Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supplementary Materials

Cu_{2-x}S nanocrystals synthesis: a chemical toolbox for controlling nanocrystal geometry, phase and plasmonic behavior

Mariangela Giancaspro^{a, b}, Teresa Sibillano^c, Francesca Panzarea^a, Cinzia Giannini^c, Silvia Schmitzer^a, Fabio Vischio^{a,d}, Nicoletta Depalo^d, Angela Agostiano,^{a,d} M. Lucia Curri^{a,b,d}, Marinella Striccoli^d, Elisabetta Fanizza^{a,d*}

^aChemistry Department, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy

^bNational Interuniversity Consortium of Materials Science and Technology (INSTM), Bari, Italy

^cCNR-Istituto di Cristallografia (CNR-IC), Via Amendola, 122/O, 70126 Bari, Italy

^dCNR-Istituto per i Processi chimico Fisici (CNR-IPCF), SS Bari, Via Orabona 4, 70126 Bari, Italy

* Corresponding Author: elisabetta.fanizza@uniba.it.

Sample	CuCl: OA: Olam : ODE (mmol)	CuCl2: OA : Olam : ODE (mmol)	Cu(AcO)2 : OA: Olam : ODE (mmol)	Cu(AcA)2: OA: Olam : ODE (mmol)	S: OA: Olam : ODE (mmol)
NP 1	0.5 : 5 : 10 : 20				0.5:4:0:4
NP 2		0.5 : 5 : 10 : 20			0.5:4:0:4
NP 3			0.5 : 5 : 10 : 20		0.5:4:4
NP 4				0.5 : 5 : 10 : 20	0.5:4:4
NP 5	0.5 : 0 : 10 : 20				0.5:0:4:4
NP 6		0.5 : 0: 10 : 20			0.5:0:4:4
NP 7	0.5 : 0 : 10 : 20				1:0:8:8
NP 8	0.5 : 0 : 10 : 20				2.5:0:8:8
NP 9		0.5 : 0 : 10 : 20			1:0:8:8
NP 10		0.5 : 0 : 10 : 20			2.5:0:8:8

Table S1. Reaction mixture composition used for the synthesis of NP1-NP10 samples, according to a two-pots approach. Oleic Acid (OA), Oleyl amine (Olam), Octadecene (ODE), copper (II) acetylacetonate (Cu(AcAc)₂), copper (II) acetate (Cu(AcO)₂).

Figure S1. Upper panels. Statistical analysis of the size distribution of the $Cu_{2-x}S$ NP1-NP10 samples as measured from the TEM micrographs reported in Figure 1 and Figure 4 in the main manuscript.

Table (bottom panel) of the Cu_{2-x}S NP1- NP10 sample plasmonic properties: γ full width at half maximum of the localized surface plasmon band, ω_{sp} localized surface plasmon band position, ω_p bulk plasmon band, N_h, hole carrier density, and final stoichiometry of the as-synthesized nanoparticles as measured from the UV-Vis-NIR absorption spectra in Figure 3h and Figure 4e-f in the main manuscript and theoretically determined from the following equations adopting the Mie Theory

$$\omega_{p} = \sqrt{(\omega s p^{2} + \gamma^{2})(1 + 2\varepsilon_{m})} \qquad \qquad N_{h} = \frac{\varepsilon_{0} m_{h} \omega_{p}^{2}}{10^{6} e^{2}}$$
$$C u_{\%} = 50 \frac{N_{h} P M_{C} u_{2} s}{\rho N_{A}} \qquad \qquad C u_{2-x} = \frac{100 - C u_{\%}}{50}$$

where ε_m is the dielectric constant of the solvent, *e* is the electron charge, ε_0 is the free space permittivity, m_h is the hole effective mass (nearly 0.8m₀), and ρ is Cu₂S density equal to ρ = 5.6 g/cm³

Figure S2. FTIR spectra in ATR mode of Oleic Acid (a, a1, black line) and Oleylamine (b, b1, red line)

Figure S3. FTIR spectra in ATR mode (3050 - 2750 cm⁻¹range) of (a) NP2, (b) NP6 (c) NP3, (d) NP 4. See Table S1 for reaction mixture composition.

Vibrational modes	NP2	NP3	NP4	NP6	Olam	OA
vCH (-CH=CH-)					3006	3006
v _{AS} CH ₃	2954	2956	2953	2950	2960	2960
$\nu_{AS}CH_2$	2922	2919	2921	2919	2917	2917
$\nu_{S} CH_{2}$	2852	2850	2852	2850	2849	2849
ν C=O	1736	1734	1736	1730		1710
ν C=C	1648	1650	1648	1650	1653	1653
$\nu_{AS} \ NH_3{}^+$						
δNH_2 (scissoring)				1624	1616	
v _{AS} -(CO) ⁻ ₂	1550	1553				
$\delta_S CH_2$ and $\delta a_S CH_3$	1461	1460	1461	1461	1459	1459
v _s -(CO) ⁻ ₂	1403	1408		1404		
δ_SCH_3	1371	1367	1371	1371	1379	1379
v C-O	1257	1260	1256			1246
Wagging CH ₂	1185	1174		1185		
v C-C-O	1100	1080		1113	1145	1090
δC-N	1056			1056	1070	
δ=C-H out of plane	1013	1018		1013		

Table S2. Table with the assessments of all the characteristic vibration modes as detected from the FTIR-ATR spectra reported in Figure 3a-d in the main manuscript. Oleic Acid (OA), Oleyl amine (Olam).

S4. TEM micrograph of Cu_{2-x}S NP9 sample after 40 minutes of reaction. Scale bar 50 nm

Figure S5. Size selective precipitation of NP9 by purposely adding ethanol in volumetric ration with reaction mixture of 6:1. TEM micrographs of the size selected sample (a, b, scale bar 50nm) showing monodispersed hexagonal and triangular nanoplates (NPLs). Statistical analysis (c, d) and UV-Vis-NIR absorbance spectra (e) of $Cu_{2-x}S$ NP9 sample before (d, e red line) and after (c, e blue line) size selection.

Figure S6. Rietveld fit of the XRD pattern collected on the NP1 sample (black line in Figure 3 of main test)

Figure S7. Rietveld fit of the XRD pattern collected on the NP4 sample (blue line in Figure 3 of main test)

Figure S8. Upper table. Reaction mixture composition used for the synthesis of NP11-NP13 samples according to the one-pot approach (Oleyl amine (Olam), Octadecene (ODE), tert-dodecanthiol(tDT), dibuthyldisulfide (DBDS)) Bottom panel. Statistical analysis of TEM micrographs reported in Figure 5 in the main manuscript. Edge length and average size of 27 nm ($\sigma_{\%}$ =16%) and 48 nm ($\sigma_{\%}$ =7%) for NP11, 76 nm ($\sigma_{\%}$ =10%) and 131 nm ($\sigma_{\%}$ =6%), for NP12 prepared with CuCl₂, and lateral size of 52 nm ($\sigma_{\%}$ =18%) and thickness of 29 nm ($\sigma_{\%}$ =12%) for NP13.

Scheme S1. Proposed mechanism for the tert-dodecanthiol induced reduction of Cu(II) to Cu(I). Scheme adapted from reference 65 [Kreitman, G.Y., et al., *Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.* Journal of Agricultural and Food Chemistry, 2016. **64**(20): p. 4095-4104]

Figure S9. Rietveld fit of the XRD pattern collected on the NP12 sample (red line in Figure 5 of main test)