Supplemental Information for

Mono-telechelic Polymers by Catalytic Living Ring-Opening Metathesis Polymerization with Second-Generation Hoveyda–Grubbs Catalyst

Peng Liu, Zhenghao Dong and Andreas F.M. Kilbinger* Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland, andreas.kilbinger@unifr.ch

Table of Contents

General information	
Materials	1
Instrumentation	1
Polymerisations	
Different Mn	2
Different Monomers	4
Synthesis of block copolymers	7
Different End-groups	8
Copies of NMR Spectra	
Copies of MALDI-ToF Mass Spectra	
Copies of GPC Elugrams	
Copies of TGA and DSC	
References	

General information Materials

Celite, ethyl vinyl ether, Hoveyda-Grubbs 2nd generation catalyst, chlorotriisopropylsilane, imidazole, triethyl amine, CuI and *N*-Boc-ethanolamine were purchased from Sigma-Aldrich and used without further purification. DIBAL-H in hexane, *N*-Bromosuccinimide, cyclohexene, cyclopentene, cyclopropylacetylene, 2-methylfuran, 3-chloropyridine, *N*-methylmaleimide and *endo*-5-norbornene-2,3-dicarboxylic anhydride were purchased from Acros Organics and used without further purification. *trans*-3-Hexenedioic acid were purchased from TCI. *cis*-4-Octene was purchased from Alfa Aesar. Solvents of analytical grade were purchased from Honeywell, Acros Organics, Sigma Aldrich, Fischer Scientific and were used without further purification. Dichloromethane for reactions was dried in P₂O₅ overnight and purified by distillation under Ar and degassed under Ar. Deuterated solvents (CD₂Cl₂, CDCl₃) were purchased from Cambridge Isotope Laboratories Inc. Grubbs 3rd generation catalyst was prepared from Grubbs 2nd generation catalyst which was dissolved in a large excess of 3bromopyridine, precipitated in n-pentane and then dried under high vacuum. All monomers (**MNI, PNI, OMNI, MOMNI, NBSM**), **CTAs (CTA 1** and **CTA2**) and **SCTAs (SCTA 1**, **SCTA 2, SCTA 3** and **SCTA 4**) were synthesized according to the literature^{1,2,3}.

Instrumentation

ESI-MS analysis for synthesized compounds was carried out on a Bruker 4.7T BioAPEX II. GC-MS analysis for synthesized compounds was carried out on a Thermo Scientific Trace GC Ultra DSQ II system with Zebron capillary GC column (ZB-5MS 0.25 μ m, 30m×0.25mm). MALDI-ToF MS analysis of the polymers was carried out on a Bruker ultrafleXtremeTM using 2-(*2E*)-3-(4-tertbutylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and silver trifluoroacetate or sodium trifluoroacetate as the added salt. Relative molecular weights and molecular weight distributions were measured by gel permeation chromatography (GPC) with an Agilent Technologies 1260 Infinity II GPC system (pump, autosample, RI detector) and two MZ-Gel SDplus Linear columns (5 μ m, 300×8.0mm), a MZ-Gel SDplus Linear precolumn (5 μ m, 50×8.0mm) at a flow rate of 1mL/min for samples measured in CHCl₃. Calibrations were carried out using PSS-polymer polystyrene standards. NMR spectra were recorded on a Bruker Avance III 400 MHz NMR spectrometer (¹H NMR 400 MHz, ¹³C-NMR 101 MHz). Thermogravimetric analysis (TGA) was conducted on a Mettler Toledo TGA/DSC

1 STAR system under nitrogen up to 700°C with a heating rate of 10 °C/min. The reported degradation temperature (T_d) was taken at the degradation onset. Differential scanning calorimetry (DSC) was conducted on a Mettler Toledo DSC 2 STAR system under nitrogen up to 300°C with a heating and cooling rate of 20 °C/min. The data was taken from the second heating cycle and the glass transition temperature (T_g) was taken from the middle point of the tangent onset.

