## **Supporting Information**

## An easily-synthesized AIE luminogen for lipid droplets-specific super-resolution imaging and twophoton imaging

Yanzi Xu,<sup>[a,‡]</sup> Haoke Zhang,<sup>[b,‡]</sup> Ning Zhang,<sup>[a,‡]</sup> Ruohan Xu,<sup>[a]</sup> Zhi Wang,<sup>[a]</sup> Yu Zhou,<sup>[a,c]</sup> Qifei Shen,<sup>[a]</sup> Dongfeng Dang,<sup>[a,\*]</sup> Lingjie Meng,<sup>[a,c,\*]</sup> Ben Zhong Tang<sup>[b,\*]</sup>

<sup>[a]</sup> School of Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.

<sup>[b]</sup> Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, P. R. China.

<sup>[c]</sup> Instrumental analysis center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China.

E-mails: dongfengdang@xjtu.edu.cn, menglingjie@xjtu.edu.cn tangbenz@ust.hk

‡ Y. Xu, H. Zhang and N. Zhang contributed equally to this manuscript.



Scheme S1. Synthetic routes to DTPA-BT-H and DTPA-BT-M.



**Figure S1.** UV-Vis absorption spectra and molar absorption coefficient of DTPA-BT-H and DTPA-BT-M in dilute THF solution ( $[c]=1\times10^{-5}$  mol/L).



Figure S2. PL spectra of DTPA-BT-H in a THF/water mixture with different water fraction ( $[c]=1 \times 10^{-5}$  mol/L).



Figure S3. PL spectra of DTPA-BT-M in a THF/water mixture with different water fraction ( $[c]=1 \times 10^{-5}$  mol/L).



Figure S4. Normalized PL spectra of DTPA-BT-H in solvents with varied polarities.



Figure S5. Normalized PL spectra of DTPA-BT-M in solvents with varied polarities.



**Figure S6.** Transient decay spectra of DTPA-BT-H and DTPA-BT-M in dilute THF solution ( $[c]=1\times10^{-5}$  mol/L).



**Figure S7.** The calculated geometries of DTPA-BT-H and DTPA-BT-M in excited states (including top view and side view).



Figure S8. The conformational change of DTPA-BT-H from ground state  $(S_0)$  to excited state  $(S_1)$ .

|                      | Degree |                | DTPA-BT-M      |  |
|----------------------|--------|----------------|----------------|--|
| S1 3-4-5             | (°)    | S <sub>0</sub> | S <sub>1</sub> |  |
|                      | 1-N    | 47             | 36             |  |
| 2                    | 2-N    | 48             | 36             |  |
|                      | 3-N    | 32             | 50             |  |
|                      | 3-4    | 35             | 27             |  |
| ^                    | 4-5    | 35             | 27             |  |
| a to a first fil     | 5-N    | 32             | 49             |  |
| S <sub>0</sub> 3 4 5 | 6-N    | 45             | 36             |  |
| 2 7                  | 7-N    | 48             | 36             |  |

Figure S9. The conformational change of DTPA-BT-M from ground state  $(S_0)$  to excited state  $(S_1)$ .



**Figure S10.** The single crystal structure of DTPA-BT-H and DTPA-BT-M in side view.

| 0 mW   | 9 mW   | 18 mW  | 30 mW  | 36 mW  | 42 mW  |
|--------|--------|--------|--------|--------|--------|
| 48 mW  | 54 mW  | 60 mW  | 72 mW  | 84 mW  | 96 mW  |
| 108 mW | 120 mW | 126 mW | 144 mW | 162 mW | 180 mW |

Figure S11. Power-dependent fluorescent images for DTPA-BT-H on AAO mask under the irradiation of STED beam (Scale bar =  $2 \mu m$ ).

| 0 mW   | 9 mW   | 18 mW  | 30 mW  | 36 mW  | 42 mW  |
|--------|--------|--------|--------|--------|--------|
| 48 mW  | 54 mW  | 60 mW  | 72 mW  | 84 mW  | 96 mW  |
| 108 mW | 120 mW | 126 mW | 144 mW | 162 mW | 180 mW |

Figure S12. Power-dependent fluorescent images for DTPA-BT-M on AAO mask under the irradiation of STED beam (Scale bar =  $2 \mu m$ ).



