Supporting Information

Polymorphism-Based Luminescence and Morphology-Dependent Optical Waveguide Property in the 1:1 Charge Transfer Cocrystals

Jing Wang, *a,b Shuping Xu, ${ }^{c}$ Aisen Li, ${ }^{c}$ Lei Chen, ${ }^{a, b}$ Weiqing Xu ${ }^{* c}$ and Hongyu Zhang ${ }^{c}$

Table S1 The Crystallographic data of form α and form β cocystals derived from single-crystal X-ray diffraction measurements.

Crystal	form $\boldsymbol{\alpha}$
Formula	$\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$
Formula weight $(\mathbf{g} / \mathbf{m o l})$	398.41
Crystal system	monoclinic
Space-group	$\mathrm{P} 21 / \mathrm{c}$
Lattice parameter a (\AA)	$7.4866(4)$
Lattice parameter $\mathbf{~ (~} \AA)$	$28.6968(18)$
Lattice parameter $\mathbf{c}(\AA)$	$9.5251(6)$
cell parameter $\boldsymbol{\alpha}\left({ }^{\circ}\right)$	90
Lattice parameter $\boldsymbol{\beta}\left({ }^{\circ}\right)$	$92.720(3)$
Lattice parameter $\boldsymbol{\gamma}\left({ }^{\circ}\right)$	90
Cell volume $\left(\AA^{3}\right)$	$2044.1(2)$
Formula units per cell Z	4
Calculated density $\left(\mathbf{g} \cdot \mathbf{c m}^{-3}\right)$	1.295
Mu(mm	
F(000)	0.082
F(000)	824.0
h,k,l,(max)	824.31
Nref	$9,35,11$
R reflections	4172
wR2	$0.0481(2653)$
CSD	0.1196

Fig. S1 The intermolecular interactions of (a-c) form α and (d-f) form β cocrystals.

TCNB

ACA

Form \boldsymbol{a}

Form β

Fig. S2 (A) Directions of ACA (marked as a) and TCNB (marked as b) are marked by arrowhead with different color. The Intermolecular $\pi-\pi$ interaction of ACA and TCNB with different rotation angles in (B) form α and (C) form β cocrystals.

Fig. S3 The interplanar distances between ACA and TCNB in the (A and B) form α and (C and D) form β cocrystals.

Table S2 The interplanar distances between ACA and TCNB in the form α and form β from Fig. S3

Crystal	$\boldsymbol{d}_{\boldsymbol{D - A}}(\AA)$	mean distance (\AA)
form α	$3.504,3.491,3.483,3.4793 .476$,	3.478
	$3.475,3.471,3.446$	
form β	$3.498,3.488,3.450,3.444$	3.441

Fig. S4 The Histogram of interplanar distances between ACA and TCNB in form α (Black) and form β (Red) cocrystals from Table S2.

Table S3 Intermolecular hydrogen bond interactions in form α and form β.

Crystal	form α		form β	
Intermolecular interactions	$\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$ $(\mathrm{X}=\mathrm{O}, \mathrm{N})$	Length of $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$	$\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$ $(\mathrm{X}=\mathrm{O}, \mathrm{N})$	Length of $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}$
Interactions of	$\mathrm{C}_{26}-\mathrm{H}_{26 \mathrm{~A}} \cdots \mathrm{O}_{1}$	$3.640 \AA$	$\mathrm{C}_{17}-\mathrm{H}_{17} \cdots \mathrm{O}_{1 ;} ;$	$2.503 \AA$
ACA and	$\mathrm{C}_{26}-\mathrm{H}_{26 \mathrm{~B}} \cdots \mathrm{O}_{1}$	$2.931 \AA$	$\mathrm{C}_{19}-\mathrm{H}_{19} \cdots \mathrm{O}_{1}$	$2.539 \AA$
adjacent ACA				
Interactions of	$\mathrm{C}_{3}-\mathrm{H}_{3} \cdots \mathrm{~N}_{4}$	$2.581 \AA$	$\mathrm{C}_{3}-\mathrm{H}_{3} \cdots \mathrm{~N}_{3}$	$2.684 \AA$
TCNB and	$\mathrm{C}_{3}-\mathrm{H}_{3} \cdots \mathrm{~N}_{2}$	$2.833 \AA$	$\mathrm{C}_{6}-\mathrm{H}_{6} \cdots \mathrm{~N}_{2}$	$2.706 \AA$
adjacent TCNB				
Interactions of TCNB with	$\mathrm{C}_{6}-\mathrm{H}_{6} \cdots \mathrm{O}_{1}$	$2.603 \AA$	$\mathrm{C}_{6}-\mathrm{H}_{6} \cdots \mathrm{O}_{1}$	$2.794 \AA$
stacking ACA $-\mathrm{H}_{26 \mathrm{~A}} \cdots \mathrm{O}_{1}$	$2.905 \AA$			

Cal $253 \mathrm{~cm}^{-1}$
$\operatorname{Exp} 220 \mathrm{~cm}^{-1}$

Cal $234 \mathrm{~cm}^{-1}$
Exp $226 \mathrm{~cm}^{-1}$

Cal $1640 \mathrm{~cm}^{-1}$
Exp $1603 \mathrm{~cm}^{-1}$

Cal $1611 \mathrm{~cm}^{-1}$
Exp $1589 \mathrm{~cm}^{-1}$

Cal $1651 \mathrm{~cm}^{-1}$
Exp $1624 \mathrm{~cm}^{-1}$

Cal 1614 cm $^{-1}$

Fig. S5 In-plane $\pi-\pi$ vibration between ACA and TCNB in the (A-C) form α and (D-
F) form β.

