Electronic supplementary information (ESI) for

Novel enantiomorphic Pb-coordination polymers dictated by the corresponding chiral ligands, [Pb((*R*,*R*)-*TBA*)(H₂O)]·1.7H₂O and [Pb((*S*,*S*)-*TBA*)(H₂O)]·1.7H₂O [*TBA* = 1,3,5-triazin-2(1H)-one-4,6-bis(alanyl)]

Yunseung Kuk and Kang Min Ok*

Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea *E-mail: kmok@sogang.ac.kr Contents

Sections	Titles	Pages
Figure S1.	¹ H and ¹³ C NMR spectra for (a) (<i>S</i> , <i>S</i>)- <i>TBA</i> and (b) (<i>R</i> , <i>R</i>)- <i>TBA</i> .	S3–S4
Figure S2.	Ball-and-stick models of R1 (left) and S1 (right) in the <i>bc</i> -plane.	S5
Figure S3.	SEM-EDX data for R1 and S1.	S6
Figure S4.	Calculated and experimental powder X-ray diffraction patterns for R1 and S1.	S7
Figure S5.	Infrared spectra for R1, S1, (R,R) -TBA, and (S,S) -TBA.	S 8
Figure S6.	Thermogravimetric analysis diagrams and PXRD data at different temperatures for R1 and S1 .	S9–S10
Figure S7.	UV-vis spectra for R1 , S1 , (R,R) -TBA, and (S,S) -TBA.	S11
Figure S8.	Partial density of state (PDOS) calculations of (a) R1 and (b) S1 . The Fermi level is represented at 0 eV.	S12
Figure S9.	Gas adsorption isotherms of N_2 (blue) and CO_2 (red) on S1 and PXRD patterns for S1 after the degassing process.	S13
Figure S10.	PXRD patterns after immersion into the (a) H_2SO_4 (pH = 0) and (b) KOH (pH = 14) solutions.	S14
Figure S11.	UV-vis spectra of CR dye solutions and adsorption maximum capacity (q_{max}) .	S15
Figure S12.	Congo red (CR), indigo carmine (IC), methyl orange (MO), and rhodamine B (RhB) structure and ball-and-stick model (light yellow, Na ⁺ ; green, Cl ⁻ ; black, C; blue, N; red, O; yellow, S; white, H).	S16
Figure S13.	UV-vis spectra of (a) MO, (b) RhB, and (c) IC dye solutions.	S17
Figure S14.	UV-vis spectra for CR solutions (a) at various particle sizes, (b) at pH 2, 3, and (c) 4, 5, 7, and 11.	S17
Table S1.	Bond lengths [Å] and angles [°] for R1 .	S18
Table S2.	Bond lengths [Å] and angles [°] for S1 .	S19
Table S3.	Hydrogen bond distances for R1 and S1 .	S20
Table S4.	Maximum adsorption capacity for CR on various adsorbents.	S21
Table S5.	Zeta potential values for S1 under the various pH conditions.	S22
Table S6.	pH values of aqueous H_2SO_4 solutions before and after immersion.	S22
Table S7.	Elemental analysis of S1 and S1 immersed in H ₂ SO ₄ .	S23
Figure S15.	Infrared spectra for S1 and S1 immersed in H_2SO_4 .	S23
References		S24

Figure S1. ¹H and ¹³C NMR spectra for (a) (S,S)-*TBA* and (b) (R,R)-*TBA*.

S4

Figure S2. Ball-and-stick models of R1 (left) and S1 (right) in the *bc*-plane.

Figure S3. SEM-EDX data for R1 and S1.

1	1								Spect	rum 1
		Elem	ent	We	ight%	A	tomic	:%		
		CK	٢	24	1.36		45.50)		
		NK	٢	19	9.01		30.44	1		
		01	٢	13	3.87		19.44	L I		
		Pb I	М	47	2.76		4.63			
1	Γ	Tota	ls		10	0.0	0			
0	9		(•	e Ae					
	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
										~

Figure S4. Calculated and experimental powder X-ray diffraction patterns for R1 and S1.

