Supporting Information:

Engineering crystal orientation of Na₃V₂(PO₄)₂F₃@rGO microcuboids for

advanced sodium-ion batteries

Lin Zhu, Qi Zhang, Dan Sun,* Qi Wang, Nana Weng, Yougen Tang and Haiyan Wang*

Table S1 Comparison of reported $Na_3V_2(PO_4)_2F_3$ cathode materials for Na-ion batteries.

Materials	a(=b) [Å]	c [Å]	V [Å ³]
NVPF@rGO-0	9.0235	10.6398	866.3
NVPF@rGO-1	8.8149	10.6338	826.3
NVPF@rGO-2	9.0307	10.6547	868.9
NVPF@rGO-3	9.0086	10.6150	861.5

Scherrer equation S1 $D = \frac{0.9\lambda}{\beta cos\theta}$

where D is the crystallite size, β is the FWHM in radian, θ is the diffraction angle, and λ is the wavelength.

Fig. S1 V 2p XPS spectra of NVPF@rGO-0, NVPF@rGO-1, NVPF@rGO-2 and NVPF@rGO-

3.

Fig. S2 TG curves of the NVPF@rGO-0, NVPF@rGO-1, NVPF@rGO-2, NVPF@rGO-3 materials.

Fig. S3 Raman spectra of NVPF@rGO-0, NVPF@rGO-1, NVPF@rGO-2 and NVPF@rGO-3.

Fig. S4 SEM images of materials synthesized with (a) NaF and (b) NaBr.

Fig. S5 CV curves of NVPF@rGO-0, 1, 3 at a scan rate of 0.1 mV s⁻¹ in the electrochemical window of 2.0-4.3 V vs Na⁺/Na.

Fig. S6 Charge-discharge profiles of (a) NVPF@rGO-0, (b) NVPF@rGO-1 and (c) NVPF@rGO-3 at different rates.

Fig. S7 XRD pattern of the NVPF@rGO-2 electrode after 1000 cycles at 5 C.

Fig. S8 SEM image of the NVPF@rGO-2 electrode after 1000 cycles at 5C.

Materials	Low-rate capacity	High-rate capacity	Cycling stability	References
Carbon-coated $Na_3V_2(PO_4)_2F_3$ nanoparticles embedded in mesoporous carbon matrix	133 mAh g ⁻¹ at 0.5 C	74 mAh g ⁻¹ at 30 C	70% after 1000 cycles at 10 C	[1]
$Na_3V_2(PO_4)_2F_3$ is embedded in graphene network	105 mAh g ⁻¹ at 0.5 C	57 mAh g ⁻¹ at 10 C	80.8% after 1000 cycles at 10 C	0 [2]
Reduced graphene oxide (rGO) encapsulate Na ₃ V ₂ (PO ₄) ₂ F ₃ @Carbon nanoparticles	127 mAh g ⁻¹ at 0.5 C	64 mAh g ⁻¹ at 70 C	81% after 4000 cycles at 30 C	[3]
Uniform Hierarchical Na ₃ V _{1.95} Mn _{0.05} (PO ₄) ₂ F ₃ @C Hollow Microspheres	126 mAh g ⁻¹ at 0.2 C	61 mAh g ⁻¹ At 10 C	86% after 500 cycles at 0.2 C	[4]
Na ₃ V ₂ (PO ₄) ₂ F ₃ -SWCNT composite	118 mAh g ⁻¹ at 0.2 C	101 mAh g ⁻¹ at 10 C	96% after 500 cycles at 10 C	[5]
Y-doped $Na_3V_2(PO_4)_2F_3$ compounds	125 mAh g ⁻¹ at 0.5 C	80 mAh g ⁻¹ at 50 C	93.5% after 200 cycles at 1 C	[6]
Na ₃ (VO) ₂ (PO ₄) ₂ F nanoparticles encapsulated in conductive graphene network	116 mAh g ⁻¹ at 0.2 C	61 mAh g ⁻¹ at 20 C	82% after 1200 cycles at 10 C	[7]
Chromium doping on Na ₃ V ₂ (PO ₄) ₂ F ₃ @C	111 mAh g ⁻¹ at 0.5 C	66 mAh g ⁻¹ at 10 C	93% after 125 cycles at 2 C	[8]
Carbon and aluminum oxide co- coated $Na_3V_2(PO_4)_2F_3$	128 mAh g ⁻¹ at 0.5 C	116 mAh g ⁻¹ at 5 C	96% after 100 cycles at 1 C	[9]
Carbon-coated $Na_3V_2(PO_4)_2F_3$ samples	117 mAh g ⁻¹ at 0.1 C	70 mAh g ⁻¹ at 8 C	90% after 100 cycles at 1 C	[10]
Three dimensional carbonous framework supported Na ₃ V ₂ (PO ₄) ₂ F ₃ nanoparticles	125 mAh g ⁻¹ at 0.1 C	44 mAh g ⁻¹ at 80 C	91% after 700 cycles at 1 C	[11]
Potassium doping Na ₃ V ₂ (PO ₄) ₂ F ₃ @CNT particles	122 mAh g ⁻¹ at 0.2 C	50 mAh g ⁻¹ at 50 C	91% after 1600 cycles at 10 C	[12]
$Na_3V_2(PO_4)_2F_3/C$ composites	103 mAh g ⁻¹ at 0.2 C	95 mAh g ⁻¹ at 10 C	92% after 500 cycles at 5 C	[13]
A doubled coated $Na_3V_2(PO_4)_2F_3$ material with polytetra-hydrofuran and carbon	120 mAh g ⁻¹ at 0.5 C	106 mAh g ⁻¹ at 10 C	92% after 100 cycles at 1 C	[14]
Porous nano-sized	109 mAh g ⁻¹	74 mAh g ⁻¹	95% after 200	[15]

