Electronic Supplementary Information

Electronic, vibrational, and charge-transport properties of

benzothienobenzothiophene-TCNQ co-crystals

Ajith Ashokan,[†] Caitlin Hanson,^{†, §} Nathan Corbin, ^{†, #}

Jean-Luc Brédas,^{†, ‡*} and Veaceslav Coropceanu^{†, ‡*}

[†] School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics (COPE), Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States

[‡]Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States

Corresponding authors: jlbredas@arizona.edu (J. L. Brédas); coropceanu@arizona.edu (V. Coropceanu)

1. Experimental crystal structures

Figure S1. Experimental crystal structures of: (a) BTBT-TCNQ, (b) BTBT- F_2 TCNQ, (c) BTBT- F_4 TCNQ, (d) diC₈BTBT-TCNQ, (e) diC₈BTBT- F_4 TCNQ, (f) diC₁₂BTBT-TCNQ, and (g) diC₁₂BTBT- F_4 TCNQ. The stacking directions are represented in red for the (a, b, d, e, f, and g) cases and in green for the (c) case.^{1, 2}

	BTBT- TCNQ	BTBT- F ₂ TCNQ	BTBT- F4TCNQ	diC ₈ BTBT -TCNQ	diC ₈ BTBT - F ₄ TCNQ	diC ₁₂ BTBT -TCNQ	diC ₁₂ BTBT - F ₄ TCNQ
a (Å)	7.1933	7.1608	7.9628	7.1829	7.1030	7.2075	7.096
b (Å)	8.0044	7.9489	7.062	7.7361	8.077	7.7416	8.053
c (Å)	9.0183	9.1084	19.111	17.946	17.592	21.258	21.148
α (deg)	81.181	80.928	90.00	86.554	85.90	82.579	83.20
β (deg)	89.310	89.567	99.328	80.529	82.020	88.358	86.85
γ (deg)	87.721	87.878	90.00	73.518	72.443	73.252	72.50

Table S1.	Unit-cell	parameters of co-cry	stals. ^{1, 2}
-----------	-----------	----------------------	------------------------

2. Effective masses

Crystal		m / m_0	Parallel to
BTBT-TCNO	Holes at $\Gamma(0, 0, 0)$	1.3	b-0.09a-0.71c
		4.7	c+0.45a+0.87b
		10.7	a-0.11b-0.19c
	Electrons at T (0, 0.5, 0.5)	1.07	a-0.03b+0.01c
		3.2	c-0.03a-0.79b
		13.4	b-0.02a+0.55c
BTBT-F ₂ TCNQ	Holes at Γ (0, 0, 0)	1.03	b-0.13a-0.77c
		3.41	b+0.45a+0.96c
		4.91	a-0.09b-0.19c
	Electrons at T (0, 0.5, 0.5)	0.8	a-0.07b+0.05c
		1.5	b+0.1a-0.7c
		4.3	c-0.04a+0.8c
BTBT-F4TCNQ	Holes at $\Gamma(0, 0, 0)$	2.1	a+0.17c
		2.3	b
		5.2	c-0.65a
	Electrons at Γ (0, 0, 0)	0.83	b
		3.62	a+0.31c
		5.73	a-0.61c
di-C ₈ BTBT-TCNQ	Holes at Γ (0, 0, 0)	3.06	a+0.011b-0.002c
		33.76	b-0.27a-0.09c
		358.06	c-0.56a+0.51b
	Electrons at Γ (0, 0, 0)	1.0	a-0.007b
		26.9	b-0.29a
		240.0	c-0.4a-0.03b
di-C ₈ BTBT-F ₄ TCNQ	Holes at Y (0, 0.5, 0)	1.5	a-0.04b+0.00098c
		61.66	c-0.6b+0.7c
		308.26	b-0.23b-0.16c
	Electrons at T (0, 0.5, 0.5)	0.73	a+0.02b+0.003c
		15.80	b-0.4a+0.09c
		327.9	c-0.14a-0.56c
di-C ₁₂ BTBT-TCNQ	Holes at Γ (0, 0, 0)	3.9	a-0.07b-0.04c
		13.7	b+0.03a+0.82c
		18.9	b-0.26a-0.18c
	Electrons at Γ (0, 0, 0)	1.25	a-0.09b-0.03c
		7.54	b-0.001a+0.71c
		14.91	b-0.24a-0.20c

Table S2. Hole and electron effective masses, m (in units of the free electron mass at rest, m_0).