Figure S5. Infrared spectra for R1, S1, (R,R)-TBA, and (S,S)-TBA.

Figure S6. Thermogravimetric analysis diagrams and PXRD data at different temperatures for R1 and S1.

Figure S7. UV-vis spectra for **R1**, **S1**, (*R*,*R*)-*TBA*, and (*S*,*S*)-*TBA*.

Figure S8. Partial density of state (PDOS) calculations of (a) **R1** and (b) **S1**. The Fermi level is represented at 0 eV.

Figure S9. Gas adsorption isotherms of N_2 (blue) and CO_2 (red) on S1 and PXRD patterns for S1 after the degassing process.

Figure S10. PXRD patterns after immersion into the (a) H_2SO_4 (pH = 0) and (b) KOH (pH = 14) solutions.

Figure S11. UV-vis spectra of CR dye solutions and adsorption maximum capacity (q_{max}) .

Name	Structure	Ball-and-stick model
CR	$NH_2 \\ NH_2 \\ NH_2 \\ SO_3 Na^+$	Jor of the state
IC	*Na ⁻ O ₃ S N HO SO ₃ ⁻ Na ⁺	^م
МО	+Na ⁻ O ₃ S	
RhB		Charles Charle

Figure S12. Congo red (CR), indigo carmine (IC), methyl orange (MO), and rhodamine B (RhB) structure and ball-and-stick model (light yellow, Na⁺; green, Cl⁻; black, C; blue, N; red, O; yellow, S; white, H).

Figure S13. UV-vis spectra of (a) MO, (b) RhB, and (c) IC dye solutions.

Figure S14. UV-vis spectra for CR solutions (a) at various particle sizes, (b) at pH 2, 3, and (c) 4, 5, 7, and 11.