Polymerisations Different Mn

HG2 (1.2mg, 0.001875mmol,1.0eq) was added into a Schlenk flask under Ar, then degassed DCM (1ml) was added, followed by addition of **CTA 1** which was dissolved in degassed DCM (1.0ml). To this solution, **MNI** (266mg, 1.5mmol, 800eq) which was dissolved in degassed DCM (0.3mmol/ml) was added at a speed of 0.83 ml/h by syringe pump (the needle, $\emptyset = 0.5$ mm, was inserted into reaction solution). After complete addition, vinyl ether (0.5ml) was added to terminate the reaction. The reaction solution was precipitated into cold hexane (50ml) to give the polymer.

Entry	Eq. CTA	Eq. MNI	Conc. of MNI	Speed ml/h	Mn Ther.	Mn Exp.	Đ	Yield%
			mmol/ml		g/mol	g/mol		
1	20	800	0.3	1.0	7214	24000	1.25	96
	(5.0mg)							
2ª	20	800	0.3	1.0	7214	12400	1.36	95
	(5.0mg)							
3	10	800	03	0.83	14294	15300	1 36	95
C	(2.5mg)	000	0.12	0.00	1/	10000	1.00	20
4	20	800	0.3	0.83	7214	7500	1.39	93
	(5.0mg)							
5	40	800	0.3	0.83	3674	4000	1.43	90
	(10.1mg)							
6	60	800	0.3	0.83	2494	3000	1.44	92
Ū	$(15 \ 1mg)$	000	0.12	0.02	, .	2000		
7	100	800	03	0.83	1550	2000	1 47	90
/	(25.2mg)	000	0.5	0.05	1000	2000	1.7/	20

Table S1 Catalytic Living ROMP of Different Molecular Weight

^a 3-chloropyridine (1.2mg, 0.0105mmol, 5eq.) was added in the reaction solution.

Polymer 1 (Table S1, Entry 1)

¹H NMR (300 MHz, Chloroform-*d*) δ 5.69-5.75 (m), 5.43-5.55 (m), 5.04-5.16 (m), 2.63-3.43 (m), 1.96-2.26 (m), 1.38-1.70 (m), 0.63-0.72 (m), 0.34-0.40 (m). ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.37, 133.45, 132.68, 131.93, 52.99, 52.60, 51.11, 50.99, 45.63, 40.85, 34.12, 24.85, 24.78, 22.33, 14.07. The molecular weight is too high to be detected in MALDI-ToF mass.

Polymer 2 (Table S1, Entry 2)

¹H NMR (300 MHz, Chloroform-*d*) δ 5.69-5.75 (m), 5.43-5.55 (m), 5.05-5.16 (m), 2.63-3.43 (m), 1.96-2.26 (m), 1.38-1.70 (m), 0.63-0.73 (m), 0.33-0.39 (m). ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.38, 133.57, 133.48, 132.64, 131.88, 131.68, 52.99, 52.62, 51.12, 50.98, 45.64, 41.46, 40.86, 34.12, 24.90, 24.85, 24.79, 22.34, 14.07. The molecular weight is too high to be detected in MALDI-ToF.

Polymer 3 (Table S1, Entry 3)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.69-5.76 (m), 5.44-5.54 (m), 5.07-5.14 (m), 2.66-3.35 (m), 1.96-2.29 (m), 1.56-1.77 (m), 0.61-0.73 (m), 0.32-0.39 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.36, 133.47, 132.68, 131.88, 131.84, 131.62, 53.44, 53.00, 52.64, 51.85, 51.12, 50.99, 46.20, 45.99, 45.82, 45.63, 43.01, 42.50, 42.02, 41.46, 40.86, 24.89, 24.84, 24.77, 13.62. The molecular weight is too high to be detected in MALDI-ToF.