di-C ₁₂ BTBT-F ₄ TCNQ	Holes at Y (0, 0.5, 0)	3.56	a-0.17b-0.03c
		21.06	b+0.017a+0.63c
		30.92	b-0.15a-0.24c
	Electrons at (0, 0.5, 0.010)	1.11	a-0.009b-0.043c
		6.0	b-0.03a+0.7c
		11.54	b-0.27a-0.22c

3. Orbital representations of singlet excited states

Co-crystal	Excited State	Hole	Electron
BTBT-TCNQ	State	**************************************	*****
	S2	• ••••• ••••••••••••••••••••••••••••••	39998
BTBT-F ₂ TCNQ	S1		399098 *******
	S2		****** ***
BTBT-F₄TCNQ	S1	•••••••••••••••	****** *********
	S2		393588
di-C ₈ BTBT- TCNQ	S1		**************************************

	S2		
di-C ₈ BTBT- F₄TCNQ	S1		
	82	SS 55 5 5	
di-C ₁₂ BTBT- TCNQ	S1		
	S2		
di-C ₁₂ BTBT- F ₄ TCNQ	S1		

S2	
----	--

Figure S2. Natural Transition Orbitals³ for the lowest excited states calculated at the TDDFT B3LYP/6-31G (d, p) level.

Table S3. B3LYP/6-31G (d,p) estimates of the DA electronic-coupling contributions to hole superexchange coupling in the BTBT-TCNQ co-crystal.

Orbitals	Electronic Coupling (in meV)
HOMO _D -HOMO-3 _A	20.3
HOMO _D -HOMO-2 _A	-108.3
HOMO _D -HOMO-1 _A	54.3
HOMO _D -HOMO _A	-52.1
HOMO _D -LUMO _A	160.3
HOMO _D -LUMO+1 _A	-45.9
HOMO _D -LUMO+2 _A	120.1
HOMO _D -LUMO+3 _A	-45.9

80 -60 -(a) (b) Relative IR Intensities Relative IR Intensities Frequencies (cm⁻¹) Frequencies (cm⁻¹) (c) (d) 80 -20 -60. Relative IR Intensities Relative IR Intensities ò ò Frequencies (cm⁻¹) Frequencies (cm⁻¹) 30-30 -(e) (f) Relative IR Intensities

4. Calculated IR spectra of the co-crystals

Figure S3. B3LYP/6-31G(d,p)-calculated IR spectra of the co-crystals: (a) BTBT-TCNQ; (b) BTBT-F2TCNQ; (c) BTBT-F4TCNQ; (d) diC8BTBT-TCNQ; (e) diC8BTBT-F4TCNQ; (f) diC12BTBT-TCNQ; (g) diC12BTBT-F4TCNQ.

5. Calculated Raman spectra of the co-crystals

Figure S4. B3LYP/6-31G(d,p)-calculated Raman spectra of the co-crystals: (a) BTBT-TCNQ; (b) BTBT-F2TCNQ; (c) BTBT-F4TCNQ; (d) diC8BTBT-TCNQ; (e) diC8BTBT-F4TCNQ; (f) diC12BTBT-TCNQ; (g) diC12BTBT-F4TCNQ.

Table S4. B3LYP/6-31G (d,p) estimates of the Dushinsky matrix for the mixing between the vibrational modes of the neutral and radical-anion states of F_2TCNQ molecule.⁴ All frequencies were scaled by a factor of 0.9614.

Frequency/ cm ⁻¹ (neutral state)	% of mixing	Frequency / cm ⁻¹ (radical-anion state)
1524	15.3	1001
	10.3	1267
	18.8	1443
	20.5	1501
1567	10.2	1267
	34.6	1443
	23.5	1501
2233	12.2	252
	28.3	1167
	21.8	2175
2250	79.9	2207

References

- 1. R. Sato, M. Dogishi, T. Higashino, T. Kadoya, T. Kawamoto and T. Mori, Charge-Transfer Complexes of Benzothienobenzothiophene with Tetracyanoquinodimethane and the n-Channel Organic Field-Effect Transistors, *J. Phys. Chem. C*, 2017, **121**, 6561.
- 2. J. Tsutsumi, S. Matsuoka, S. Inoue, H. Minemawari, T. Yamada and T. Hasegawa, N-type field-effect transistors based on layered crystalline donor–acceptor semiconductors with dialkylated benzothienobenzothiophenes as electron donors, *J. Mater. Chem. C*, 2015, **3**, 1976.
- 3. R. L. Martin, Natural transition orbitals, J. Chem. Phys, 2003, 118, 4775.
- 4. J. R. Reimers, A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules, *J. Chem. Phys*, 2001, **115**, 9103.