	Selected bor	nd distances (Å)	
Pb(1)-O(2)#1	2.495(7)	N(1)–C(3)	1.339(10)
Pb(1)–O(2)	2.518(7)	N(2)–C(1)	1.359(11)
Pb(1)–O(1)	2.558(8)	N(2)–C(2)	1.373(12)
Pb(1)–O(5)	2.597(8)	N(3)–C(3)	1.343(10)
Pb(1)–O(3)	2.606(10)	N(3)–C(2)	1.352(11)
Pb(1)-O(1)#2	2.697(8)	N(4)–C(3)	1.363(11)
Pb(1)–O(4)	2.795(10)	N(4)–C(4)	1.453(11)
O(1)–C(8)	1.233(11)	N(5)–C(1)	1.325(11)
O(2)–C(8)	1.239(10)	N(5)–C(5)	1.460(11)
O(3)–C(9)	1.248(13)	C(4)–C(6)	1.520(14)
O(4)–C(9)	1.241(13)	C(4)–C(8)	1.531(11)
O(6)–C(2)	1.242(12)	C(5)–C(7)	1.491(14)
N(1)–C(1)	1.334(11)	C(5)–C(9)	1.513(13)
	Selected b	oond angle (°)	
O(2)#1–Pb(1)–O(2)	114.31(15)	C(9)–O(4)–Pb(1)	87.1(6)
O(2)#1–Pb(1)–O(1)	66.7(2)	C(1)-N(1)-C(3)	114.8(7)
O(2)–Pb(1)–O(1)	49.9(2)	C(1)-N(2)-C(2)	121.3(7)
O(2)#1-Pb(1)-O(5)	76.7(2)	C(3)–N(3)–C(2)	116.3(7)
O(2)–Pb(1)–O(5)	76.6(2)	C(3)-N(4)-C(4)	122.8(7)
O(1)–Pb(1)–O(5)	79.2(3)	C(1)-N(5)-C(5)	122.3(7)
O(2)#1–Pb(1)–O(3)	77.3(2)	N(5)-C(1)-N(1)	119.9(8)
O(2)–Pb(1)–O(3)	94.0(3)	N(5)-C(1)-N(2)	118.9(8)
O(1)–Pb(1)–O(3)	69.8(3)	N(1)-C(1)-N(2)	121.2(8)
O(5)–Pb(1)–O(3)	145.5(3)	O(6)–C(2)–N(3)	122.7(8)
O(2)#1-Pb(1)-O(1)#2	151.7(3)	O(6)–C(2)–N(2)	118.9(8)
O(2)-Pb(1)-O(1)#2	64.3(2)	N(3)–C(2)–N(2)	118.4(8)
O(1)-Pb(1)-O(1)#2	113.13(19)	N(1)-C(3)-N(3)	127.7(7)
O(5)-Pb(1)-O(1)#2	75.6(3)	N(1)-C(3)-N(4)	116.5(7)
O(3)-Pb(1)-O(1)#2	130.3(3)	N(3)-C(3)-N(4)	115.8(7)
O(2)#1–Pb(1)–O(4)	124.9(2)	N(4)-C(4)-C(6)	113.8(8)
O(2)–Pb(1)–O(4)	71.6(2)	N(4)-C(4)-C(8)	112.0(7)
O(1)–Pb(1)–O(4)	87.1(3)	C(6)–C(4)–C(8)	112.2(8)
O(5)–Pb(1)–O(4)	147.0(3)	N(5)–C(5)–C(7)	109.4(9)
O(3)–Pb(1)–O(4)	47.7(2)	N(5)-C(5)-C(9)	112.2(8)
O(1)#2–Pb(1)–O(4)	82.6(3)	C(7)–C(5)–C(9)	111.8(9)
C(8)–O(1)–Pb(1)	94.0(5)	O(1)–C(8)–O(2)	120.2(7)
C(8)–O(1)–Pb(1)#1	150.0(7)	O(1)–C(8)–C(4)	119.0(8)
Pb(1)-O(1)-Pb(1)#1	110.3(3)	O(2)–C(8)–C(4)	120.6(7)
C(8)–O(2)–Pb(1)#2	144.6(6)	O(4)–C(9)–O(3)	123.5(9)
C(8)–O(2)–Pb(1)	95.8(5)	O(4)–C(9)–C(5)	121.0(9)
Pb(1)#2–O(2)–Pb(1)	118.7(3)	O(3)–C(9)–C(5)	115.5(9)
C(9)–O(3)–Pb(1)	95.8(7)		
Symmetry operation : #1 x–1/2,	-y+1/2,-z+1 #2 x+1/2,	-y+1/2,-z+1	

Table S1. Bond lengths [Å] and angles [°] for R1.