Polymer 4 (Table S1, Entry 4)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.68-5.78 (m), 5.44-5.58 (m), 5.07-5.15 (m), 2.62-3.33 (m), 1.98-2.35 (m), 1.42-1.71 (m), 0.67-0.73 (m), 0.33-0.40 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.35, 133.52, 131.85, 131.69,53.02, 52.68, 51.12, 51.00, 46.06, 45.69, 42.78, 42.01, 41.46, 40.87, 24.89, 24.77, 13.63. MALDI-ToF MS calcd. For C₂₀₀H₂₂₃N₁₉O₃₈Ag⁺ [M+Ag⁺]: 3605.51; Found: 3605.52

Polymer 5 (Table S1, Entry 5)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.67-5.78 (m), 5.44-5.63 (m), 5.08-5.15 (m), 2.63-3.34 (m), 1.97-2.33 (m), 1.44-1.74 (m), 0.68-0.70 (m), 0.33-0.38 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.34, 135.57, 133.49, 132.05, 53.01, 52.65, 51.85, 51.01, 48.24, 46.25,

46.05, 45.61, 42.47, 41.98, 41.47, 41.22, 40.86, 32.09, 30.64, 24.84, 24.77, 13.62. MALDI-ToF MS calcd. For C₁₄₀H₁₅₇N₁₃O₂₆Na⁺ [M+Ag⁺]: 2459.13; Found: 2459.18

Polymer 6 (Table S1, Entry 6)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.68-5.78 (m), 5.44-5.63 (m), 5.08-5.15 (m), 2.59-3.33 (m), 1.98-2.36 (m), 1.34-1.71 (m), 0.69-0.71 (m), 0.36-0.38 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.34, 178.28, 135.57, 133.51, 132.74, 131.92, 131.46, 53.02, 52.67, 51.86, 51.15, 48.24, 46.25, 45.68, 42.41, 40.86, 32.11, 30.65, 24.84, 13.63. MALDI-ToF MS calcd. For C₁₂₀H₁₃₅N₁₁O₂₂Ag⁺ [M+Ag⁺]: 2188.88; Found: 2188.87

Polymer 7 (Table S1, Entry 7)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.68-5.79 (m), 5.44-5.64 (m), 5.08-5.15 (m), 2.60-3.31 (m), 1.98-2.37 (m), 1.45-1.69 (m), 0.69-0.71 (m), 0.36-0.38 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.34, 135.57, 133.52, 131.70, 53.00, 52.67, 51.02, 48.26, 46.05, 45.61, 42.48, 40.83, 32.11, 30.65, 24.77, 24.73, 13.63. MALDI-ToF MS calcd. For C₁₉₀H₂₁₂N₁₈O₃₆Ag⁺ [M+Ag⁺]: 3428.44; Found: 3428.45

Different Monomers

HG-2 (3.2mg, 0.005mmol,1.0eq) was added into a Schlenk flask under Ar, then degassed DCM (1ml) was added, followed by addition of **CTA 1** (6.7mg, 0.05mmol, 10eq) which was dissolved in degassed DCM (1.0ml). To this solution monomer, which was dissolved in degassed DCM (0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump (the needle, $\emptyset = 0.5$ mm, was inserted into reaction solution). After complete addition, vinyl ether (0.5ml) was added to terminate the reaction. The reaction solution obtained was precipitated into cold hexane (50ml) to give the polymer.

Entry	Monomer	Eq. CTA	Eq. Monomer	Mn Ther.	Mn Exp.	Đ	Speed ml/h	Yield%
1	NANT	10	200	g/mol	g/mol	1.22	0.02	02
1	MNI (266mg)	10	300	5444	/300	1.33	0.83	93
2	PNI (359mg)	10	300	7314	11000	1.25	0.83	97
3	OMNI (269mg)	10	300	5504	9900	1.73	0.83	90
4 ^a	NBSM (280mg)	10	120	5734	3800	1.75	0.83	85
5 ^b	NBSM (280mg)	10	120	5734	3300	1.74	0.83	83
6°	MOMNI (290mg)	10	300	5924	5100	1.80	One- pot	85

