Electronic Supplementary Information

Dual-functionalization actuated trimodal attribute in an ultra-robust MOF: exceptionally selective capture and effectual fixation of CO₂ with fast-responsive, nanomolar detection of assorted organo-contaminants in water

Nilanjan Seal,^{a,b} Manpreet Singh,^{a,b} Sandeep Das,^c Ranadip Goswami,^{a,b} Biswarup Pathak,^c and Subhadip Neogi^{*,a,b}

^aAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

^bInorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India

^cDiscipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India

*E-mail: sneogi@csmcri.res.in

Table of contents

1.	Materials and Physical measurements	Page S-3
2.	Single Crystal X-ray Crystallography	Page S-3
3.	Experimental section	Page S-4
4.	Fig. S1. ¹ H-NMR spectrum of 4,4′,4″-tricarboxytriphenylamine (H ₃ TCA).	Page S-5
5.	Fig. S2. ¹³ C-NMR spectrum of 4,4',4"-tricarboxytriphenylamine (H ₃ TCA).	Page S-6
6.	Fig. S3. ESI-MS spectrum of 4,4′,4″-tricarboxytriphenylamine (H₃TCA).	Page S-6
7.	Fig. S4. (a) Asymmetric unit of CSMCRI-9. (b) Void view of CSMCRI-9	Page S-7
	along crystallographic <i>c</i> -axis. (c) and (d) Topological representation of	
	CSMCRI-9.	
8.	Fig. S5. Thermogravimetric analysis of CSMCRI-9 and 9a .	Page S-7
9.	Fig. S6. (a) PXRD pattern of CSMCRI-9 and 9a . (b) FT-IR spectra (KBr	Page S-8
	pellets, cm ⁻¹) of CSMCRI-9 . (c) PXRD pattern of CSMCRI-9 in boiling	
	water.	
10.	Fig. S7. (a) N_2 adsorption isotherm of activated CSMCRI-9 at 77 K. (b)	Page S-8
	CO ₂ adsorption isotherm of activated CSMCRI-9 at 195 K.	
11.	Calculations of Adsorption Selectivity by IAST method	Page S-9
12.	Fig. S8. The isosteric heat of adsorption (Q _{st}) curve for 9a .	Page S-9
13.	Fig. S9. PXRD patterns of 9a obtained after five CO ₂ adsorption-	Page S-10
	desorption cycles.	
14.	Fig. S10 to S19. ¹ H-NMR and 13C-NMR spectra of different cyclic	Page S-10
	carbonate produced in CO_2 cycloaddition reaction with epoxide.	to S-15
15.	Calculation details of conversion, yield and selectivity for the CO ₂	Page S-15
	cycloaddition reaction catalyzed by activated CSMCRI-9 .	to S-16
16.	Fig. S20. Recyclability test of the catalyst up to five runs, showing	Page S-16
	negligible loss in catalytic activity.	
17.	Fig. S21. PXRD patterns of 9a obtained after five consecutive catalytic	Page S-17
_	cycles of CO ₂ cycloaddition reaction.	_
18.	Fig. S22. FT-IR spectra of 9a obtained after five consecutive catalytic	Page S-17

cycles of CO₂ cycloaddition reaction.