	Selected bon	d distances (Å)	
Pb(1)-O(1)#1	2.516(7)	N(1)–C(3)	1.344(13)
Pb(1)–O(1)	2.532(8)	N(2)–C(1)	1.368(12)
Pb(1)–O(2)	2.575(8)	N(2)–C(2)	1.388(13)
Pb(1)–O(5)	2.599(9)	N(3)–C(2)	1.353(13)
Pb(1)–O(4)	2.617(11)	N(3)–C(3)	1.361(12)
Pb(1)-O(2)#2	2.713(8)	N(4)–C(3)	1.378(13)
Pb(1)–O(3)	2.774(10)	N(4)–C(4)	1.461(12)
O(1)–C(8)	1.255(12)	N(5)–C(1)	1.326(13)
O(2)–C(8)	1.242(12)	N(5)–C(5)	1.457(13)
O(3)–C(9)	1.249(15)	C(4)–C(8)	1.516(13)
O(4)–C(9)	1.249(14)	C(4)–C(6)	1.549(15)
O(6)–C(2)	1.250(13)	C(5)–C(7)	1.507(17)
N(1)–C(1)	1.328(13)	C(5)–C(9)	1.553(15)
	Selected b	ond angle (°)	
O(1)#1–Pb(1)–O(1)	114.23(16)	C(9)–O(4)–Pb(1)	94.8(7)
O(1)#1-Pb(1)-O(2)	66.5(2)	C(1)-N(1)-C(3)	115.4(8)
O(1)–Pb(1)–O(2)	49.9(2)	C(1)-N(2)-C(2)	120.7(9)
O(1)#1–Pb(1)–O(5)	76.5(3)	C(2)-N(3)-C(3)	116.2(9)
O(1)-Pb(1)-O(5)	76.9(3)	C(3)-N(4)-C(4)	122.6(9)
O(2)–Pb(1)–O(5)	79.1(3)	C(1)-N(5)-C(5)	122.0(9)
O(1)#1–Pb(1)–O(4)	77.5(3)	N(5)–C(1)–N(1)	120.4(9)
O(1)–Pb(1)–O(4)	94.0(3)	N(5)–C(1)–N(2)	118.1(9)
O(2)–Pb(1)–O(4)	70.2(3)	N(1)-C(1)-N(2)	121.5(9)
O(5)–Pb(1)–O(4)	145.7(3)	O(6)–C(2)–N(3)	122.6(10)
O(1)#1-Pb(1)-O(2)#2	151.9(3)	O(6)–C(2)–N(2)	118.7(10)
O(1)-Pb(1)-O(2)#2	64.2(2)	N(3)-C(2)-N(2)	118.7(9)
O(2)-Pb(1)-O(2)#2	113.07(19)	N(1)-C(3)-N(3)	127.1(9)
O(5)-Pb(1)-O(2)#2	75.9(3)	N(1)-C(3)-N(4)	117.7(8)
O(4)-Pb(1)-O(2)#2	130.0(3)	N(3)-C(3)-N(4)	115.2(9)
O(1)#1–Pb(1)–O(3)	125.5(2)	N(4)-C(4)-C(8)	113.2(8)
O(1)–Pb(1)–O(3)	71.5(3)	N(4)-C(4)-C(6)	111.9(9)
O(2)–Pb(1)–O(3)	87.8(3)	C(8)–C(4)–C(6)	112.5(10)
O(5)–Pb(1)–O(3)	147.0(3)	N(5)-C(5)-C(7)	110.4(10)
O(4)–Pb(1)–O(3)	48.2(2)	N(5)-C(5)-C(9)	112.1(9)
O(2)#2–Pb(1)–O(3)	81.8(3)	C(7)–C(5)–C(9)	111.6(10)
C(8)–O(1)–Pb(1)#2	144.0(7)	O(2)–C(8)–O(1)	119.4(8)
C(8)-O(1)-Pb(1)	96.1(6)	O(2)–C(8)–C(4)	119.8(9)
Pb(1)#2-O(1)-Pb(1)	118.8(3)	O(1)–C(8)–C(4)	120.6(9)
C(8)–O(2)–Pb(1)	94.4(6)	O(4)–C(9)–O(3)	124.1(10)
C(8)–O(2)–Pb(1)#1	149.8(8)	O(4)–C(9)–C(5)	115.0(11)
Pb(1)-O(2)-Pb(1)#1	110.5(3)	O(3)–C(9)–C(5)	120.9(11)
C(9)-O(3)-Pb(1)	87.5(7)		

Table S2. Bond lengths [Å] and angles $[\circ]$ for S1.

Table S3. Hydrogen bond distances for R1 and S1.

