Electronic Supplementary Information (ESI)

Light-Emitting Conjugated Microporous Polymers Based on Excited-

State Intramolecular Proton Transfer Strategy and Selective Switch-off

Sensing of Anions

Yuwei Zhang,^{ab} Qikun Sun,^c Zhongping Li ^{bc*} Ziping Li,^b Yongfeng Zhi,^b He

Li,^d Hong Xia,^e and Xiaoming Liu ^{b*}

^a Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.

^b College of Chemistry, Jilin University, Changchun, 130012, China.

^c School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.

^d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110621, P. R. China.

^e State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun, 130012, P. R. China.

Corresponding author. E-mail address: lizhongping2020@unist.ac.kr.; xm_liu@jlu.edu.cn.

Section 1. Instrumental characterization

- Section 2. ¹³C NMR spectra
- Section 3. Solid-state electronic absorption spectra
- Section 4. Elemental analysis
- Section 5. TGA curves
- Section 6. PXRD patterns
- Section 7. Isosteric heat of carbon dioxide adsorption
- Section 8. Fluorescence spectra

Section 9. Dynamic light scattering measurement

Section 10. ¹H NMR spectra

Section 11. Plot of PL quenching efficiency

Section 12. Fluorescence spectra

Section 1. Instrumental characterization

The infrared spectra were recorded from 500 to 3500 cm⁻¹ on an Avatar FT-IR 360 spectrometer by using KBr pellets. Elemental analyses were measured by an Elementar model vario EL cube analyzer. Field emission scanning electron microscopy was recorded on a SU8020 model HITACHI microscope. Powder X-ray diffraction data were performed on a PANalytical BV Empyrean diffractometer by depositing powder on glass substrate, from $2\theta = 4.0^{\circ}$ to 35° with 0.02° . Thermogravimetric analysis (TGA) was performed on a TA Q500 thermogravimeter with the heating at a rate of 10 °C min⁻¹ from 35°C to 800 °C under nitrogen. Nitrogen sorption isotherms were measured at 77 K with a JW-BK 132F analyzer. The absolute fluorescence quantum yields were measured on Edinburgh FLS920 by using an integrating sphere. Photoluminescence spectra were recorded on a Cary Eclipse Fluorescence Spectrophotometer. Frontier molecular orbital (FMO) plots of model-1 and model-2 at the level of B3LYP/6-31G(d,p). CMPs was dispersed in THF to yield a nearly transparent dispersion which was immediately subjected to fluorescence spectroscopy. After the addition anions, time-dependent fluorescence spectra were recorded.

1

Section 2. ¹³C NMR spectra

Fig. S1. ¹³C NMR spectra (a) CMP-A and (b) CMP-B.

Section 3. Solid-state electronic absorption spectra

Fig. S2. Solid-state electronic absorption spectra of (a) CMP-A (red) and monomer C (black); (b) CMP-B (red), monomer C (black) and monomer B (sky-blue).

Section 4. elemental analysis

Table 1

	Element	C%	Н%	N%
Samples				
CMP-A	Observed	77.15	7.61	6.91
	Calculated	75.72	6.99	6.68
CMP-B	Observed	80.20	7.01	5.75
	Calculated	80.64.	6.67	5.88

Fig. S3. TGA curves of (a) CMP-A and (a) CMP-B.

Section 6. PXRD patterns

Fig. S4. PXRD patterns of (a) CMP-A and (a) CMP-B.

Section 7. Isosteric heat of carbon dioxide adsorption

Fig. S5. The isosteric heat of adsorption of CO_2 for (a) CMP-A and (b) CMP-

Β.

Section 8. Fluorescence spectra

Fig. S6. Normalized fluorescence excitation spectra of (a) CMP-A and (b) CMP-B. Normalized fluorescence emission spectra of (c) CMP-A and (d) CMP-B.

Section 9. Dynamic light scattering measurement

Fig. S7. Dynamic light scattering profile of (a) CMP-A and (b) CMP-B.

Section 10.¹H NMR spectra

Fig. S8. NMR spectra of module before (black curve) and after fluoride anions (red curve).

Section 11. Plot of PL quenching efficiency

Fig. S9. Plot of PL quenching efficiency (I_0/I) as a function of fluoride anions concentration of (a) CMP-A and (b) CMP-B (fluoride anions: 0 to 10^{-4} M).

Section 12. Fluorescence spectra

Fig. S10. Fluorescence spectra of (a) CMP-A and (b) CMP-B in THF (Original CMPs: black curves; CMPs@F⁻@H⁺: sky-blue curves; CMPs@F⁻@H⁺@F⁻: pink curves; CMPs@F⁻: red curves).