP6**.^{S4}

5. Vapor-Phase Adsorption Measurements

5.1 Single-Component Adsorption Experiments of EtP6_β

For each single-component adsorption experiments, an open 5 mL vial containing 20 mg of the guest-free **EtP6** β adsorbent was placed in a sealed 20 mL vial containing 2 mL of single-component heterocyclic compound liquid. Uptake in the **EtP6** β crystals was measured hour by hour by completely dissolving the crystals and measuring the adsorption ratio of **EtP6** by ¹H NMR. Before measurements, the crystals were heated at 30 °C to remove the surface-physically adsorbed vapor molecules.

Fig. S4 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **Tol** vapor.

Fig. S5 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **Py** vapor.

Fig. S6 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **2-MTP** vapor.

Fig. S7 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **3-MTP** vapor.

Fig. S8 Thermogravimetric analysis of $EtP6\beta$ after adsorption of Tol. The weight loss below 150 °C can be calculated as one Tol molecule per EtP6 molecule.

Fig. S9 Thermogravimetric analysis of $EtP6\beta$ after adsorption of Py. The weight loss below 150 °C can be calculated as two Py molecules per EtP6 molecule.

Fig. S10 Thermogravimetric analysis of $EtP6\beta$ after adsorption of 2-MTP. The weight loss below 150 °C can be calculated as two 2-MTP molecules per EtP6 molecule.

Fig. S11 Thermogravimetric analysis of $EtP6\beta$ after adsorption of 3-MTP. The weight loss below 150 °C can be calculated as two 3-MTP molecules per EtP6 molecule.

5.2. Structural Analyses after Single-Component Vapor Sorption

In the crystal structure of **Py**-loaded **EtP6** ((**Py**)₂@**EtP6**), the N atom of the pyridine ring is in the same position as the C atoms, but their occupancy ratios are different. The C atom occupancy ratio is 5/6, and the N atom occupancy ratio is 1/6. Two **Py** molecules located in the cavity of the host are stabilized by π - π stacking interactions.

Fig. S12 Single crystal structure of (**Py**)₂@**EtP6**. Ring plane/ring plane inclinations: 0.00 °, centroid–centroid distance (Å): 3.581.

Fig. S13 Powder X-ray diffraction patterns of **EtP6**: (I) **EtP6** β ; (II) **EtP6** β after adsorption of **Py**; (III) simulated from the single crystal structure of (**Py**)₂@**EtP6**.

In the crystal structure of (2-MTP)-loaded EtP6 ((2-MTP)₃@EtP6), two 2-MTP molecules are located in the cavity of EtP6, stabilized by hydrogen bonds. However, another 2-MTP molecule is located in the channel formed by two adjacent EtP6 molecules and has negligible interactions with the two hosts.

Fig. S14 Single crystal structure of (2-MTP)3@EtP6 along a axis.

Fig. S15 Single crystal structure of (**2-MTP**)₃@EtP6. CH ···O distances (Å): 2.574, 2.813, 2.841, 2.991, 3.003, 3.078.

Fig. S16 Powder X-ray diffraction patterns of **EtP6**: (I) **EtP6** β ; (II) **EtP6** β after adsorption of **2-MTP**; (III) simulated from the single crystal structure of (**2-MTP**)₃@**EtP6**.

In the crystal structure of (**3-MTP**)-loaded **EtP6** ((**3-MTP**)₃@**EtP6**), two **3-MTP** molecules are located in the cavity of **EtP6**, stabilized by hydrogen bonds and $CH\cdots\pi$ interactions. However, another **3-MTP** molecule is located in the channel formed by two adjacent **EtP6** molecules and has negligible interactions with the two hosts.

Fig. S17 Single crystal structure of (3-MTP)3@EtP6 along a axis.

Fig. S18 Single crystal structure of (**3-MTP**)₃@EtP6. CH ···O distances (Å): 2.636, 2.647, 2.771, 2.805, 2.811, 2.875; CH···π distances (Å): 2.922, 2.933.

Fig. S19 Powder X-ray diffraction patterns of **EtP6**: (I) **EtP6** β ; (II) **EtP6** β after adsorption of **3-MTP**; (III) simulated from the single crystal structure of (**3-MTP**)₃@**EtP6**.

5.3. Uptake from a Tol/Py Binary Mixture by $EtP6\beta$

For each mixture vapor-phase experiment, an open 5 mL vial containing 20 mg of guest-free **EtP6** β adsorbent was placed in a sealed 20 mL vial containing 2 mL of a **Tol/Py** mixture (*v*:*v* = 1:1). Uptake in the **EtP6** β crystals was measured hour by hour by completely dissolving the crystals and measuring the ratio of **Tol** or **Py** to **EtP6** by ¹H NMR. The relative uptake of **Tol** or **Py** in **EtP6** β was also measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 30 °C to remove the surface-physically adsorbed guest molecules.

Fig. S20 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **Tol/Py** mixture vapor.