	Hydrogen bond d	listances (Å)	
Name	D–H…A	d(H···A)	d(D…A)
	O(5)–H(5D)···O(4)#1	1.95(8)	2.849(12)
	O(5)-H(5C)···O(3)#2	2.09	2.818(12)
R1	N(2)-H(2)···N(3)#3	2.09	2.859(10)
	N(5)-H(5)···O(6)#3	2.07	2.921(10)
	N(4)-H(4)···O(6)#4	2.29	2.993(10)
Symmetry operation : #1 x	$1/2 - y + 1/2 - z + 1 \cdot \#2 + 1/2 - y + 1/2 - z + 1/2 -$	$+1 \cdot \#3 - x + 1 + 1/2 - z + 1/2 \cdot \#4$	$4 - x + 1 \cdot y - 1/2 - z + 1/2$
Symmetry operation . #1 x-	$1/2, y \cdot 1/2, z \cdot 1, 1/2, x \cdot 1/2, y \cdot 1/2, z$	· 1, // J A · 1, y · 1/2, Z · 1/2, //	,,,
Symmetry operation . #1 x-	$1/2, y \in 1/2, z \in 1, z \in 1/2, y \in 1/2, z$	· 1, 1.5 X · 1, y · 1/2, 2 · 1/2, 1	,, ., ., ., .
	Hydrogen bond d	listances (Å)	,
Name	Hydrogen bond d D–H…A	listances (Å) d(H···A)	d(D…A)
Name	Hydrogen bond d D–H…A O(5)–H(5C)…O(3)#1	$\frac{\text{listances (Å)}}{d(\text{H}\cdots\text{A})}$ 1.92(5)	d(D…A) 2.864(13)
Name	Hydrogen bond d D–H···A O(5)–H(5C)···O(3)#1 O(5)–H(5D)···O(4)#2	$\frac{d(HA)}{1.92(5)}$	d(D···A) 2.864(13) 2.860(13)
Name S1	Hydrogen bond d D–H···A O(5)–H(5C)···O(3)#1 O(5)–H(5D)···O(4)#2 N(2)–H(2)···N(3)#3	$\frac{d(H \cdots A)}{1.92(5)}$ 2.03	d(D···A) 2.864(13) 2.860(13) 2.890(12)
Name S1	Hydrogen bond d D–H···A O(5)–H(5C)···O(3)#1 O(5)–H(5D)···O(4)#2 N(2)–H(2)···N(3)#3 N(5)–H(5)···O(6)#3	listances (Å) d(H···A) 1.92(5) 2.22(11) 2.03 2.09	d(D…A) 2.864(13) 2.860(13) 2.890(12) 2.952(13)

Adsorbents (MOFs)	$q_{max} (\mathrm{mg \ g}^{-1})$	Surface area (m ² g ⁻¹) ^a	Ref.
$[Pb((S,S)-TBA)(H_2O)] \cdot 1.7H_2O$	138.57	10.55	This work
Zn-TDPAT	16.72	Х	[1]
Fe ₃ O ₄ @SiO ₂ @Zn-TDPAT	17.73	Х	[1]
[Zn(BDC)(TIB)]·3H ₂ O	60.2	Х	[2]
ZIF-8@CoFe ₂ O ₄	64.48	918.9	[3]
Co-BDC (MOF-4)	64.56	0.9113	[4]
TMU-4	72	518	[5]
Cu-BDC (MOF-3)	77.05	89.9110	[4]
TMU-9	92	Х	[6]
In-MOFs-2	92.29	7.3480	[7]
AlF	93.45	973.39	[8]
TMU-34	94	540	[5]
GO/In-MOFs-2	96.72	10.8585	[7]
TMU-8	97.3	Х	[6]
AlF-GO	102.04	917.79	[8]
In-MOFs-1	103.54	21.1983	[7]
GO/In-MOFs-1	108.54	14.3261	[7]
SALE-TMU-34	112	720	[5]
Cu-BTC (MOF-1)	120.15	32.0708	[4]
Co-BTC (MOF-2)	129.95	7.7682	[4]
USALE-TMU-34	138	830	[5]
AlF-rGO	178.57	951.88	[8]
ZIF-67@C-MOF-74	180	753	[9]
[Ni ₂ F ₂ (4,4'-bipy) ₂ (H ₂ O) ₂][VO ₃] ₂ ·8H ₂ O	242.1	Х	[10]
TFMOF	252.25	89.9	[11]
UiO-66	283	1358	[12]
In-TATAB	299	623	[13]
Fe ₃ O ₄ @ZTB-1	458	Х	[14]
SCNU-Z1-Cl	585	1636	[15]
UiO-66-2.7Ti	607	929	[12]
Cu-BTC-b	884.96	1119.7	[16]
Ni-MOFs	2046	59.8	[17]
GO/MOF	2489	69.6	[17]
^a X : not measured surface area.			