Table S2 Comparison of reported $Na_3V_2(PO_4)_2F_3$ cathode materials for Na-ion batteries.

Na ₃ V ₂ (PO ₄) ₂ F ₃ @C nanospheres	at 0.1 C	at 5 C	cycles at 3 C	
Nitrogen-doped graphene encapsulated $Na_3V_2(PO_4)_2F_3@C$	121.6 mAh g ⁻¹ at 0.2 C	108 mAh g ⁻¹ at 5 C	96.5% after 300 cycles at 10 C	[16]
Nitrogen-doped carbon coated subglobose $Na_3V_2(PO_4)_2F_3@C$	121.5 mAh g ⁻¹ at 0.1 C	99.2 mAh g ⁻¹ at 10 C	90.1% after 1000 cycles at 10 C	[17]
$Na_xV_2(PO_4)_2F_3@rGO$ cathode with exposed sodium- rich facet	127 mAh g ⁻¹ at 0.2 C	74 mAh g ⁻¹ at 50 C	83% after 1000 cycles at 5 C	This work

Fig. S9 (a) EIS plots of the electrodes (inset: corresponding fitted equivalent circuit model) and (b) corresponding $Z'-\omega^{-0.5}$ patterns.

Samples	R _s	CPE _{sf+dl}	R _{sf+ct}	Wo
	$(\Omega \text{ cm}^{-2})$	$(S s^{1/2} cm^{-2})$	$(\Omega \text{ cm}^{-2})$	$(S s^{1/2} cm^{-2})$
NVPF@rGO-0	3.817	5.1516×10 ⁻⁵	502.8	0.45179
NVPF@rGO-1	2.392	1.876×10 ⁻⁵	244.5	0.314
NVPF@rGO-2	4.426	1.2903×10 ⁻⁵	183.2	0.28801
NVPF@rGO-3	3.455	1.7868×10 ⁻⁵	198.1	0.40941

Table S3 Fitting results of the Nyquist plots using the equivalent circuit.

Fig. S10 (a) Cycling performance and (b) rate performance of commercial soft carbon.