Fig. S21 Relative uptakes of **Tol** and **Py** adsorbed in **EtP6** β based on gas chromatography after 12 hour vapor adsorption of a **Tol/Py** mixture (v:v = 1:1).

Fig. S22 Relative amounts of **Tol** and **Py** adsorbed by **EtP6** β over 12 hours as measured by gas chromatography.

For a mixture of **Tol** and **Py**, **EtP6** β can selectively capture **Py** vapor, resulting in a structural transformation from guest-free **EtP6** to (**Py**)₂@**EtP6**. In addition, the loaded guest molecules can be removed by heating at 100 °C, thereby obtaining 97.7% purity **Py**.

Py with 97.7% purity

Fig. S23 Structural representation of the transformation from $EtP6\beta$ to $(Py)_2@EtP6$ upon uptake of Tol/Py mixture vapor and the release of Py by heating.

5.4. Uptake from a Tol/2-MTP Binary Mixture by EtP6β

For each mixture vapor-phase experiment, an open 5 mL vial containing 20 mg of guest-free **EtP6** β adsorbent was placed in a sealed 20 mL vial containing 2 mL of a **Tol/2-MTP** mixture (*v*:*v* = 1:1). Uptake in the **EtP6** β crystals was measured hour by hour by completely dissolving the crystals and measuring the ratio of **Tol** or **2-MTP** to **EtP6** by ¹H NMR. The relative uptake of **Tol** or **2-MTP** in **EtP6** β was also measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 30 °C to remove the surface-physically adsorbed guest molecules.

Fig. S24 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **Tol/2-MTP** mixture vapor.

Fig. S25 Relative uptakes of **Tol** and **2-MTP** adsorbed in **EtP6** β based on gas chromatography after 12 hour vapor adsorption of a **Tol/2-MTP** mixture (v:v = 1:1)

Fig. S26 Relative amounts of **Tol** and **2-MTP** adsorbed by **EtP6** β over 12 hours as measured by gas chromatography.

For a mixture of **Tol** and **2-MTP**, **EtP6** β can selectively capture **2-MTP** vapor, resulting in a structural transformation from guest-free **EtP6** to (**2-MTP**)₃@**EtP6**. In addition, the loaded guest molecules can be removed by heating at 100 °C, thereby obtaining 92.8% purity **2-MTP**.

2-MTP with 92.8% purity

Fig. S27 Structural representation of the transformation from $EtP6\beta$ to (2-MTP)₃@EtP6 upon uptake of Tol/2-MTP mixture vapor and the release of 2-MTP by heating.

5.5. Uptake from a Tol/3-MTP Binary Mixture by EtP6β

For each mixture vapor-phase experiment, an open 5 mL vial containing 20 mg of guest-free **EtP6** β adsorbent was placed in a sealed 20 mL vial containing 2 mL of a **Tol/3-MTP** mixture (*v*:*v* = 1:1). Uptake in the **EtP6** β crystals was measured hour by hour by completely dissolving the crystals and measuring the ratio of **Tol** or **3-MTP** to **EtP6** by ¹H NMR. The relative uptake of **Tol** or **3-MTP** in **EtP6** β was also measured by heating the crystals to release the adsorbed vapor using gas chromatography. Before measurements, the crystals were heated at 30 °C to remove the surface-physically adsorbed guest molecules.

Fig. S28 ¹H NMR spectrum (400 MHz, chloroform-*d*, 298 K) of **EtP6** β after sorption of **Tol/3-MTP** mixture vapor.

Fig. S29 Relative uptakes of **Tol** and **3-MTP** adsorbed in **EtP6** β based on gas chromatography after 12 hour vapor adsorption of a **Tol/3-MTP** mixture (v:v = 1:1)

Fig. S30 Relative amounts of **Tol** and **3-MTP** adsorbed by **EtP6** β over 12 hours as measured by gas chromatography.

For a mixture of **Tol** and **3-MTP**, **EtP6** β can selectively capture **3-MTP** vapor, resulting in a structural transformation from guest-free **EtP6** to (**3-MTP**)₃@**EtP6**. In addition, the loaded guest molecules can be removed by heating at 100 °C, thereby obtaining 89.9% purity **3-MTP**.

Fig. S31 Structural representation of the transformation from EtP6 β to

(3-MTP)₃@EtP6 upon uptake of Tol/3-MTP mixture vapor and the release of 3-MTP by heating.

6. Recyclability of EtP6β Crystals

An open 5 mL vial containing 20 mg of $(\mathbf{Py})_2$ @**EtP6** was desolvated under vacuum at 100 °C overnight. The resultant crystals were characterized by TGA, PXRD and ¹H NMR.

Fig. S32 Thermogravimetric analysis of desolvated (Py)2@EtP6 upon removal of Py.

Fig. S33 Powder X-ray diffraction patterns of EtP6: (I) EtP6 β ; (II) desolvated (Py)2@EtP6. This shows that upon removal of Py, (Py)2@EtP6 transforms back to EtP6 β .