Table S4. Maximum adsorption capacity for CR on various adsorbents.

Table S5. Zeta potential values for S1 under the various pH conditions.

	pH 2	рН 3	pH 4	pH 7	pH 11
Zeta potential (mV)	11.5	9.34	9.11	2.59	-18.3

Table S6. pH value of aqueous H₂SO₄ solutions before and after immersion.

	H ₂ SO ₄ pH values	
Before immersion	2.60	3.35
After immersion	3.41	3.53

The pH values of each solution were adjusted using H_2SO_4 . The well ground samples for **S1** were immersed into aqueous H_2SO_4 solutions at room temperature for 24 h. We investigated the pH value of the aqueous H_2SO_4 solutions before and after immersion of **S1** at pH 2.60 and 3.35, respectively (Table S6). The pH values were measured using a pH meter.

If the pH < 3, the pH values of the H₂SO₄ supernatant are greater than that of the solution in the absence of **S1**, which might be attributed to the protonation within the framework (Table S6). The SO₄²⁻ exist as counter anions to maintain the charge balance with the acidic cationic framework. The elemental analysis and infrared spectra clearly confirm the existence of S and the stretching vibration of SO₄²⁻, respectively, for **S1** soaked in aqueous H₂SO₄ solution (Table S7, Figure S14).^{18, 19} As a result, the molecular structure of CR still exists as an anion because the pH value is higher than the isoelectric point of CR.

	С	Н	Ν	S
Calculated	20.59	3.15	13.34	-
Before immersion	20.61	2.93	13.22	-
After immersion	19.77	2.96	12.63	0.67

Table S7. Elemental analysis of S1 and S1 immersed in H_2SO_4 .

Figure S15. Infrared spectra for S1 and S1 immersed in H_2SO_4 .