Table S2 Catalytic Living ROMP of Different Monomers

^a The polymer was precipitated in 50ml cold methanol. ^b 3-chloropyridine (5.7mg, 0.05mmol, 10eq.) was added in the reaction solution. The polymer was precipitated in 50ml cold methanol. ^c **HG2** and **CTA 1** were mixed together in 2ml degassed DCM, then **MOMNI** (in 5ml degassed DCM) was added in one shot under Ar. The solution was kept stirring overnight.

Fig. S1. ¹H NMR reaction of **HG2** and **MOMNI**. **HG2** (3.2mg, 0.005mmol, 1.0eq.) was dissolved in 0.75ml degassed CD₂Cl₂ under Ar, then **MOMNI** (54mg, 0.28mmol, 56eq.) was added into the solution. The ¹H NMR was measured in 10min.

Polymer 8 (Table S2, Entry 1)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.68-5.78 (m), 5.44-5.62 (m), 5.08-5.15 (m), 2.64-3.31 (m), 1.99-2.29 (m), 1.48-1.76 (m), 0.69-0.71 (m), 0.35-0.38 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.35, 135.57, 133.49, 132.04, 131.87, 53.03, 52.67, 51.00, 45.72, 45.69, 42.48, 41.23, 40.87, 24.84, 24.77, 13.63. MALDI-ToF MS calcd. For C₂₂₀H₂₄₅N₂₁O₄₂Ag⁺ [M+Ag⁺]: 3959.67; Found: 3959.68

Polymer 9 (Table S2, Entry 2)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.17-7.46 (m), 5.70-5.83 (m), 5.47-5.65 (m), 5.10-5.18 (m), 2.78-3.53 (m), 2.09-2.36 (m), 1.38-1.73 (m), 0.69-0.71 (m), 0.36-0.38 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.26, 177.15, 133.91, 132.00, 129.07, 128.93, 128.35, 126.71, 126.43, 99.99, 53.06, 52.81, 51.95, 51.11, 46.16, 43.64, 42.82, 42.47, 41.58, 41.01, 13.65. The molecular weight is too high to be detected in MALDI-ToF mass.

Polymer 10 (Table S2, Entry 3)

¹H NMR (400 MHz, Chloroform-*d*) δ 6.00-6.10 (m), 5.59-5.81 (m), 5.32-5.41 (m), 4.92-5.03 (m), 4.29-4.56 (m), 3.23-3.39 (m), 2.79-3.01 (m), 1.53-1.74 (m), 0.74-0.76 (m), 0.43-0.45 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.84, 175.65, 131.99, 131.45, 130.99, 81.00, 80.89, 53.49, 52.44, 52.21, 25.12, 25.09. MALDI-ToF MS calcd. For C₁₀₀H₁₀₄N₁₀O₃₀Ag⁺ [M+Ag⁺]: 2031.60; Found: 2031.62

Polymer 11 (Table S1, Entry 4)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.27-5.75 (m), 4.87-4.96 (m), 3.72-3.88 (m), 2.94-3.00 (m), 2.61-2.69 (m), 2.10-2.39 (m), 1.83-1.93 (m), 1.46-1.63 (m), 0.88-1.08 (m), 0.61-0.63 (m), 0.27-0.29 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.35, 132.16, 131.63, 130.70, 63.43, 61.99, 61.83, 50.89, 49.04, 48.78, 48.06, 45.56, 44.59, 38.60, 30.93, 18.16, 18.06, 12.10. MALDI-ToF MS calcd. For C₁₇₂H₃₃₈O₂₂Si₁₂Ag⁺ [M+Ag⁺]: 3039.21; Found: 3039.20

