Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Hierarchical MoP/NiFeP Hybrid Hollow Spheres as Highly Efficient Bifunctional

Electrocatalysts for Overall Water Splitting

Lifeng Lin, Min Chen and Limin Wu*

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers,

Fudan University, Shanghai 200433, China

Calculation of TOF

The values of turnover frequency (TOF) was calculated assuming that all Mo, Ni and Fe ions in the catalysts were active and contributed to the catalytic reaction, since the exact number of active sites was not known (the lowest TOF values)

$$TOF = jS/(\alpha Fn)$$

Here, j (A/cm²) is the measured current density at certain overpotential; S (GCE area, 0.196 cm²) is the surface area of GCE; α is the number of electrons transferring in HER or OER; F is Faraday constant (96485.3 C mol⁻¹), and n is the metal ions molar number calculated from ICP results of the as-prepared catalysts (Table S1). Herein, the TOF was undervalued when all metal atoms were used to calculate it.

Calculation of Faradic efficiency

The Faradic efficiency was calculated by the equation as follows

Faradic efficiency=nFm/Q

Here, n = 2 and 4 for HER and OER respectively, F is Faraday constant (96485.3 C mol⁻¹), m is moles of gas evolved, Q (C) is the total amount of charge passed through the cell.

Figure S1. TEM images of (a and d) Mo-PDA HSs, (b and e) Mo-PDA/NiFe-PBA-1 HSs, (c and f) Mo-PDA/NiFe-PBA-2 HSs.

Figure S2. TEM images of (a) NiFe-PBA NPs and (b) NiFeP NPs.

Figure S3. SEM images of (a) MoP HSs, (b) MoP/NiFeP-1 HSs and (c) MoP/NiFeP-2 HSs.

Figure S4. N₂ sorption isotherms of (a) MoP HSs, (b) MoP/NiFeP-1 HSs and (c) MoP/NiFeP-2 HSs.

Figure S5. XRD patterns of (a) NiFeP NPs and (b) MoP/NiFeP-2 HSs.

Figure S6. High resolution XPS spectra of (a) Mo 3d, (b) P 2p, (c) Ni 2p_{3/2} and (d) Fe 2p_{3/2} of (I) MoP HSs, (II) MoP/NiFeP-1 HSs, (III) MoP/NiFeP-2 HSs and (IV) NiFeP NPs.

Figure S7. (a) Nyquist plots (at η =150 mV, -0.15 V vs. RHE) of MoP HSs, MoP/NiFeP-1 HSs, MoP/NiFeP-2 HSs and NiFeP NPs as HER electrocatalysts obtained in 1 M KOH and (b) the corresponding zoom-in regions. R_s , R_p , R_{ct} , CPE1, and CPE2 represent the solution resistance, electrode texture and charge transfer resistances, and constant phase elements, respectively.

Figure S8. Cyclic voltammograms of (a) MoP HSs, (b) MoP/NiFeP-1 HSs, (c) MoP/NiFeP-2 HSs and (d) NiFeP NPs in 1 M KOH as HER catalysts.

Figure S9. (a) Capacitive current at 0.13 V (*vs.* RHE) as a function of scan rate obtained in 1 M KOH and (b) normalized polarization curves by ECSA of the electrocatalysts.

Figure S10. (a) Nyquist plots (at η =300 mV, 1.53 V *vs*. RHE) of MoP HSs, MoP/NiFeP-1 HSs, MoP/NiFeP-2 HSs and NiFeP NPs as OER electrocatalysts obtained in 1 M KOH and (b) the corresponding zoom-in regions. *R_s*, *R_p*, *R_{ct}*, CPE1, and CPE2 represent the solution resistance, electrode texture and charge transfer resistances, and constant phase elements, respectively.

Figure S11. Cyclic voltammograms of (a) MoP HSs, (b) MoP/NiFeP-1 HSs, (c) MoP/NiFeP-2 HSs and (d) NiFeP NPs in 1 M KOH as OER catalysts.

Figure S12. (a) Capacitive current at 1.15 V (*vs.* RHE) as a function of scan rate obtained in 1 M KOH and (b) normalized polarization curves by ECSA of the electrocatalysts.

Figure S13. (a) TEM image, (b)FESEM image, (c) HRTEM image and (d) XRD of MoP/NiFeP-1 HSs after long term overall water splitting on the cathode.

Figure S14. High resolution XPS spectra of (a) Mo 3d, (b) P 2p, (c) Ni $2p_{3/2}$ and (d) Fe $2p_{3/2}$ of MoP/NiFeP-1 HSs after long term overall water splitting on the cathode.

Figure S15. (a) TEM image, (b)FESEM image, (c) HRTEM image and (d) XRD of MoP/NiFeP-1 HSs after long term overall water splitting on the anode.

