Supporting Information

Aromatic carbonyl compound-linked conjugated microporous polymer as an

advanced cathode material for lithium-organic batteries

Kang Li^{a,†}, Qiang Li^{a,†}, Yunong Wang^a, Heng-guo Wang^{a,b*}, Yanhui Li^a, and Zhenjun Si^{a,*}

^a School of Materials Science and Engineering, Changchun University of Science and

Technology, Changchun 130022, China.

^b Key Laboratory of Polyoxometalate Science of the Ministry of Education and

Faculty of Chemistry, Northeast Normal University, 5628 Renmin Street, Changchun,

130024, P. R. China.

[†] These authors contributed equally to this work and should be considered co-first authors.

* Corresponding author.

E-mail address: wanghengguo@cust.edu.cn; szj@cust.edu.cn

Experiment section

Materials.

Pyrene, 1,3,5-tris(4,4,5,5-tetramethyl-1,2-dioxaborolan-2-yl)benzene, sodium periodate (NaIO₄), tetrakis(triphenylphosphine)palladium(0), sodium bicarbonate (NaHCO₃), potassium carbonate $(K_2CO_3),$ *N*-bromosuccinimide (NBS), trifluoroacetic acid (CF₃COOH) and 1-Methyl-2-pyrrolidinone (NMP) were purchased from Aladdin Chemical Reagent Co. Ltd. Ruthenium (III) chloride hydrate (RuCl₃.xH₂O) was purchased from J&K Scientific Co. Ltd. N, N-dimethylformamide (DMF, AR), dichloromethane (CH₂Cl₂, AR), dimethyl sulfoxide (DMSO, AR), acetonitrile (CH₃CN, AR), tetrahydrofuran (THF, AR), ethanol (AR) and methanol (AR) were purchased from Tianjin Fuyu Fine Chemical Co. Ltd. Sulfuric acid (H₂SO₄) was purchased from Beijing Chemicals Co. Ltd. All the materials were used without further purification. Water used in our experiments was deionized.

Synthesis of pyrene-4,5,9,10-tetraone (PT)

Pyrene-4,5,9,10-tetraone (PT) was synthesized according to the reported method.^{S1,S2} In brief, pyrene (10 mmol, 2.02 g) was first dissolved in a mixture of 40 mL CH₂Cl₂ and 40 mL CH₃CN. Then, NaIO₄ (82 mmol, 17.5 g), 50 mL H₂O and RuCl₃xH₂O (0.12 mmol, 0.25 g) were successively added to the mixture. The reaction mixture was stirred at 35-40 °C overnight. After reaction, the obtained mixture was poured into 500 mL deionized H₂O and then extracted by CH₂Cl₂, saturated NaHCO₃ solution and deionized H₂O, respectively. A dark yellow solid was obtained by condensing the organic solution, then, the crude product was recrystallized from DMSO to give 458 mg PT (17.5%, yield). 1H NMR (500 MHz, DMSO-d₆, ppm): 8.32 (d, 2H), 7.74 (t, 1H). FT-IR (KBr, cm⁻¹): 1673, 1561, 1443, 1341, 1281, 1054, 1030, 911, 821, 708. UV-Vis (DMF, nm): 267, 293, 373.

Scheme S1. Synthesize route of PT.

Synthesis of 2,7-dibromopyrene-4,5,9,10-tetraone (PT-2Br)

PT-2Br was synthesized according to the previous work.^{S1,S3} Briefly, the recrystallized PT (1 mM, 262 mg) was dissolved in a mixture of 2 mL CF₃COOH and 5 mL H₂SO₄, then 1 mL H₂SO₄ solution with NBS (3 mM, 534 mg) was added into the obtained mixture drop by drop. Then, the mixture was kept at 40 °C for 2 days with stirring. After reaction, the product was poured into 20 mL H₂O and stirred for another 1 h. Finally, the crude product was collected by filtration and washed with saturated NaHCO₃ and H₂O until the filtrate reaches neutral. After recrystallized from DMSO, 240 mg yellow PT-2Br was obtained (58%, yield). 1H NMR (500 MHz, DMSO-d6, ppm): 8.36 (s). FT-IR (KBr, cm⁻¹): 1679, 1548, 1274, 1087, 1030, 900, 721. UV-Vis (DMF, nm): 271, 381.

