Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supporting Information for

Hollow Co₃O₄ Dodecahedrons with Controlled Crystal Orientation and Oxygen Vacancies for High Performance Oxygen Evolution Reaction

Hang Yang^{a,†}, Hui Sun^{a,†}, Xiaochen Fan^a, Xiaozhong Wang^{*a}, Qingfeng Yang^a and Xiaoyong Lai^{*a}

^a State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School

of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of

China.

† These authors contributed equally to this work.

*Corresponding authors: E-mail: xylai@nxu.edu.cn (X. Lai); xzwang@nxu.edu.cn (X. Wang); Fax:

(86-0951-2062323); Tel: (86-0951-2061456)

Fig. S1 XRD pattern of ZIF-67.

Fig. S2 The nitrogen adsorption-desorption isotherms of Co₃O₄-7:2, Co₃O₄-4:1 and Co₃O₄-9:1.

Fig. S3 The EDS spectrum of Co₃O₄-9:1.

Fig. S4 The XPS spectra of (a) Co₃O₄-7:2, (b) Co₃O₄-4:1 and (c) Co₃O₄-9:1.

Fig. S5 C 1s high resolution XPS spectra of (a) Co_3O_4 -7:2, (b) Co_3O_4 -4:1 and (c) Co_3O_4 -9:1.

Fig. S6 (a) Polarization curves and (b) Tafel plots of Co₃O₄-9:1 at different coated weight.

Fig. S7 (a) LSV, (b) Tafel plot, (c) EIS and (d) double layer capacitance at different scan rate of Co₃O₄-9:1 after grinding.

Fig. S8 ECSA-normalized LSV curves of Co₃O₄-9:1, Co₃O₄-4:1 and Co₃O₄-7:2.

Fig. S9 CV curves of Co₃O₄-9:1 before and after 1000 cycles.

Table S1 Comparison of the catalytic performance for OER of Co_3O_4 -based electrodes in this work and previous studies.

Composition	Morphology	Overpotential (mV) at 10 mA/cm ² for OER in 1M KOH	Tafel slope (mV/dec)	References
Co ₃ O ₄	Pompon-like	308	60.8	1
Co ₃ O ₄	Flower-shaped	356	68	2
Co ₃ O ₄	Petal-like nanoflakes	314	77.5	3
Co ₃ O ₄ /CoMoO ₄	Porous nanocages	318	63	4
Co ₃ O ₄ /C	Hollow dodecahedron	353	60	5
Co ₃ O ₄	Nanomeshes	307	76	6
C/Co/Co ₃ O ₄	Hierarchical hollow sphere	352	80	7
Co ₃ O ₄	Hollow sphere	352	117	8
Co ₃ O ₄	Honeycomb-like	450	89	9
Pd@PdO- Co ₃ O ₄	Nanocage	310	70	10
Co ₃ O ₄ /C/N	Co ₃ O ₄ embedded in nitrogen doped carbon polyhedra	333	69	11
Co ₃ O ₄	Hollow dodecahedron	307	55	This work

References

^{1.} C. Zhang, F. Zheng, Z. Zhang, D. Xiang, C. Cheng, Z. Zhuang, P. Li, X. Li and W. Chen, Fabrication of Hollow Pompon-

Like Co₃O₄ Nanostructures with Rich Defects and High- Index Facet Exposure for Enhanced Oxygen Evolution Catalysis, *J. Mater. Chem. A*, 2019, **7**, 9059-9067.

- C. K. Ranaweera, C. Zhang, S. Bhoyate, P. K. Kahol, M. Ghimire, S. R. Mishra, F. Perez, B. K. Gupta and R. K. Gupta, Flower-Shaped Cobalt Oxide Nano-Structures as an Efficient, Flexible and Stable Electrocatalyst for the Oxygen Evolution Reaction, *Mater. Chem. Front.*, 2017, 1, 1580-1584.
- J. Yang, L. Wei, T. Zhao, T. Yang, J. Wang, W. Wu, X. Yang, Z. Li and M. Wu, Hollow Petal-Like Co₃O₄ Nanoflakes as Bifunctional Electrocatalysts through Template-Free Protocol and Structural Controlled Kinetics in Gas Evolution, *Electrochim. Acta*, 2019, **318**, 949-956.
- 4. L. Zhang, T. Mi, M. A. Ziaee, L. Liang and R. Wang, Hollow POM@MOF Hybrid-Derived Porous Co₃O₄/CoMoO₄ Nanocages for Enhanced Electrocatalytic Water Oxidation, *J. Mater. Chem. A*, 2018, **6**, 1639-1647.
- Y. Wu, H. Chen, J. Wang, H. Liu, E. Lv, Z. Zhu, J. Gao and J. Yao, Metal-Organic Framework-Templated Hollow Co₃O₄/C with Controllable Oxygen Vacancies for Efficient Oxygen Evolution Reaction, *ChemNanoMat*, 2020, 6, 107-112.
- Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng and Y. Chen, Ultrathin Co₃O₄ Nanomeshes for the Oxygen Evolution Reaction, *ACS Catal.*, 2018, 8, 1913-1920.
- L. Hang, Y. Sun, D. Men, S. Liu, Q. Zhao, W. Cai and Y. Li, Hierarchical Micro/Nanostructured C Doped Co/Co₃O₄ Hollow Spheres Derived from PS@Co(OH)₂ for the Oxygen Evolution Reaction, *J. Mater. Chem. A*, 2017, 5, 11163-11170.
- 8. H. Zhou, M. Zheng, H. Tang, B. Xu, Y. Tang and H. Pang, Amorphous Intermediate Derivative from ZIF-67 and Its Outstanding Electrocatalytic Activity, *Small*, 2020, **16**, 1904252.
- L. Li, T. Tian, J. Jiang and L. Ai, Hierarchically Porous Co₃O₄ Architectures with Honeycomb-Like Structures for Efficient Oxygen Generation from Electrochemical Water Splitting, *J. Power Sources*, 2015, 294, 103-111.
- H.-C. Li, Y.-J. Zhang, X. Hu, W.-J. Liu, J.-J. Chen and H.-Q. Yu, Metal-Organic Framework Templated Pd@PdO-Co₃O₄ Nanocubes as an Efficient Bifunctional Oxygen Electrocatalyst, *Adv. Energy Mater.*, 2018, 8, 1702734.
- D. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan, R. Wu and Y. Li, Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR, *ACS Catal.*, 2018, 8, 7879-7888.