References

- R. Wo, Q.-L. Li, C. Zhu, Y. Zhang, G.-f. Qiao, K.-y. Lei, P. Du and W. Jiang, Preparation and Characterization of Functionalized Metal–Organic Frameworks with Core/Shell Magnetic Particles (Fe₃O₄@SiO₂@MOFs) for Removal of Congo Red and Methylene Blue from Water Solution. *J. Chem. Eng.*, 2019, **64**, 2455-2463.
- X. Zhang, Y. Gao, H. Liu and Z. Liu, Fabrication of porous metal–organic frameworks via a mixed-ligand strategy for highly selective and efficient dye adsorption in aqueous solution. *CrystEngComm*, 2015, **17**, 6037-6043.
- 3. Y. Xu, J. Jin, X. Li, Y. Han, H. Meng, J. Wu and X. Zhang, Rapid magnetic solid-phase extraction of Congo Red and Basic Red 2 from aqueous solution by ZIF-8@CoFe₂O₄ hybrid composites. *J. Sep. Sci.*, 2016, **39**, 3647-3654.
- 4. F.-h. Wei, D. Chen, Z. Liang, S.-q. Zhao and Y. Luo, Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions. *RSC Adv.*, 2017, **7**, 46520-46528.
- 5. S. A. A. Razavi and A. Morsali, Ultrasonic-Assisted Linker Exchange (USALE): A Novel Post-Synthesis Method for Controlling the Functionality, Porosity, and Morphology of MOFs. *Chem. Eur. J.*, 2019, **25**, 10876-10885.
- M. Y. Masoomi, A. Morsali and P. C. Junk, Rapid mechanochemical synthesis of two new Cd(ii)-based metal–organic frameworks with high removal efficiency of Congo red. *CrystEngComm*, 2015, **17**, 686-692.
- F.-h. Wei, Q.-h. Ren, Z. Liang and D. Chen, Synthesis of Graphene Oxide/Metal-Organic Frameworks Composite Materials for Removal of Congo Red from Wastewater. *ChemistrySelect*, 2019, 4, 5755-5762.
- R. Azhdari, S. M. Mousavi, S. A. Hashemi, S. Bahrani and S. Ramakrishna, Decorated graphene with aluminum fumarate metal organic framework as a superior non-toxic agent for efficient removal of Congo Red dye from wastewater. *J. Environ. Chem. Eng.*, 2019, **7**, 103437.
- M. del Rio, G. Turnes Palomino and C. Palomino Cabello, Metal–Organic
 Framework@Carbon Hybrid Magnetic Material as an Efficient Adsorbent for Pollutant
 Extraction. ACS Appl. Mater. Interfaces, 2020, 12, 6419-6425.
- J. Zolgharnein, S. Dermanaki Farahani, M. Bagtash and S. Amani, Application of a new metal-organic framework of [Ni₂F₂(4,4'-bipy)₂(H2O)₂](VO₃)₂.8H₂O as an efficient adsorbent for removal of Congo red dye using experimental design optimization. *Environ. Res.*, 2020, 182, 109054.
- J. Liu, H. Yu and L. Wang, Superior absorption capacity of tremella like ferrocene based metal-organic framework in removal of organic dye from water. *J. Hazard. Mater.*, 2020, 392, 122274.
- 12. Y. Han, M. Liu, K. Li, Q. Sun, W. Zhang, C. Song, G. Zhang, Z. Conrad Zhang and X. Guo, In

situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. *Inorg. Chem. Front.*, 2017, **4**, 1870-1880.

- 13. X. Liu, B. Liu, J. F. Eubank and Y. Liu, Highly effective and fast removal of anionic carcinogenic dyes via an In₃-cluster-based cationic metal–organic framework with nitrogen-rich ligand. *Mater. Chem. Front*, 2020, **4**, 182-188.
- 14. L.-J. Han, F.-Y. Ge, G.-H. Sun, X.-J. Gao and H.-G. Zheng, Effective adsorption of Congo red by a MOF-based magnetic material. *Dalton Trans.*, 2019, **48**, 4650-4656.
- S.-Q. Deng, X.-J. Mo, S.-R. Zheng, X. Jin, Y. Gao, S.-L. Cai, J. Fan and W.-G. Zhang, Hydrolytically Stable Nanotubular Cationic Metal–Organic Framework for Rapid and Efficient Removal of Toxic Oxo-Anions and Dyes from Water. *Inorg. Chem.*, 2019, 58, 2899-2909.
- Y. Luo, D. Chen, F. Wei and Z. Liang, Synthesis of Cu-BTC Metal-Organic Framework by Ultrasonic Wave-Assisted Ball Milling with Enhanced Congo Red Removal Property. *ChemistrySelect*, 2018, **3**, 11435-11440.
- 17. S. Zhao, D. Chen, F. Wei, N. Chen, Z. Liang and Y. Luo, Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. *Ultrason. Sonochem.*, 2017, **39**, 845-852.
- X.-Y. Dong, J.-J. Li, Z. Han, P.-G. Duan, L.-K. Li and S.-Q. Zang, Tuning the functional substituent group and guest of metal–organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. *J. Mater. Chem. A.*, 2017, 5, 3464-3474.
- 19. G. Socrates, *Infrared and Raman characteristic group frequencies: tables and charts*, John Wiley & Sons, 2004, pp. 290-291.