Polymer 12 (Table S1, Entry 6)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.89-6.11 (m), 5.46-5.80 (m), 5.23-5.29 (m), 4.48-4.71 (m), 3.26-3.54 (m), 2.94-2.98 (m), 1.63-1.70 (m), 1.25-1.39 (m), 0.70-0.73 (m), 0.37-0.40 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.41, 175.15, 140.52, 138.14, 136.91, 128.03, 83.97,

80.59, 79.14, 54.71, 52.96, 50.69, 49.49, 24.99, 22.33, 15.63. MALDI-ToF MS calcd. For $C_{100}H_{113}N_9O_{27}Ag^+$ [M+Ag⁺]: 1978.68; Found: 1978.70

Synthesis of block copolymers

HG2 (3.2mg, 0.005mmol,1.0eq) was added into a Schlenk flask under Ar, then degassed DCM (1.0ml) was added, followed by addition of **CTA 1** (6.7mg, 0.05mmol, 10eq) which was dissolved in degassed DCM (1.0ml). To this solution **MNI** (160 mg, 0.9mmol, 180eq.) which was dissolved in degassed DCM (3ml, 0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, **OMNI** (135 mg, 0.75mmol, 150eq.) which was dissolved in degassed DCM (2.5ml, 0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, **PNI** (144 mg, 0.6mmol, 120eq.) which was dissolved in degassed DCM (2.5ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, **PNI** (144 mg, 0.6mmol, 120eq.) which was dissolved in degassed DCM (2ml, 0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, **PNI** (144 mg, 0.6mmol, 120eq.) which was dissolved in degassed DCM (2ml, 0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, **PNI** (144 mg, 0.6mmol, 120eq.) which was dissolved in degassed DCM (2ml, 0.3mmol/ml) was added to terminate the reaction. The reaction solution obtained was precipitated into cold hexane (50ml) to give 421 mg of **polymer 13** (PolyMNI-*b*-PolyOMNI-*b*-PolyPNI). Yield: 96%.

Polymer 13

¹H NMR (300 MHz, Chloroform-*d*) δ 7.19-7.47 (m), 5.97-6.10 (m), 5.68-5.82 (m), 5.45-5.64 (m), 5.06-5.16 (m), 4.93-5.02 (m), 1.37-4.56 (m), 2.65-3.54 (m), 1.98-2.31 (m), 1.47-1.72 (m), 0.68-0.72 (m), 0.35-0.38 (m). ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.37, 177.18, 175.74, 133.53, 131.82, 129.08, 128.94, 126.71, 126.39, 81.01, 77.46, 53.47, 52.66, 51.12, 46.20, 45.59, 42.76, 42.48, 41.93, 41.48, 25.17, 25.13, 24.86. MALDI-ToF MS can not be detected due to the too high molecular weight. PolyMNI: M_{n GPC} (CHCl₃) = 3500 g mol⁻¹, ϑ = 1.33, PolyMNI-*b*-PolyOMNI: M_{n GPC} (CHCl₃) = 7500 g mol⁻¹, ϑ = 1.56, PolyMNI-*b*-PolyOMNI-*b*-PolyPNI: M_{n GPC} (CHCl₃) = 13000 g mol⁻¹, ϑ = 1.52. *T*_d = 336 °C, *T*_g = 204 °C.

HG2 (3.2mg, 0.005mmol, 1.0eq) was added into a Schlenk flask under Ar, then degassed DCM (1.0ml) was added, followed by addition of **CTA 1** (6.7mg, 0.05mmol, 10eq) which was

dissolved in degassed DCM (1.0ml) was added under Ar. To this solution **MNI** (266 mg, 1.5mmol, 300eq) which was dissolved in degassed DCM (5ml, 0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, the reaction solution obtained was precipitated into cold hexane (50ml) to give **polymer 8**.