- 19. Fig. S23. FE-SEM images of (a), (b) & (c) as-synthesized CSMCRI-9. (d), Page S-18 (e) &(f) Images of 9a obtained after five consecutive catalyst recyclability studies.
- 20. Fig. S24. UV-Vis spectra of H₃TCA, bpg and **9a** (dispersed in water). Page S-19
- 21. Fig. S25. Emission intensity of H_3TCA , **9a** and a mixture of H_3TCA with Page S-19 Cd^{2+} (dispersed in water).
- 22. Fig. S26. Fluorescence quenching efficiency of **9a** (1 mg/ 2 mL water) for Page S-20 studied pesticides.
- 23. Fig. S27 to S32. Emission spectra of **9a** upon incremental addition of Page S-20 different pesticide solution. to S-23
- 24. Fig. S33. The curvature of the S–V plot for 1 mM DCNA solution (0 to Page S-23 200 $\mu L).$
- 25. Fig. S34. Linear region of S–V plot for 1 mM DCNA solution (0 to 200 Page S-24 $\mu L).$
- 26. Fig. S35. Linear region of fluorescence intensity of **9a** upon addition of Page S-24 DCNA (0 200 μ L, 10 μ M stock solution).
- 27. Fig. S36. Reproducibility of quenching efficiency of **9a** towards 1 mM Page S-25 DCNA solution up to five sensing-recovery cycles.
- 28. Fig. S37. PXRD patterns of **9a** obtained after five sensing-recovery Page S-25 cycles for DCNA (1 mM).
- 29. Fig. S38. HOMO–LUMO energies for bpg linker along with the studied Page S-26 pesticide molecules.
- 30. Fig. S39. Fluorescence quenching efficiency of **9a** (1 mg/ 2 mL water) Page S-26 towards studied nitroaromatics.
- 31.Fig. S40 to S46. Emission spectra of **9a** upon incremental addition of
different nitroaromatic solution.Page S-27
to S-30
- 32. Fig. S47. The curvature of the S–V plot for 1 mM TNP solution (0 to 200 $\,$ Page S-30 $\,\mu\text{L}).$
- Fig. S48. Linear region of Stern-Volmer (S-V) plot for 1 mM TNP solution Page S-31 (0 to 200 μL).
- 34. Fig. S49. Linear region of fluorescence intensity of **9a** upon addition of Page S-31 TNP (0 200 μ L, 10 μ M stock solution).
- 35. Fig. S50. Reproducibility of quenching efficiency of **9a** towards 1 mM Page S-32 TNP solution up to five sensing-recovery cycles.
- 36. Fig. S51. PXRD patterns of **9a** obtained after five sensing-recovery Page S-32 cycles for TNP (1 mM).
- 37. Fig. S52. HOMO–LUMO energies for bpg linker along with the studied Page S-33 nitroaromatic molecules.
- 38. Fig. S53. Fluorescence quenching efficiency of **9a** (1 mg/ 2 mL water) Page S-33 towards studied antibiotics.
- 39. Fig. S54 to S61. Emission spectra of **9a** upon incremental addition of Page S-34 different antibiotic solution. to S-37
- 40. Fig. S62. The curvature of the S–V plot for 1 mM NZF solution (0 to 200 Page S-38 μ L).
- 41. Fig. S63. Linear region of Stern-Volmer (S-V) plot for 1 mM NZF solution Page S-38 (0 to 200 μL).

42.	Fig. S64. Linear region of fluorescence intensity of 9a upon addition of NZF (0 – 200 μ L, 10 μ M stock solution).	Page S-39
43.	Fig. S65. Reproducibility of quenching efficiency of 9a towards 1 mM NZF solution up to five sensing-recovery cycles.	Page S-39
44.	Fig. S66. PXRD patterns of 9a obtained after five sensing-recovery cycles for NZF (1 mM).	Page S-40
45.	Fig. S67. Photographs of paper-strips encrusted with 9a and after addition of NZF solution, under 365 nm UV-light.	Page S-40
46.	Fig. S68. HOMO–LUMO energies for bpg linker along with the studied antibiotic molecules.	Page S-41
47.	Fig. S69. Spectral overlap of the absorption spectrum of 9a with the absorption spectra of the DCNA, TNP and NZF.	Page S-41
48.	Table S1. Crystal data and refinement parameters for CSMCRI-9.	Page S-42
49.	Table S2. Number of electrons and molecular mass of guest molecules associated with CSMCRI-9 for determination of solvent composition and molecular formula.	Page S-43
50.	Table S3. A comparison for BET surface area, CO_2 adsorption capacity and heat of adsorption of some well reported MOFs at 1 bar.	Page S-44
51.	Table S4. A comparison of catalytic performance of activated CSMCRI-9 in CO_2 cycloaddition to that of other MOF materials.	Page S-45
52.	Table S5 to S7. Calculation of standard deviation of fluorescence intensity and limit of detection for 9a towards DCNA, TNP and NZF, respectively.	Page S-46 to S-47
53.	Table S8. Calculation of standard deviation of emission intensities for 9a.	Page S-48
54.	Table S9 to S11. A comparison of quenching constant, their LOD values, of various luminescent MOFs used for detection of DCNA, TNP and NZF, respectively.	Page S-49 to S-51
55.	Table S12 to S14. HOMO and LUMO energy levels of different pesticides, nitroanalytes and antibiotics, respectively; calculated by density functional theory (DFT) at B3LYP/6-311++G** accuracy level, using Gaussian 09 package of programs.	Page S-51 to S-52

