Cyano-containing Tetraphenylethene Isomers: Similar Bright Mechanoluminescence, but Diverse Recoverable Processes

Yuqing Jiang [†]a, Xiaoyong Chang [†]b, Weiwei Xie^a, Guangxi Huang ^{*a}and Bing Shi Li^{*a} ^aKey Laboratory of New Lithium-Ion Battery and Mesoporous Material, College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen 518055, China. E-mail: <u>phbingsl@szu.edu.cn</u>; Fax: +86-755-26536141; Tel: +86-755-26558094

^bDepartment of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan, Shenzhen, 518055, China

[†] Y. Q. Jiang and X. Y. Chang contributed equally to this work.

Materials

Pd(PPh₃)₄, 4-cyanophenylboronic acid, 3-cyanophenylboronic acid, bromotriphenylethylene and other chemicals were all purchased from Energy Chemical Company. K_2CO_3 and solvents were all purchased from Xilong Chemical Co., Ltd.. All the chemicals were used as received without further purification. Compound *p*-CN (4-(1,2,2-triphenylvinyl)benzonitrile) was prepared according to previous paper.¹

Instruments and methods

¹H and ¹³C NMR spectra were recorded on a VNMRS 500 NMR spectrometer (Varian, USA). High resolution mass spectra (HR-MS) were recorded using an Autoflex III mass spectrometer (MALDI-TOF-MS, Bruker, Germany). Element analysis was performed using a vario EL cube elemental analyzer (Elementar, Germany). UV-Vis spectra were recorded using a UV-2600 spectrometer (Shimadzu, Japan). Absolute quantum efficiency was measured on an integrating sphere (C11347-11, Hamamatsu, Japan). The fluorescence quantum yield (Φ_f) in solution was measured by a relative method using quinine in 0.1 M H₂SO₄ (Φ_f = 54.6%) as a standard. Fluorescence lifetime was measured on a compact fluorescence lifetime spectrometer (C11367-11, Hamamatsu, Japan). DSC measurements were carried out on a NETZSCH DSC 200F3 instrument at a heating rate and a cooling rate of 10 °C min⁻¹ in nitrogen. TGA analysis was performed on a NETZSCH SA409PC thermogravimeter. Powder X-ray diffraction (PXRD) patterns were carried out in the reflection mode at room temperature using a 2.2 kW Empyrean X-ray Diffraction System (PANalytical, Netherland). The ML spectra were collected from a spectrometer4 of Acton SP2750 with a liquid-nitrogencooled CCD (SPEC-10, Princeton) as a power detector. The theoretical ground-state geometry and electronic structure of molecule was optimized using the density functional theory (DFT) with B3LYP hybrid functional at the basis set level of 6-31+G(d). All the theoretical calculations were performed using Gaussian 03 package.²

Scheme S1. Synthetic route of compound *m*-CN.

Figure S1. TG and DTA curves of *p*-CN.

Figure S2. TG and DTA curves of *m*-CN.

Figure S3. The HOMO and LUMO orbital distribution of *p*-CN and *m*-CN calculated by B3LYP/6-31+G(d).

Figure S4. The fluorescence spectra of (a) *p*-CN and (b) *m*-CN in THF/water mixtures with different water fractions (f_w), concentration: 10 μ M.

Figure S5. Fluorescence decay curves of (a) *p*-CN-p, (b) *p*-CN-c and (c) *p*-CN-pc.

Figure S6. Fluorescence decay curves of (a) *m*-CN-p, (b) *m*-CN-c1, (c) *m*-CN-c2 and (d) reborn *m*-CN-p.

Figure S7. DSC curves of different states of *p*-CN during reborn process.

Figure S8. DSC curves of different states of *m*-CN during reborn process.

Figure S9. (a) ML image of reborn *p*-CN-*p* under daylight at room temperature. (b) PXRD patterns of *p*-CN during recycling process.

Table S1. Single crystal data of <i>p</i> -CN-c, <i>m</i> -CN-c1 and <i>m</i> -CN-c2			
	<i>p</i> -CN-c	<i>m</i> -CN-c1	<i>m</i> -CN-c2
CCDC Number	1904512	1917322	1904513
Formula	$C_{27}H_{19}N$	$C_{27}H_{19}N$	$C_{27}H_{19}N$
Formula Weight /g•mol-1	357.43	357.43	357.43
Crystal system	trigonal	tetragonal	monoclinic
Space group	P3 ₁	P4/ncc	P2 ₁
T/K	150	130	288
Ζ	3	4	2
a/Å	9.1128(3)	13.91783(16)	10.5183(7)
b/Å	9.1128(3)	13.91783(16)	9.3996(6)
c/Å	21.2477(5)	10.4029(2)	10.5184(7)
a/o	90	90	90
β/º	90	90	100.09
$\gamma/^{o}$	120	90	90
$V/Å^3$	1528.08(11	2015.11(6)	1023.85(12)
)		
$\rho_c/g \cdot cm^{-3}$	1.165	1.178	1.159
μ/mm^{-1}	0.513	0.519	0.510
F(000)	564	752	376
Reflections collected	4680	9168	3016
Independent reflections	2721	1034	2210
R _{int}	0.0288	0.0253	0.0827
$R_1(I > 2\sigma(I))$	0.0414	0.0593	0.1131
wR_2	0.1117	0.2121	0.2970

Table S1 ratal data of n 1 and m CN -1 Singla NI a In CN

-

Figure S10. The molecular conformations with labels of carbon/nitrogen atoms and dihedral angles (between the phenyl ring and central ethene group) of (a) *p*-CN-c, (b) *m*-CN-c1 and (c) *m*-CN-c2. Ellipsoids represent the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii. Bottoms are the calculated single molecule thermal stablization energies of *m*-CN-c1 and *m*-CN-c2 based on the crystal data.

Figure S11. The detailed intermolecular interactions in crystal (a) *p*-CN-c, (b, c) *m*-CN-c1 and (d) *m*-CN-c2.

Figure S12. Electrostatic potential of (a) *p*-CN and (b) *m*-CN at 0.001 a.u. isosurface of electron density at B3lyp/6-31G(d) level.

Figure S13. PXRD patterns of *m*-CN-c1, heated *m*-CN-c1 and *m*-CN-c2.

Figure S14. DSC curves of single crystal *m*-CN-c1 and *m*-CN-c2. Heating rate: 5 °C/min.

Figure S15. ¹H NMR of compound *m*-CN.

Figure S16. ¹³C NMR of compound *m*-CN.

Figure S17. HRMS of compound *m*-CN.

References

- 1. M. Ouyang et al., *Wuli Huaxue Xuebao* 2012, **28**(12), 2944-2952.
- 2. Gaussian 03, Revision E.01, M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2009.