Fig. S34 ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original **EtP6** β ; (b) **EtP6** β after adsorption of **Py** vapor; (c) (**Py**)₂@**EtP6** after removal of **Py**; (d) desolvated (**Py**)₂@**EtP6** after adsorption of **Py** vapor.

Fig. S35 ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original **EtP6** β ; (b) **EtP6** β after adsorption of **Tol/Py** vapor; (c) guest-loaded **EtP6** after removal of **Tol** and **Py**; (d) desolvated guest-loaded **EtP6** after adsorption of **Tol/Py** vapor.

Fig. S36 Relative uptake of **Tol** and **Py** by **EtP6** β for 12 hours after five recycles.

An open 5 mL vial containing 20 mg of (**2-MTP**)₃@**EtP6** was desolvated under vacuum at 100 °C overnight. The resultant crystals were characterized by TGA, PXRD and ¹H NMR.

Fig. S37 Thermogravimetric analysis of desolvated (2-MTP)₃@EtP6 upon removal of 2-MTP.

Fig. S38 Powder X-ray diffraction patterns of **EtP6**: (I) **EtP6** β ; (II) desolvated (2-MTP)₃@EtP6. This shows that upon removal of 2-MTP, (2-MTP)₃@EtP6 transforms back to EtP6 β .

Fig. S39 ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original **EtP6** β ; (b) **EtP6** β after adsorption of **2-MTP** vapor; (c) (**2-MTP**)₃@**EtP6** after removal of **2-MTP**; (d) desolvated (**2-MTP**)₃@**EtP6** after adsorption of **2-MTP** vapor.

Fig. S40 ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original EtP6 β ; (b) EtP6 β after adsorption of Tol/2-MTP vapor; (c) guest-loaded EtP6 after removal of Tol and 2-MTP; (d) desolvated guest-loaded EtP6 after adsorption of Tol/2-MTP vapor.

Fig. S41 Relative uptake of **Tol** and **2-MTP** by **EtP6** β for 12 hours after five recycles.

An open 5 mL vial containing 20 mg of (**3-MTP**)₃@**EtP6** was desolvated under vacuum at 100 °C overnight. The resultant crystals were characterized by TGA, PXRD and ¹H NMR.

Fig. S42 Thermogravimetric analysis of desolvated (**3-MTP**)₃@EtP6 upon removal of **3-MTP**.

Fig. S43 Powder X-ray diffraction patterns of **EtP6**: (I) **EtP6** β ; (II) desolvated (**3-MTP**)₃@**EtP6**. This shows that upon removal of **3-MTP**, (**3-MTP**)₃@**EtP6** transforms back to **EtP6** β .

Fig. S44 ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original **EtP6** β ; (b) **EtP6** β after adsorption of **3-MTP** vapor; (c) (**3-MTP**)₃@**EtP6** after removal of **3-MTP**; (d) desolvated (**3-MTP**)₃@**EtP6** after adsorption of **3-MTP** vapor.

Fig. S45 ¹H NMR spectra (400 MHz, chloroform-*d*, 298 K): (a) original $EtP6\beta$; (b) $EtP6\beta$ after adsorption of Tol/3-MTP vapor; (c) guest-loaded EtP6 after removal of Tol and 3-MTP; (d) desolvated guest-loaded EtP6 after adsorption of Tol/3-MTP vapor.

Fig. S46 Relative uptake of **Tol** and **3-MTP** by **EtP6** β for 12 hours after five recycles.

7. Toluene Purification by EtP6β Crystals

For the toluene purification experiment, an open 5 mL vial containing 400 mg of the guest-free **EtP6** β adsorbent was placed in a sealed 20 mL vial containing 0.2 mL of a four-component mixture (**Tol/Py/2-MTP/3-MTP**, *v*:*v* = 96.5:1.5:1:1). The purities of toluene before and after adsorption were measured by GC-MS.

Fig. S47 The purity of Tol measured by GC-MS before adsorption.

Fig. S48 The purity of Tol measured by GC-MS after adsorption.

8. *References*

- S1. X.-B. Hu, Z. Chen, L. Chen, Zhang, L.; J.-L. Hou and Z.-T. Li, Pillar[n]arenes (n = 8–10) with two Cavities: synthesis, structures and complexing properties, *Chem. Commun.*, 2012, 48, 10999–11001.
- S2. P. Setasuwon, L. Menbangpung and S. Sahasithiwat, Eight combinatorial stacks of three layers of carbon Black/PVA-Carbon Black/EVA composite as a vapor detector array, *J. Comb. Chem.*, 2008, **10**, 959–965.
- S3. D. R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, FL, 2005, pp. 3-150.
- S4. K. Jie, M. Liu, Y. Zhou, M. A. Little, A. Pulido, S. Y. Chong, A. Stephenson, A. R. Hughes, F. Sakakibara, T. Ogoshi, F. Blanc, G. M. Day, F. Huang and A. I. Cooper, Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals, *J. Am. Chem. Soc.*, 2018, 140, 6921–6930.