Materials and Physical measurements

All the solvents andreagents were purchased from commercial sources(except H₃TCA) and used without furtherpurification.Thermogravimetric analyses (TGA) (heating rate of 10 °C/min under N₂ atmosphere) were performed with a Mettler Toledo Star SW 8.10 system.The Fourier Transform infrared-spectra (IR) of the samples were recorded using the KBr pellet method on a Perkin–Elmer GX FTIR spectrometer in the region of 400–4000 cm⁻¹. Powder X-ray diffraction (PXRD) data were collected using a PANalytical Empyrean (PIXcel 3D detector) system equipped with Cu K α (λ =1.54 Å) radiation.Microanalyses of the compounds were conducted using elementarvario MICRO CUBE analyzer. UV-Vis spectra recorded using Shimadzu UV-3101 PC spectrometer and the luminescence experiments were performed at

room temperature using a Fluorolog Horiba Jobin Yvon spectrophotometer. Surface area measurement was carried out using Micromeritics ASAP 2020 analyser.

Single Crystal X-ray Crystallography

Single crystals with suitable dimensions were chosen under an optical microscope and mounted on a glass fibre for data collection. Intensity data for as synthesized colorless crystal of **CSMCRI-9** were collected using graphite-monochromatedMoK_{α} (λ =0.71073 Å) radiation on a Bruker SMART APEX diffractometer equipped with CCD area detector at 173 K, The linear absorption coefficients, scattering factors for the atoms, and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography. The data integration and reduction were performed with SAINT¹ software. Absorption corrections to the collected reflections were accounted with SADABS² using XPREP.³ The structure was solved by direct method using SIR-97⁴ and was refined on F2 by the full-matrix least-squares technique using the SHELXL-2014⁵ program package. All H atoms were placed in calculated positions using idealized geometries (riding model) and assigned fixed isotropic displacement parameters using the SHELXL default. To give an account of disordered electron densities associated with solvent molecules, the "SQUEEZE" protocol in PLATON⁶ was applied that produced a set of solvent free diffraction intensities. Final cycles of leastsquares refinements improved both the R values and Goodness of Fit with the modified data set after subtracting the contribution from the disordered solvent molecules, using SQUEEZE program. The crystal and refinement data for solvent free CSMCRI-9 is listed in Table S1. Topological analysis was performed by using TOPOS software.⁷

Experimental section

Synthesis of CSMCRI-9. A mixture of $Cd(NO_3)_2 \cdot 4H_2O$ (30 mg, 0.1 mmol), bpg (21.6 mg, 0.05 mmol) and H₃TCA (19 mg, 0.05 mmol) was dissolved in 4 mL of N,N-Dimethylacetamide (DMA) and 2 mL of distilled water in a 15 mL screw-capped vial by ultrasonic treatment for 15 min. Then it was heated to 85 °C for 4 days, and then slowly cooled down to room temperature. The colorless, shiny and block shaped X-ray quality crystals were obtained; which were then filtered, thoroughly washed with DMA and air dried (yield: 65 %). Anal. Calcd. For $[Cd_{1.5}(TCA)(bpg)_{0.5}(H_2O)]$ ·3DMA·2H₂O: C, 45.76; H, 5.12; N, 6.84. Found: C, 44.97; H, 4.93; N, 6.90

CO₂ Cycloaddition Reaction. In a 10 mL teflon-lined stainless steel autoclave, 21.91 mmol of epoxide, 0.35 mol % of activated catalyst and 0.36 mol % of $Bu_4N^+Br^-$ were purged with 1.0 MPa of CO₂. The mixture was heated to 65 °C for 6 h at 600 rpm. After that, the reactor was cooled down and the product was centrifuged to separate the catalyst and analysed by GC and ¹H-NMR. The recovered catalyst was thoroughly washed with acetone followed by air drying and reused for next cycle of experiment.

Fluorescence Measurements. In a typical procedure, 1 mg of finely ground **9a** was dispersed in 2 mL of water to form a stable suspension after ultrasonic treatment for two hours. All fluorescence titration experiments were performed by gradually adding aqueous solution of

nitroanalytes (1 mM) and antibiotics (1 mM) {DMF-water mixed solution for pesticides (1 mM)}. Fluorescence detections were performed at the emission wavelength ranging from 370 to 650 nm with an excitation wavelength (λ_{ex}) of 338 nm and a slit width of 4 nm at room temperature. During the whole period of performing each titration, the dispersion was continuously stirred to maintain the uniformity. All titrations were conducted thrice, and consistent results were reported.