HG2 (3.2mg, 0.005mmol,1.0eq) and **polymer 8** (all from last step, except 20mg was taken for analysis) were dissolved in degassed DCM (2ml) under Ar. To this solution, **PNI** (360 mg, 1.5mmol, 300eq) which was dissolved in degassed DCM (5ml, 0.3mmol/ml) was added at a speed of 0.83ml/h by syringe pump. After complete addition, vinyl ether (0.5ml) was added to terminate the reaction. The reaction solution obtained was precipitated into cold hexane (50ml) to give 614mg of **polymer 14** (PolyMNI-*b*-PolyPNI). Yield: 98%.

Polymer 14

¹H NMR (400 MHz, Chloroform-*d*) δ 7.18-7.47 (m), 5.70-5.80 (m), 5.45-5.59 (m), 5.06-5.16 (m), 2.66-3.52 (m), 2.01-2.32 (m), 1.47-1.82 (m), 0.68-0.71 (m), 0.35-0.38 (m).¹³C NMR (75 MHz, Chloroform-*d*) δ 178.38, 177.59, 177.14, 176.90, 135.71, 133.91, 133.54, 132.05, 131.81, 128.94, 128.31, 126.71, 126.43, 53.04, 53.00, 52.61, 51.10, 46.64, 46.18, 45.68, 45.61, 42.80, 42.53, 40.88, 24.92, 24.80, 14.09. MALDI-ToF MS cannot be detected due to the too high molecular weight. M_{n GPC} (CHCl₃) = 21000 g mol⁻¹, D = 1.47. $T_d = 370$ °C, $T_g = 210$ °C. Different End-groups

HG2 (3.2mg, 0.005mmol,1.0eq) was added into a Schlenk flask under Ar, then degassed DCM (1.0ml) was added, followed by addition of **CTA** (0.05mmol, 10eq) which was dissolved in degassed DCM (1.0ml). To this solution, **MNI** (266mg, 1.5mmol, 300eq) which was dissolved in 20ml degassed DCM (0.075mmol/ml) was added at a speed of 5 ml/h by syringe pump. After complete addition, the **SCTA** was added in 2ml degassed DCM under Ar. Then the solvent was evaporated to around 2ml and kept stirring overnight. Vinyl ether (0.5ml) was added to terminate the reaction. The solution obtained was precipitated into cold hexane(50ml) to give the polymer. The polymers were dialyzed against DMSO using dialysis membrane

(MWCO:3500D) overnight to remove the excess **SCTAs**. The final polymer was obtained by precipitation in cold hexane.

Entry	R	Eq.	Mn Ther	Mn Exp	Đ	Speed m1/h	Yield%
		CIII	g/mol	g/mol		1111/11	
1	-Ethyl	10	5420	7600	1.44	5.0	90
2		10	5492	6900	1.35	5.0	93
3 ^a	~~~OTIPS	10	5578	5500	1.29	5.0	95
4 ^a		10	5579	6800	1.27	5.0	97

Table S3 Catalytic Living ROMP of end-groups

^a (*E*)-3-(2-cyclopentylvinyl)cyclopent-1-ene (**CTA2**) was used as CTA instead of (*E*)-3-(2-cyclopropylvinyl)cyclopent-1-ene (**CTA1**) to increase the steric hindrance to avoid the formation of homo-telechelic polymers.

Polymer 15 (Table S3, Entry 1)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.68-5.82 (m), 5.37-5.62 (m), 5.06-5.16 (m), 2.64-3.31 (m), 1.94-2.30 (m), 1.48-1.72 (m), 1.18-1.43 (m), 0.82-0.85 (m), 0.68-0.71 (m), 0.35-0.38 (m). ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.33, 133.19, 132.20, 130.21, 52.99, 52.65, 51.11, 51.00, 45.67, 41.92, 40.97, 24.85, 24.78, 13.65. MALDI-ToF MS calcd. For C₂₀₈H₂₃₄N₂₀O₄₀Ag⁺ [M+Ag⁺]: 3758.59; Found: 3758.28

Polymer 16 (Table S3, Entry 2)