Scheme S2. Synthesize routes of PT-2Br.

Material Characterization.

Scanning electron micrograph (SEM) was performed by JEM-6701F (JEOL Ltd.). Powder X-ray diffraction (XRD) measurements were tested on Bruker D8 Focus Powder X-ray diffractometer using Cu Kα radiation (40 kV, 20 mA). Fourier transform infrared (FT-IR) spectra were determined by PerkinElmer Frontier equipment using the KBr pellet technique and Raman spectra were collected with a Renishaw 2000 model confocal microscopy Raman spectrometer. ¹H NMR spectra were recorded in DMSO-d₆ on Bruker AV-500 (¹H 500 MHz). Thermal gravimetric (TG) analysis were carried out on TA SDT 2960 simultaneous thermal analyzer between 45 and 1000 °C at a heating rate of 10 °C min⁻¹ under N₂.

Theory Calculation

All the calculations were performed with the Gaussian 09 package. The geometrical structures of the ground states were optimized at B3LYP/6-31 G(d) level in gas phase by the Density functional theory (DFT).^{S4,S5} All calculated results of MESP were performed with Multiwfn 3.3.9 programs and the cubman utility provided by the Gaussian 09 program package.^{S6} All visualization of MESP plots are carried out by Visual Molecule Dynamics (VMD) software.^{S7}

Figure S1. XRD spectra of PT and PT-BTA.

Figure S2. SEM images of (a) PT and (b) PT-BTA.

Figure S3. CV curves of PT at 0.1 mV s⁻¹.

Figure S4. GDC profiles of PT at 0.05 A g^{-1} .

Figure S5. GDC profiles of PT-BTA at different current densities.

Figure S6. Ragone plots of PT and PT-BTA.

Figure S7. Nyquist plots of pristine PT-BTA cathode and after 1, 5, 10, 50 and 100 cycles.

	Electrode Materials	Composition Active:	Electrolytes	Discharge Voltage (V vs Li/Li ⁺)	Initial Discharge Capacity (mAh g ⁻¹)	Rate capacity (mA h g ⁻¹) current density [mAg ⁻¹ /C]
	P(PyDI-T2) ^{S8}	MWCNT	EC/DEC/DMC	/	40.6	7.5/0.2C
	,	=1:1	(v/v/v 1:1:1)			
	NTAQ ^{S9}	Active: KB: PVDF= 6:3:1	1 M LiTFSI in			
			DOL/DME	2.25	130	62.4/5C
			(v/v 1:1)			
	2D-PI@CNT ^{S10}	Active: SP: Alg-Na= 8:1:1	1 M LiTFSI in			
			DOL/DME	2.4	104.4	94/2A g ⁻¹
			(v/v 1:1)			
	IEP-11-E12 ^{S11}	Active:MWCNT : PVDF= 5:4:1	1 M LiTFSI in	2.2 V	104	
			DME/DOL			23/5C
			(1:1 v/v)			
	PPTC ^{S3}	Active: CNTs = 1:2	1 M LiTFSI in	2.58	146.3	120.6/1
			DOL/DME			A g ⁻¹
			(v/v 1:1)			
	PTCDAS ^{S12}	1M LiF Active: AB: PTFE= 80:15:5 (v/v1:1	1M LiPF ₆ in	2.4	120-130	
-			EC/DMC			/
			(v/v1:1)			
	NOP ^{S13}	Active: KB: PVDF = 6:3:1	IM LIPF ₆ in EC/DMC	2 52/2 48	175.4	133.5/0.5
			EC/DWC	2.32/2.48		A g ⁻¹
			(v/v1.1)			

Table S1. Summary of the electrochemical properties for organic electrode materials.