Recyclable luminescence experiments. The reproducibility of **9a** towards sensing of DCNA, TNP and NZF was studied. After the first sensing experiment, the MOF powder was recovered by centrifugation and washed thoroughly with water and air dried. Subsequently, this recovered material was used for the next cycle of experiments.

Synthesis of the Ligand

The ligand 4,4',4''-tricarboxytriphenylamine (H₃TCA) was prepared by following a literature method⁸ and characterized by NMR and ESI-MS analysis.

Fig. S1.¹H-NMR spectrum of 4,4',4"-tricarboxytriphenylamine (H₃TCA).

Fig. S2.¹³C-NMR spectrum of 4,4',4''-tricarboxytriphenylamine (H₃TCA).

Fig. S3. ESI-MS spectrum of 4,4',4"-tricarboxytriphenylamine (H₃TCA).

Fig. S4. (a) Asymmetric unit of **CSMCRI-9**. (b) Void view of **CSMCRI-9** along crystallographic *c*-axis. (c) and (d) Topological representation of **CSMCRI-9**.

Fig. S5. Thermogravimetric analysis of (a) CSMCRI-9 and (b) 9a.

Fig. S6. (a) As-synthesized (red) and activated (green) PXRD pattern of **CSMCRI-9**. (b) FT-IR spectra (KBr pellets, cm⁻¹) of **CSMCRI-9**. (c) PXRD pattern of **CSMCRI-9** in boiling water showing structural stability up to 48 hours.

Fig. S7. (a) N_2 adsorption isotherm of activated CSMCRI-9 at 77 K. (b) CO_2 adsorption isotherm of activated CSMCRI-9 at 195 K.

Calculations of Adsorption Selectivity by IAST method

Ideal Adsorption Solution Theory (IAST) was used to predict mixed-gas adsorption equilibria from single component isotherms. The Langmuir equation as given below was successful for fitting our data, where, q is the adsorbed amount per mass of adsorbent, q_m is the saturation capacity, b is the affinity coefficient of adsorption sites, and p is the pressure of the bulk gas at equilibrium with the adsorbed phase. The fitted parameters were then used to predict single-component adsorption with IAST.

$$q = \frac{q_m bp}{1 + bp}$$

Based on the above equation parameters of pure gas adsorption, we used IAST model to investigate the separation of gas mixtures CO_2/N_2 and CO_2/CH_4 with 15/85 composition. The inputs to the IAST calculations are pure-component adsorption isotherms at the temperature of interest, and the output is the adsorption selectivity is defined by the following equation,

$$S_{ads} = \frac{q_{CO2}/q_{other}}{p_{CO2}/p_{other}}$$

Where, q_{cO2} and q_{other} are the absolute component loadings of the adsorbed phase in the mixture and p_{cO2} and p_{other} are the corresponding relative pressure.

Fig. S8. The isosteric heat of adsorption (Q_{st}) curve for 9a.

Fig. S9. PXRD patterns of **9a** obtained after five CO_2 adsorption-desorption cycles, revealing that structural integrity of the framework is maintained.

Fig. S10. ¹H-NMR spectra of styrene carbonate (4-Phenyl-1,3-dioxolan-2-one). The peak at 7.26 is for CDCl₃.

Fig. S11. ¹³C-NMR spectra of styrene carbonate (4-Phenyl-1,3-dioxolan-2-one).

Fig. S12. ¹H-NMR spectra of propylene carbonate (4-Methyl-1,3-dioxolan-2-one). The peak at 7.26 is for CDCl₃.

Fig. S13. ¹³C-NMR spectra of propylene carbonate (4-Methyl-1,3-dioxolan-2-one).

Fig. S14. ¹H-NMR spectra of butylene carbonate (4-Ethyl-1,3-dioxolan-2-one). The peak at 7.26 is for CDCl₃.

Fig. S15. ¹³C-NMR spectra of butylene carbonate (4-Ethyl-1,3-dioxolan-2-one).

Fig. S16. ¹H-NMR spectra of epichlorohydrin carbonate (4-(chloromethyl)-1,3-dioxolan-2-one). The peak at 7.26 is for CDCl₃.