**Figure S13.** Plots of relative fluorescence intensity  $(I/I_0)$  for DTPA-BT-H and DTPA-BT-M on AAO mask under different STED power.



**Figure S14.** The fitting curve for depletion efficiency of DTPA-BT-H and DTPA-BT-M under various powers in STED nanoscopy.



Figure S15. The calculated resolution for DTPA-BT-M under various STED power.



**Figure S16.** The viability of LO<sub>2</sub> cells after incubated with DTPA-BT-M for 24 h and 48 h under different concentration.



**Figure S17.** The viability of HeLa cells after incubated with DTPA-BT-M for 24 h and 48 h under different concentration.



Figure S18. The PL spectra of DTPA-BT-M in DMSO and PBS solution for cell cultures.



Figure S19. The PL spectra of DTPA-BT-M in HeLa cells.



**Figure S20.** Confocal images of HeLa cells stained with BODIPY 493/503 (A), DTPA-BT-M (B) and their corresponding co-location profile by A and B (C).

| 0 min 🗕 | 3 min  | 6 min  | 9 min  | 12 min | 15 min |
|---------|--------|--------|--------|--------|--------|
| 18 min  | 21 min | 24 min | 27 min | 30 min |        |

**Figure S21.** Time-dependent fluorescent images for BODIPY 493/503 stained HeLa cells under the irradiation of STED beam (Scale bar = 300 nm).



**Figure S22.** Time-dependent fluorescent images for DTPA-BT-M stained HeLa cells under the irradiation of STED beam (Scale bar = 300 nm).



Figure S23. Fluorescent intensity for DTPA-BT-M-stained cells over various generations.



**Figure S24**. Fluorescence images by CLSMs (A-D) and STED nanoscopy (E-H) in long-term cellular tracking by using BODIPY 493/503; Fluorescence intensity along the white line in captured images by CLSMs and STED nanoscopy, and their corresponding FWMH values (I-L).



**Figure S25.** Fluorescent intensity for BODIPY 493/503-stained cells over various generations.



**Figure S26.** Fluorescence images of DTPA-BT-M stained lung tissue in one-photon mode (A) and two-photon mode (B) at different penetration depth.



Figure S27. The fluorescent intensity curve for DTPA-BT-M at various penetration depths in one-photon imaging.



Figure S28. The fluorescent intensity curve for DTPA-BT-M at various penetration depths in two-photon imaging.

| Sample                            | Ex      | $\delta_{2PA}$                |
|-----------------------------------|---------|-------------------------------|
| TBP- <i>b</i> -TPA <sup>[a]</sup> | 1040 nm | 207±7 GM                      |
| CDPP-4SO3 <sup>[b]</sup>          | 820 nm  | 162 GM                        |
| BTPETQ dots [c]                   | 1200 nm | $7.63\times 10^4GM$           |
| TP <sup>[d]</sup>                 | 840 nm  | 265 MG                        |
| TQ-BPN [e]                        | 1300 nm | $1.22 \times 10^3 \text{ GM}$ |
| DTPA-BT-M <sup>[f]</sup>          | 840 nm  | 1581 GM                       |

Table S1. The  $\delta_{2PA}$  of typical AIEgens for two-photon fluorescence microscopy.

[a] Angew. Chem. Int. Ed. 2020, 59, 12822; <sup>[b]</sup> Adv. Funct. Mater. 2020, 30, 1909268;
[c] Adv. Mater. 2019, 31, 1904447; <sup>[d]</sup> Nano Res. 2019, 12, 1703; <sup>[e]</sup> ACS Nano 2018, 12, 7936; <sup>[f]</sup> our work.

## NMR and MS spectra



 $\begin{array}{c} 154.14 \\ 147,95 \\ 147,95 \\ 122,95 \\ 122,93 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,92 \\ 122,9$ 