Table S4. The fluorescent lifetime of the form α at 570, 580 and 590 nm , respectevily.

570 nm		580 nm		590 nm	
Value(ns)	Rel \%	Value(ns)	Rel \%	Value(ns)	Rel \%
6.73	9.88	7.37	9.66	9.16	15.23
18.72	90.12	18.75	90.04	19.25	84.77

Table S5 The fluorescent lifetime of the form β at 590, 610 and 630 nm , respectevily.

590 nm		610 nm		630 nm	
Value(ns)	Rel \%	Value(ns)	Rel \%	Value(ns)	Rel \%
14.04	5.56	11.07	4.43	9.16	5.24

56.06	94.44	55.48	95.57	56.01	94.76

C

Fig. S6 Transition dipole moments vector of CT_{0} to CT_{1} and S_{0} to S_{1} in the form α viewed along the (A) [010], (B) [001] directions, and that in form β viewed along the (C) [100], (D) [010] directions, The vector μ are marked as black single-headed arrows. The directions of the light propagation in the crystal are marked as red double-headed arrows. (A-D) Growth morphologies of the two forms are simulated using materials studio software.

The growth morphologies of the form α and the form β polymorphic cocrystals were simulated via materials studio software. The ACA and TCNB molecules appear mixed stacking $\cdots \mathrm{D}-\mathrm{A}-\mathrm{D}-\mathrm{A} \cdots$ along the direction of [100] in the form α (Fig. S6A and S6B) and along the direction of [001] in the form β (Fig. S6C and S6D). Therefore, the form α and the form β polymorphic cocrystals grow along the [100] and [001] directions, respectively.

The emitting light can travel around in the same plane which perpendicular to transition dipole moment (μ). Therefore, light propagation in the crystal were predicted by the vectors of μ which from donor to acceptor. In the form α, the composition vectors of μ contain a CT_{0} to CT_{1} transition with parallel direction of the [100] and a S_{0} to S_{1} transition with an angle of $\approx 60^{\circ}$ along the [100] direction (Black unfilled arrows represented the direction of μ in the Fig. S6A and S6B), which lead to the optical wave can be transmitted along two directions of [001] and [100] with an angle of $\approx 30^{\circ}$. The directions of the light-wave propagation in form β are plotted in the Fig. S6C and S6D, the emitting light produced by CT_{0} to CT_{1} and S_{0} to S_{1}
transitions can be travel in the crystal along the direction of [001] with an angle of \approx 60° and 30°, respectively (Fig. S6C).
Table S6 The distances of light propagation $D_{\mathrm{b}-\mathrm{t}}$ and spatially resolved PL intensity from Fig. 4C.

No	$D_{\text {b-t }}(\mathrm{mm})$	Fluorescent Intensity $\left(\mathrm{I}_{\text {body }}\right.$ or $\left.\mathrm{I}_{\text {tip }}\right)$
1	0	21926
2	0.15	8601
3	0.25	5248
4	0.4	1757
5	0.42	978
6	0.5	726
7	0.625	612
8	0.77	535
9	0.92	577
10	1.1	615
11	1.2	477

Table S7 The distances of light propagation $D_{\mathrm{b}-\mathrm{t}}$ and spatially resolved PL intensity from Fig. 4E.

No	$\mathrm{D}_{\text {b-t }}(\mathrm{mm})$	Fluorescent Intensity $\left(\mathrm{I}_{\text {body }}\right.$ or $\left.\mathrm{I}_{\text {tip }}\right)$
1	0	37246
2	0.15	21291
3	0.2	7119
4	0.25	2134
5	0.35	1890
6	0.5	1158

Fig. S7 (A) PL micro-imagings of optical propagation in the form α, the excitation spot moved perpendicular to the [100] axis (marked as 0.45 to 0 mm), white scale bars are 0.5 mm ; (B) Spatially resolved PL spectra of out coupled lights at the location of "Tip" in form α from Fig. 7SA; (C) The fitting curves of $\mathrm{I}_{\text {tip }} / \mathrm{I}_{\text {body }}$ with $\mathrm{D}_{\mathrm{b}-\mathrm{t}}$ from Fig. 7SB.

Fig. S8 (A) PL micro-imagings of optical propagation in the form α, the excitation spot moved perpendicular to the [100] axis (marked as 0.6 to 0 mm), white scale bar is 0.5 mm ; (B) Spatially resolved PL spectra of out coupled lights at the location of "Tip" in form α from Fig. 8SA; (C) The fitting curves of $\mathrm{I}_{\text {tip }} / \mathrm{I}_{\text {body }}$ with $\mathrm{D}_{\text {b-t }}$ from Fig. 8SB.

Fig. S9 PL micro-imagings of form β, the incident laser beam from crystal tip to crystal body perpendicular the [001] axis with different distance D_{b-t}. The white scale bar is 0.25 mm .