Fig. S17. ¹³C-NMR spectra of epichlorohydrin carbonate (4-(chloromethyl)-1,3-dioxolan-2-one).

Fig. S18. ¹H-NMR spectra of phenyl glycidyl carbonate (4-(phenoxymethyl)-1,3-dioxolan-2-one). The peak at 7.26 is for CDCl₃.

Fig. S19. ¹³C-NMR spectra of phenyl glycidyl carbonate (4-(phenoxymethyl)-1,3-dioxolan-2-one).

Calculation details of conversion, yield and selectivity for the CO₂ cycloaddition reaction catalyzed by activated CSMCRI-9:

The conversion, yield and selectivity for CO_2 cycloaddition reaction, catalyzed by activated **CSMCRI-9** (9a) were calculated from the integral area of the characteristic protons of styrene carbonate, styrene oxide and phenyl ring. From literature reference,⁹ the characteristic protons for styrene carbonate and styrene oxide were identified.

The formula are

Conversion (%) = $[1-{5I_{Ha'}/I_{H(b-f)}}] \times 100 \%$

Yield (%) = $\{5I_{Ha}/I_{H(b-f)}\}\times 100 \%$

Selectivity (%) = $[5I_{Ha}/{I_{H(b-f)}-5I_{Ha'}}] \times 100 \%$

where, I_{Ha} is the integral area of the characteristic proton of styrene carbonate; $I_{Ha'}$ is the integral area of the characteristic proton of styrene oxide and $I_{H(b-f)}$ is the integral area of the protons of phenyl ring.

From Fig. S10, for styrene carbonate, $I_{Ha}\text{=}$ 1.00, $I_{Ha'}\text{=}$ 0.01 and $I_{H(b\text{-}f)}\text{=}$ 5.01

Therefore, conversion (%) = {1-(5×0.01/5.01)}×100 % = 99 %

Yield (%) = (5×1/5.01) ×100 % = 99.8 %

Selectivity (%) = [(5×1)/{5.01-(5×0.01)}] ×100 % = 100 %

For the other four compounds, the conversion, yield and selectivity were determined by the following formula

Conversion (%) = $\{I_{Ha}/(I_{Ha}+I_{Ha'})\} \times 100 \%$

Yield (%) = $\{I_{Ha}/(I_{Ha}+I_{Ha'})\} \times 100 \%$

Selectivity (%) = (Yield of the desired product/total yield of the products) ×100 %

From Fig. S16, for epichlorohydrine carbonate, I_{Ha} = 1.00, $I_{Ha'}$ = 0.01

Therefore, conversion for epichlorohydrine carbonate = {1/(1+.01)} ×100 % = 99 %

yield of epichlorohydrine carbonate = $\{1/(1+.01)\} \times 100\% = 99\%$

selectivity = {0.99/(0.99+0.01)}×100 % = 99 %

Fig. S20. Recyclability test of the catalyst up to five runs, showing negligible loss in catalytic activity.

Fig. S21. PXRD patterns of **9a** obtained after five consecutive catalytic cycles of CO₂ cycloaddition reaction, revealing that structural integrity of the framework is maintained.

Fig. S22. FT-IR spectra of **9a** obtained after five consecutive catalytic cycles of CO₂ cycloaddition reaction.

Fig. S23. a), b) and c) FE-SEM images of **CSMCRI-9**. d), e) and f) Images of **9a** obtained after five consecutive catalyst recyclability studies showing rectangular block shaped morphology is maintained.

Fig. S24. UV-Vis spectra of H₃TCA, bpg and 9a (dispersed in water).

Fig. S25. Emission intensity of H_3TCA , 9a and a mixture of H_3TCA with Cd^{2+} (dispersed in water).

Fig. S26. Fluorescence quenching efficiency of **9a** (1 mg/ 2 mL water) for studied pesticides. Quenching efficiency of **9a** is calculated using equation $(I_0 - I)/I_0 \times 100\%$, where I_0 and I denotes the emission intensities before and after the addition of studied pesticides, respectively.

Fig. S27. Emission spectra of **9a** upon incremental addition of 2,4,4'-Trichloro-2'-hydroxydiphenyl Ether (TCHDE) solution (1 mM, 200 μL).

Fig. S28. Emission spectra of **9a** upon incremental addition of 2,4-Dichlorophenol (DCP) solution (1 mM, 200 μ L).