Figure S16. High resolution XPS spectra of (a) Mo 3d, (b) P 2p, (c) Ni $2p_{3/2}$ and (d) Fe $2p_{3/2}$ of MoP/NiFeP-1 HSs after long term overall water splitting on the anode.

Table S1. Summary of the actual metal molar ratios of the as-prepared catalysts analyzed by ICP-OES.

Sample	Mo (%)	Ni (%)	Fe (%)
MoP HSs	100	0	0
MoP/NiFeP-1 HSs	90.6	4.9	4.5
MoP/NiFeP-2 HSs	71.2	15.1	13.7
NiFeP NPs	0	51.2	48.8

 Table S2. HER performances of MoP/NiFeP-1 HSs and the recently reported electrocatalysts in 1 M

 KOH.

Catalyst	η_{10} (mV)	Loading (mg cm ⁻²)	Substrate	References
MoP/NiFeP-1 HSs	73	0.2	GCE	This work
Co _{0.31} Mo _{1.69} C/MXene/NC	75	0.2	GCE	Adv. Energy Mater. 2019, 9, 1901333
CoP/NiCoP	75	0.318	GCE	Adv. Funct. Mater. 2019, 29, 1807976
S-MoP NPL	104	-	Mo foil	ACS Catal. 2019, 9, 651
Co-O-1T-MoS ₂ /SWNT	113	-	GCE	ACS Nano 2019, 13, 11733
NiFeP/SG	115	-	GCE	Nano Energy 2019 , 58, 870
MoC-Mo ₂ C/PNCDs	121	0.4	CFP	Adv. Mater. 2019, 31, 1900699
Ni/Mo ₂ C-NCNFs	143	1.40	GCE	Adv. Energy Mater. 2019, 9, 1803185
MoP@NC	149	0.28	GCE	Appl. Catal. B-Environ. 2020, 263, 118358
MoP/NC	170	0.56	GCE	Appl. Catal. B-Environ. 2019, 245, 656

Table S3. OER performances of MoP/NiFeP-1 HSs and the recently reported electrocatalysts in 1 MKOH.

Catalyst	$\eta_{10} (\mathrm{mV})$	Loading (mg cm ⁻²)	Substrate	References
MoP/NiFeP-1 HSs	256	0.2	GCE	This work
Co_4N - $VN_{1-x}O_x$	263	~2	Carbon cloth	Appl. Catal. B-Environ. 2019, 241, 521
Ni-MOF@Fe-MOF	265	0.2	GCE	Adv. Funct. Mater. 2018, 28, 1801554
$(Ni, Fe)S_2@MoS_2$	270	-	Carbon paper	Appl. Catal. B-Environ. 2019, 247, 107
Ni/Mo ₂ C-NCNFs	288	1.40	GCE	Adv. Energy Mater. 2019, 9, 1803185
NiCo ₂ O ₄ @MoS ₂	305	-	Carbon paper	Chem. Mater. 2019, 31, 7590
NG-NiFe@MoC ₂	320	0.2	GCE	Nano Energy 2018 , 50, 212
Co-NC@Mo ₂ C	347	0.83	GCE	Nano Energy, 2019 , 57, 746
Co/β-Mo ₂ C@N-CNTs	356	-	GCE	Angew. Chem. Int. Ed. 2019, 58, 4923
MoS ₂ -NiS ₂ /NGF	370	-	Graphene foam	Appl. Catal. B-Environ. 2019, 254, 15

Table	S4 .	Overall	water	splitting	performances	of	MoP/NiFeP-1	HSs	and	the	recently	reported
electro	catal	ysts.										

Catalyst	Cell Voltage (V)	Loading (mg cm ⁻²)	Substrate	References
MoP/NiFeP-1 HSs	1.51	1.5	Carbon paper	This work
Mo-Co ₉ S ₈ @C	1.56	-	Nickel foam	Adv. Energy Mater. 2020, 10, 1903137
(Ni, Fe)S ₂ @MoS ₂	1.56	-	Carbon paper	Appl. Catal. B-Environ. 2019, 247, 107
$Co_3S_4@MoS_2$	1.58	0.6	Carbon paper	Nano Energy 2018, 47, 494
NiCo ₂ S ₄	1.58	-	Nickel foam	Adv. Funct. Mater. 2019, 29, 1807031
Ni/Mo ₂ C-NCNFs	1.64	2	Nickel foam	Adv. Energy Mater. 2019, 9, 1803185
Co_4N - $VN_{1-x}O_x$	1.64	~2	Carbon cloth	Appl. Catal. B-Environ. 2019, 241, 521
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	1.65	2	Nickel foam	Adv. Energy Mater. 2018, 8, 1801127
Co-NC@Mo ₂ C	1.685	0.83	GCE	Nano Energy 2019, 57, 746

PO-Ni/Ni-N-CNFs	1.69	2.0	Carbon paper	Nano Energy 2018 , 51, 286