Supporting Information

Orange super-long persistent luminescent materials: (Sr_{1-x}Ba_x)₃SiO₅:Eu²⁺, Nb⁵⁺

Zhizhen Wang[†], Zhen Song[†], Quanlin Liu[†],*

[†]The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Figure S1. Several known commercial persistent luminescent phosphors. Y₂O₂S:Eu³⁺,Mg²⁺,Ti⁴⁺ and CaS:Eu²⁺,Tm³⁺ are the only two commercial warm-color persistent phosphors.

The emission intensity of the steady state luminescence I_{PL} (which does not involve trapping and de-trapping) and the afterglow related emission intensity I_{AG} (Low temperature PL emission spectra under 254 nm excitation see in Figure S2):

$$I_{PL}(RT) = 0.77 I_{tot}(RT) = 0.67 I_{tot}(80 \text{ K}) \dots (1)$$

$$I_{AG}(RT) = 0.23I_{tot}(RT) = 0.20I_{tot}(80 \text{ K}) \dots (2)$$

So, the efficiency of the persistent luminescence η_{AG} at RT can be calculated as following:

$$\eta_{AG}(RT) = \frac{I_{AG}(RT)}{I_{tot}(80K) - I_{PL}(RT)}$$
(3)

Figure S2. Temperature dependence photoluminescence (PL) emission spectra of $Sr_3SiO_5:Eu^{2+}$,Nb under (a) 254 nm and (d) 410 nm excitation. Integrated intensity of PL emission spectra as a function of various temperature from 80 K to 500 K of $Sr_3SiO_5:Eu^{2+}$,Nb under (b) 254 nm and (e) 410 nm. FWHM and emission peak wavelength of PL emission spectra as a function of various temperature of $Sr_3SiO_5:Eu^{2+}$,Nb under (c) 254 nm and (f) 410 nm.

Figure S3. TL glow curves of $(Sr_{1-x}Ba_x)_3SiO_5:Eu^{2+}, Nb^{5+}$ samples after UV light excitation from a Hg lamp at temperatures from 300 to 623 K with heating rate of 5 K/s of (a) $Sr_3SiO_5:Eu^{2+}, Nb^{5+}$; (b) $(Sr_{0.85}Ba_{0.15})_3SiO_5:Eu^{2+}, Nb^{5+}$ and (c) $(Sr_{0.75}Ba_{0.25})_3SiO_5:Eu^{2+}, Nb^{5+}$. All the TL glow curves can be fitted using four first-order kinetic function, noted as 1, 2, 3 and 4. Initial rise analysis of the 2 and 3 glow curves in (d) $Sr_3SiO_5:Eu^{2+}, Nb^{5+}$; (e) $(Sr_{0.85}Ba_{0.15})_3SiO_5:Eu^{2+}, Nb^{5+}$ and (f) $(Sr_{0.75}Ba_{0.25})_3SiO_5:Eu^{2+}, Nb^{5+}$ as a function of excitation temperature.

Figure S4. Tauc plot of PLE spectra in the VUV region in (Sr_{1-x}Ba_x)SiO₅:Eu²⁺, Nb⁵⁺.