Fig. S29. Emission spectra of 9a upon incremental addition of hexaconazole (HCL) solution (1 mM, 200 μ L).

Fig. S30. Emission spectra of 9a upon incremental addition of isoproturon (IPT) solution (1 mM, 200 μ L).

Fig. S31. Emission spectra of **9a** upon incremental addition of 2,2-Bis(4-hydroxyphenyl) propane (BHP) solution (1 mM, 200 μL).

Fig. S32. Emission spectra of 9a upon incremental addition of diuron (DUN) solution (1 mM, 200 μ L).

Fig. S33. The curvature of the S–V plot for 1 mM DCNA solution (0 to 200 μ L).

Fig. S34. Stern-Volmer (S-V) plot for 1 mM DCNA solution (0 to 200 μ L). The relative fluorescence intensity (I₀/I)-1 is linear with DCNA concentration in the range of 0–0.03 mM.

Fig. S35. Linear region of fluorescence intensity of **9a** upon addition of DCNA (0 – 200 μ L, 10 μ M stock solution).

Fig. S36. Reproducibility of quenching efficiency of **9a** towards 1 mM DCNA solution up to five sensing-recovery cycles.

Fig. S37. PXRD patterns of **9a** obtained after five sensing-recovery cycles for DCNA (1 mM), revealing that structural integrity of the framework is maintained.

Fig. S38. HOMO–LUMO energies for bpg linker along with the studied pesticide molecules.

Fig. S39. Fluorescence quenching efficiency of **9a** (1 mg/ 2 mL water) towards studied nitroaromatics. Quenching efficiency of **9a** is calculated using equation $(I_0 - I)/I_0 \times 100\%$, where I_0 and I denotes the emission intensities before and after the addition of studied nitro-analytes, respectively.

Fig. S40. Emission spectra of **9a** upon incremental addition of 2,4-dinitrophenol (2,4-DNP) solution (1 mM, 200 μ L).

Fig. S41. Emission spectra of **9a** upon incremental addition of 4-nitrophenol (4-NP) solution (1 mM, 200 μ L).

Fig. S42. Emission spectra of **9a** upon incremental addition of 3-nitrophenol (3-NP) solution (1 mM, 200 μ L).

Fig. S43. Emission spectra of **9a** upon incremental addition of 2-nitrophenol (2-NP) solution (1 mM, 200 μ L).

Fig. S44. Emission spectra of **9a** upon incremental addition of 2,4-dinitrotoluene (2,4-DNT) solution (1 mM, 200 μ L).

Fig. S45. Emission spectra of **9a** upon incremental addition of 4-nitrotoluene (4-NT) solution (1 mM, 200 μ L).

Fig. S46. Emission spectra of **9a** upon incremental addition of 2,3-dimethyl-2,3-dinitrobutane (DMDNB) solution (1 mM, 200 μ L).

Fig. S47. The upward bent of the S–V plot for 1 mM TNP solution (0 to 200 μ L).

Fig. S48. Stern-Volmer (S-V) plot for 1 mM TNP solution (0 to 200 μ L). The relative fluorescence intensity (I₀/I)-1 is linear with TNP concentration in the range of 0–0.04 mM.

Fig. S49. Linear region of fluorescence intensity of 9a upon addition of TNP (0 – 200 μ L, 10 μ M stock solution).

Fig. S50. Reproducibility of quenching efficiency of **9a** towards 1 mM TNP solution up to five sensing-recovery cycles.

Fig. S51. PXRD patterns of **9a** obtained after five sensing-recovery cycles for TNP (1 mM), revealing that structural integrity of the framework is maintained.

Fig. S52. HOMO–LUMO energies for bpg linker along with the studied nitroaromatic molecules.

Fig. S53. Fluorescence quenching efficiency of **9a** (1 mg/ 2 mL water) towards studied antibiotics. Quenching efficiency of **9a** is calculated using equation $(I_0 - I)/I_0 \times 100\%$, where I_0 and I denotes the emission intensities before and after the addition of studied antibiotics, respectively.

Fig. S54. Emission spectra of **9a** upon incremental addition of nitrofurantoin (NFT) solution (1 mM, 200 μ L).

Fig. S55. Emission spectra of 9a upon incremental addition of furazolidone (FZD) solution (1 mM, 200 μ L).