¹H NMR (400 MHz, Chloroform-d) δ 5.67-5.77 (m), 5.61-5.65 (m), 5.46-5.55 (m), 5.05-5.17 (m), 2.62-3.30 (m), 1.98-2.29 (m), 1.38-1.70 (m), 1.22-1.79 (m), 0.68-0.71 (m), 0.35-0.39 (m). ¹³C NMR (75 MHz, Chloroform-d) δ 178.34, 171.05, 133.46, 131.85, 126.05, 53.01, 52.65, 51.84, 51.12, 51.00, 45.64, 40.87, 39.14, 28.08, 24.85, 24.78. MALDI-ToF MS calcd. For C₁₅₇H₁₇₅N₁₅O₃₂Ag⁺ [M-C₄H₉+H+Ag⁺]: 2889.16; Found: 2889.05

Polymer 17 (Table S3, Entry 3)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.66-5.76 (m), 5.40-5.59 (m), 5.19-5.29 (m), 3.57-3.70 (m), 2.61-3.29 (m), 1.97-2.30 (m), 1.68-1.46 (m), 0.95-1.06 (m), 0.80-0.82 (m). ¹³C NMR (75 MHz, Chloroform-*d*) δ 178.36, 136.42, 133.46, 132.02, 131.86, 130.57, 128.59, 127.91, 63.45, 63.17, 52.97, 52.62, 51.82, 50.98, 16.17, 45.61, 43.08, 42.47, 41.46, 40.85, 36.51. 33.03, 24.83,

18.00, 17.71, 12.29, 11.99. MALDI-ToF MS calcd. For $C_{208}H_{245}N_{19}O_{39}SiAg^+$ [M+Ag⁺]: 3767.66; Found: 3767.68

Polymer 18 (Table S3, Entry 4)

¹H NMR (400 MHz, Chloroform-*d*) δ 5.69-5.76 (m), 5.45-5.55 (m), 4.13-4.16 (m), 2.88-3.39 (m), 2.61-2.78 (m), 2.036-2.29 (m), 1.44-1.72 (m). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.36, 171.43, 133.48, 132.69, 131.83, 131.71, 64.01, 52.66, 51.78, 51.15, 46.29, 45.62, 40.98, 37.62, 33.20, 33.05, 28.38, 24.89. MALDI-ToF MS cannot be detected.

Copies of NMR Spectra

Figure S34 ¹H NMR spectrum (300MHz, CDCl₃) of Polymer 17

Figure S36 ¹H NMR spectrum (400MHz, CDCl₃) of Polymer 18

Copies of MALDI-ToF Mass Spectra

Figure S41 MALDI-ToF of Polymer 8

Figure S42 MALDI-ToF of Polymer 10

Figure S44 MALDI-ToF of Polymer 12

Figure S45 MALDI-ToF of Polymer 15

Figure S46 MALDI-ToF of Polymer 16

Copies of GPC Elugrams

Figure S54 GPC trace of Polymer 7

Figure S57 GPC trace of Polymer 10

Figure S60 GPC trace of Polymer 13 (PolyMNI-b-PolyOMNI-b-PolyPNI)

Figure S61 GPC trace of Polymer 14 (PolyMNI-b- PolyPNI)

Copies of TGA and DSC

Figure S67 TGA of Polymer 14

References

- 1. P. Liu, M. Yasir, A. F. M. Kilbinger, Catalytic living ring-opening metathesis polymerisation: the importance of ring strain in chain transfer agents. *Angew. Chem. Int. Ed.* **2019**, *58*, 15278.
- 2. D. Taber, D. A. Gerstenhaber, X. Zhao Convenient preparation of *tert*-butyl esters. *Tetrahedron Lett.* **2006**, *47*, 3065.
- 3. B. McNaughton, K. M. Bucholtz, A. Camaano-Moure, B. L. Miller, Self-Selection in Olefin Cross-Metathesis: The Effect of Remote Functionality. *Org. Lett.* **2005**, *7*, 733.