References

- [1] Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen and F. Du, Carboncoated Na₃V₂(PO₄)₂F₃ nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and longterm cycle life, *J. Mater. Chem. A*, 2015, **3**, 21478-21485.
- [2] C. Zhu, C. Wu, C. C. Chen, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, A high powerhigh energy Na₃V₂(PO₄)₂F₃ sodium cathode: investigation of transport parameters, rational design and realization, *Chem. Mater.*, 2017, **29**, 5207-5215.
- [3] Y. Yao, L. Zhang, Y. Gao, G. Chen, C. Wang and F. Du, Assembly of Na₃V₂(PO₄)₂F₃@C nanoparticles in reduced graphene oxide enabling superior Na⁺ storage for symmetric sodium batteries, *RSC Adv.*, 2018, **8**, 2958-2962.
- [4] Y. Zhang, S. Guo and H. Xu, Synthesis of uniform hierarchical Na₃V_{1.95}Mn_{0.05}(PO₄)₂F₃@C hollow microspheres as a cathode material for sodium-ion batteries, *J. Mater. Chem. A*, 2018, **6**, 4525-4534.
- [5] S. Liu, L. Wang, J. Liu, M. Zhou, Q. Nian, Y. Feng, Z. Tao and L. Shao, Na₃V₂(PO₄)₂F₃-SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries, *J. Mater. Chem. A*, 2019, **7**, 248-256.
- [6] W. Liu, H. Yi, Q. Zheng, X. Li and H. Zhang, Y-Doped Na₃V₂(PO₄)₂F₃ compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties, *J. Mater. Chem. A*, 2017, **5**, 10928-10935.
- [7] K. Liu, P. Lei, X. Wan, W. Zheng and X. Xiang, Cost-effective synthesis and superior electrochemical performance of sodium vanadium fluorophosphate nanoparticles encapsulated in conductive graphene network as high-voltage cathode for sodium-ion batteries, *J. Colloid Interface Sci.*, 2018, **532**, 426-432.
- [8] A. Criado, P. Lavela, C. Pérez-Vicente, G. F. Ortiz and J. L. Tirado. Effect of chromium

doping on Na₃V₂(PO₄)₂F₃@C as promising positive electrode for sodium-ion batteries, *J. Electroanal. Chem.*, 2020, **856**, 113694.

- [9] D. Ma, L. L. Zhang, T. Li, C. Liu, G. Liang, Y. X. Zhou and X. L. Yang, Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na₃V₂(PO₄)₂F₃ cathode material for sodium ion batteries, *Electrochim. Acta*, 2018, **283**, 1441-1449.
- [10]L. Deng, G. Sun, K. Goh, L. L. Zheng, F. D. Yu, X. L. Sui, L. Zhao and Z. B. Wang, Facile one-step carbothermal reduction synthesis of Na₃V₂(PO₄)₂F₃/C serving as cathode for sodium ion batteries, *Electrochim. Acta*, 2019, **298**, 459-467.
- [11]L. Li, Y. Xu, X. Sun, S. He and L. Li, High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na₃V₂(PO₄)₂F₃ nanoparticles, *Chem. Eng. J.*, 2018, **331**, 712-719.
- [12]L. Li, X. Liu, L. Tang, H. Liu and Y. G. Wang, Improved electrochemical performance of high voltage cathode Na₃V₂(PO₄)₂F₃ for Na-ion batteries through potassium doping, J. *Alloys Compd.*, 2019, **790**, 203-211.
- [13] M. Wang, X. Huang, H. Wang, T. Zhou, H. Xie and Y. Ren, Synthesis and electrochemical performances of Na₃V₂(PO₄)₂F₃/C composites as cathode materials for sodium ion batteries, *RSC Adv.*, 2019, **9**, 30628-30636.
- [14]H. Xiong, Y. Liu, H. Shao and Y. Yang, Understanding the electrochemical mechanism of high sodium selective material Na₃V₂(PO₄)₂F₃ in Li⁺/Na⁺ dual-ion batteries, *Electrochim. Acta*, 2018, **292**, 234-246.
- [15]Y. Mao, X. Zhang, Y. Zhou and W. Chu, Microwave-assisted synthesis of porous nanosized Na₃V₂(PO₄)₂F₃@C nanospheres for sodium ion batteries with enhanced stability, *Scr. Mater.*, 2020, **181**, 92-96.
- [16]X. Yang, X. Wang and W. Zhen, Reversible Na⁺-extraction/insertion in nitrogen-doped graphene-encapsulated Na₃V₂(PO₄)₂F₃@C electrode for advanced Na-ion battery, *Ceram. Int.*, 2020, **46**, 9170-9175.

[17] W.-x. Zhan, C.-I. Fan, W.-h. Zhang, G.-d. Yi, H. Chen, S.-c. Han and J.-s. Liu, Ultra-long cycle life and high rate performance subglobose Na₃V₂(PO₄)₂F₃@C cathode and its regulation, *Int. J. Energy Res.*, 2020, DOI: 10.1002/er.5397.