Fig. S56. Emission spectra of **9a** upon incremental addition of dimetridazole (DTZ) solution (1 mM, 200 μ L).

Fig. S57. Emission spectra of 9a upon incremental addition of metronidazole (MDZ) solution (1 mM, 200 μ L).

Fig. S58. Emission spectra of 9a upon incremental addition of ornidazole (ODZ) solution (1 mM, 200 μ L).

Fig. S59. Emission spectra of 9a upon incremental addition of sulfamethazine (SMZ) solution (1 mM, 200 μ L).

Fig. S60. Emission spectra of 9a upon incremental addition of sulfadiazine (SDZ) solution (1 mM, 200 μ L).

Fig. S61. Emission spectra of 9a upon incremental addition of thiamphenicol (THI) solution (1 mM, 200 μ L).

Fig. S62. The upward curvature of the S–V plot for 1 mM NZF solution (0 to 200 μ L).

Fig. S63. Stern-Volmer (S-V) plot for 1 mM NZF solution (0 to 200 μ L). The relative fluorescence intensity (I₀/I)-1 is linear with NZF concentration in the range of 0–0.04 mM.

Fig. S64. Linear region of fluorescence intensity of **9a** upon addition of NZF (0 – 200 μ L, 10 μ M stock solution).

Fig. S65. Reproducibility of quenching efficiency of **9a** towards 1 mM NZF solution up to five sensing-recovery cycles.

Fig. S66. PXRD patterns of **9a** obtained after five sensing-recovery cycles for NZF (1 mM), revealing that structural integrity of the framework is maintained.

Fig. S67. Photographs of paper-strips encrusted with **9a** and after addition of NZF solution, under 365 nm UV-light.

Fig. S68. HOMO–LUMO energies for bpg linker along with the studied antibiotic molecules.

Fig. S69. Spectral overlap of the absorption spectrum of **9a** with the absorption spectra of the DCNA, TNP and NZF; revealing competitive energy absorption mechanism in luminescence quenching.

Table S1. Crystal data and refinement parameters for CSMCRI-9

Identification code	CSMCRI-9
Empirical formula	C ₂₇ H ₁₈ Cd _{1.5} N ₂ O _{7.5}
Formula weight	659.07
Temperature/K	300.15
Crystal system	monoclinic
Space group	C2/c
a/Å	13.1243(12)
b/Å	25.790(2)
c/Å	20.1869(18)
α/°	90
β/°	106.870(3)
γ/°	90
Volume/ų	6538.7(10)
Z	8
$\rho_{calc}g/cm^3$	1.3389
µ/mm⁻¹	1.025
F(000)	2599.6
Crystal size/mm ³	$0.34 \times 0.158 \times 0.12$
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.62 to 66.48
Index ranges	-20 ≤ h ≤ 20, -39 ≤ k ≤ 39, -30 ≤ l ≤ 31
Reflections collected	65349
Independent reflections	12443 [R _{int} = 0.0617, R _{sigma} = 0.0483]
Data/restraints/parameters	12443/0/345
Goodness-of-fit on F ²	1.061
Final R indexes [I>=2σ (I)]	$R_1 = 0.0505, wR_2 = 0.1440$
Final R indexes [all data]	R ₁ = 0.0799, wR ₂ = 0.1753
Largest diff. peak/hole / e Å ⁻³	1.77/-1.35

Alert level A

PLAT410_ALERT_2_A Short Intra H...H Contact H010 ..H010 . 1.62 Ang. 2-x,y,3/2-z = 2_756 Check

Alert level B

PLAT213_ALERT_2_B Atom C60 has ADP max/min Ratio 4.2 prolat PLAT213_ALERT_2_B Atom C62 has ADP max/min Ratio 4.3 prolat PLAT220_ALERT_2_B NonSolventResd 1 C Ueq(max) / Ueq(min) Range 7.0 Ratio PLAT241_ALERT_2_B High MainMolUeq as Compared to Neighbors of O1 Check PLAT241_ALERT_2_B High MainMolUeq as Compared to Neighbors of C60 Check PLAT241_ALERT_2_B High MainMolUeq as Compared to Neighbors of C62 Check PLAT242_ALERT_2_B Low MainMolUeq as Compared to Neighbors of Cd1 Check PLAT242_ALERT_2_B Low MainMolUeq as Compared to Neighbors of C00Z Check PLAT242_ALERT_2_B D-H Without Acceptor O7 --H7A. Please Check

Explanation: All these alerts have been generated probably due to some disorder in the structure.