	Active: KB: PVDF= 6:3:1	1M LiPF ₆ in			
NEP ^{S13}		EC/DMC	/	127.3	/
		(v/v1:1)			
	Active: AB: PTFE= 80:15:5	1M LiPF ₆ in	/	61.7/103.4/ 78.1	
PI-1/2/3 ^{S14}		EC/DEC/DMC			/
		(v/v/v 1:1:1)			
	Active: SP: PVDF= 6:3:1	1M LiTFSI in			
S-PI ^{S15}		DOL/DME	2.5	150	/
		(v/v 1:1)			
	Active: CNTs = 8: 10	1 M LiPF ₆ in			
PCFCs ^{S16}		EC/DMC	/	150	48/2 A g ⁻¹
		(v/v 1:1)			
	Active: AB: PVDF= 8:1:1	1 M LiPF6 in			
PGC40 ^{S17}		EC/DMC	/	152	86/1A g ⁻¹
		(v/v 1:1)			
	Active: AB: PVDF= 3:6:1	1M LiTFSI in			101.5/1A a-
PT-BTA		DOL/DME	2.70/2.36	156.6	101.3/1A g
		(v/v 1:1)			(3.10 C)

Table S2. MESP value of different atoms in PT-BTA calculated by DFT.

Molecular structure of PT-BTA

Atom	All	Positive	Negative	Atom	All	Positive	Negative
	-17.826	25.978	-43.804	20	31.894	31.894	
I	32	11	43	20	72	72	NaN
2	-17.832	25.973	-43.806	21	31.881	31.881	NaN
2	44	88	32		99	99	
3	27.708	27.708	NaN	22	31.889	31.889	NaN
5	68	68	Indin		48	48	
4	27.708	27.708	NaN	23 31. 0	31.874	31.874	NaN
4	19	19			00	00	
5	31.893	31.893	NaN	NaN 24	9.404	9.404	NaN
3	05	05			28	28	
6	31.891	31.891	NaN	NaN 25	-34.368	9.414	-43.782
0	73	73			54	30	84
7	31.902	31.902	NaN	26	-13.365	30.419	-43.785
1	86	86		Inain 20	73	42	15
8	31.887	31.887	NaN	NaN 27	30.419	30.419	NaN
0	86	86			95	95	
Q	25.966	25.966	NaN	20	16.416	16.416	NaN
)	31	31	INGIN	20	28	28	

	25 977	25 977			16 423	16 423	
10	23.911	23.711	NaN	NaN 29	10.425	10.425	NaN
	12	12			16	16	
11	14.663	14.663		31.886 30 56	31.886	31.886	NL NI
11	66	66	Inain		56	Indin	
10	14.677	14.677	NaN	31	31.884	31.884	NaN
12	24	24			47	47	
12	14.674	14.674	NaN	32	31.887	31.887	NaN
15	74	74			89	89	
14	14.671	14.671	NaN	33	-11.894	31.886	-43.781
14	20	20			61	54	15
15	30.374	30.374	NaN	34	-29.075	14.683	-43.759
15	45	45			59	80	39
16	16.419	16.419	NaN	14.688 35 19	14.688	14.688	NoN
10	32	32			19	inain	
17	16.424	16.424	NaN	36	25.985	25.985	NaN
17	92	92			80	80	
18	16.425	16.425	NaN	37	25.985	25.985	NaN
10	75	75			67	67	
10	16.424	16.424	NaN	20	27.706	27.706	NaN
17	46	46	inain	50	56	56	

Note: NaN represents no value.

References

- S1. J. A. Letizia, S. Cronin, R. P. Ortiz, A. Facchetti, M. A. Ratner and T. J. Marks, Phenacyl-thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility n-channel field-effect transistors, *Chem. Eur. J.*, 2010, 16, 1911-1928.
- S2. Q. Xing, K. Song, T. Liang, Q. Liu, W. Sun and C. Redshaw, Synthesis, characterization and ethylene polymerization behaviour of binuclear nickel halides bearing 4,5,9,10-tetra(arylimino)pyrenylidenes, *Dalton. Trans.*, 2014, 43, 7830.
- S3. Q. Li, D. N. Li, H. D. Wang, H. G. Wang, Y. H. Li, Z. J. Si, Q. Duan, Conjugated carbonyl polymer-based flexible cathode for superior lithiumorganic batteries, ACS Appl. Mater. Inter., 2019, 11, 28801-28808.
- S4. I. Avilov, P. Minoofar, J. M. Cornil and L. De Cola, Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir(III) complexes: a joint theoretical and experimental study, *J. Am. Chem. Soc.*, 2007, 129, 8247-8258
- S5. J. Burgdörfer and L. J. Dubé, Multiple-scattering approach to coherent excitation in electron-capture collisions, *Phys. Rev. Lett.*, 1984, **52**, 2225-2228.
- S6. T. Lu and F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 2012, 33, 580-592.
- S7. W. Humphrey, A. Dalke and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph., 1996, 14, 33-38.

- S8. N. Zindy, C. Aumaitre, M. Mainville, H. Saneifar, P. A. Johnson, D. Bélanger, and M. Leclerc, Pyrene diimide-based π-conjugated copolymer and single walled carbon nanotube composites for lithium ion batteries, *Chem. Mater.*, 2019, **31**, 8764–8773.
- S9. Z. H. Ba, Z. X. Wang, M. Luo, H. B. Li, Y. Z. Li, T. Huang, J. Dong, Q. H. Zhang, and X. Zhao, Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries, *ACS Appl. Mater. Inter.*, 2020, 12, 807–817.
- S10. G. Wang, N. Chandrasekhar, B. P. Biswal, D. Becker, S. Paasch, E. Brunner, M. Addicoat, M. Yu, R. Berger, and X. L. Feng, A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage, *Adv. Mater.*, 2019, **31**, 1901478.
- S11. A. Molina, N. Patil, E. Ventosa, M. Liras, J. Palma and R. Marcilla, New anthraquinone-based conjugated microporous polymer cathode with ultrahigh specific surface area for high-performance lithium-ion batteries, *Adv. Funct. Mater.*, 2020, **30**, 1908074.
- S12. X. Y. Han, C. X. Chang, L. J. Yuan, T. L. Sun, and J. T. Sun, Aromatic carbonyl derivative polymers as high-performance li-ion storage materials, *Adv. Mater.*, 2007, **19**, 1616-1621.
- S13. C. Y. Chen, X. Zhao, H. B. Li, F. Gan, J. X. Zhang, J. Dong and Q. H. Zhang, Naphthalene-based polyimide derivatives as organic electrode materials for lithium-ion batteries, *Electrochim. Acta*, 2017, 229, 387-395.
- S14. D. Tian, H. Z. Zhang, D. S. Zhang, Z. Chang, J. Han, X. P. Gao and X. H. Bu,

Li-ion storage and gas adsorption properties of porous polyimides (PIs), RSC Adv., 2014, 4, 7506-7510.

- S15. F. Xu, J. T. Xia, W. Shi and S. A. Cao, Sulfonyl-based polyimide cathode for lithium and sodium secondary batteries: enhancing the cycling performance by the electrolyte, *Mater. Chem. Phys.*, 2016, 169, 192-197.
- S16. C. P. Yuan, Q. Wu, Q. Shao, Q. Li, B. Gao, Q. Duan and H. G. Wang, Freestanding and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries, *J. Colloid Interf. Sci.*, 2018, **517**, 72-79.
- S17. C. P. Yuan, Q. Wu, Q. Li, Q. Duan, Y. H. Li and H. G. Wang, Nanoengineered ultralight organic cathode based on aromatic carbonyl compound/graphene aerogel for green lithium and sodium ion batteries, ACS Sustain. Chem. Eng., 2018, 6, 8392-8399.