Determination of formula & solvent composition of CSMCRI-9 from PLATON Squeeze and Thermogravimetric analysis data:

From the TGA plot of as-synthesized **CSMCRI-9**, the observed mass loss is 29.61 %

From PLATON Squeeze program void electron count / unit cell comes out to be 165

As the asymmetric unit is electrically neutral and, during the synthesis, DMA and water were used as solvents; so the void space should be occupied by these lattice solvent molecules.

Now, formula of the asymmetric unit excluding all guests is $[Cd_{1.5}(TCA)(bpg)_{0.5}(H_2O)]$, and mass of this asymmetric unit is 658.61

 Table S2. Number of electrons and molecular mass of guest molecules associated with

 CSMCRI-9 for determination of solvent composition and molecular formula

	Dimethyl	Water
	acetamamide (DMA)	
No. of electrons	48	10
mass	87	18

Considering the above mentioned number of electrons, the best possible combination of solvent molecules for **CSMCRI-9** could be $[Cd_{1.5}(TCA)(bpg)_{0.5}(H_2O)]\cdot 3DMA\cdot 2H_2O$

The total number of electrons contributed by lattice solvent molecules will be $[(48\times3) + (10\times2)] = 164$, which is in well agreement with the PLATON result and thus validates the above formula.

The aforementioned combination was further cross-checked from TGA analysis.

Total mass loss due to solvents is [(87×3) + (18×2)] = 297

Therefore total mass of **CSMCRI-9** including all the guests is (658.61+297) = 955.61

So mass loss due to solvents is $[(297/955.61) \times 100] \% = 31.07 \%$, which is in good agreement with that of the TGA result.

Table S3. A comparison for BET surface area and CO_2 adsorption capacity of some well reported MOFs at 1 bar

SI.	MOF	BET Surface	Uptake capacity	Uptake capacity (298	References
1101		Area	(273 K)	К)	
		(m²/g)			
1.	SNU-5	-	38.5wt%	_	Angew.Chem.Int.Ed
			8.75		2008 , <i>47</i> , 7741 –7745
			mmol/g		
2.	PCN-124	1372	28.6wt%	-	Chem. Commun. 2012 ,
			6.5 mmol/g		48, 9995-9997
3.	Cu-NTTA	3931	22.7 wt%	12.86 wt%	ACS Appl. Mater.
			5.15	2.92 mmol/g	Interfaces 2016 , 8,
		2111.2	mmol/g	16.20+0/	31/46-31/56
4.	NUIVI-3a	2111.2	22.19Wt%	16.30 Wt%	ACS Appl. Mater.
			5.04	3.70 mmoi/g	
		E00	10.25wt+9/		20177 - 20105
5.	CPT-0	299	19.25WL%	-	J. AIII. CHEIII.SUC. 2012 , 127 797-797
			4.37		134, 784-787
6	IRMOF-9	1904	7 85 wt%	_	Chem Commun 2014
0.		1001	1.78		50. 3238-3241 &
			mmol/g		J. Am. Chem. Soc. 2006 .
					128, 1304-1315
					,
7.	TTF-4	1172	13.3 wt%	7.54 wt%	Chem. Commun. 2016,
			3.02	1.71 mmol/g	<i>52,</i> 5625-5628
			mmol/g		
8.	[Zn ₅ (µ ₃ –OH) ₂ (DBTA)	1591	12 wt%	7.1 wt%	Inorg. Chem. 2019 , 58,
	₂(H₂O)₄]·		2.72	1.61 mmol/g	15637-15643
	solvents		mmol/g		
9.	JLU-Liu31	1700	6.86 wt%	3.39 wt%	J. Mater. Chem. A. 2016 ,
			1.56	0.75 mmol/g	4, 15081-15087
			mmol/g		
10.	UCY-1	2067	6.16 wt%	4.31 wt%	Inorg. Chem. 2011 , 50,
			1.4 mmol/g	0.98 mmol/g	11297-11299
11.	SNU-70	5290	6.14 wt%	3.49 wt%	Chem.– Eur. J. 2012 , 18,
			1.39	0.79 mmol/g	8673 – 8680
- 10	0111 74	4770	mmol/g		
12.	SNU-/1	1770	7.75 Wt%	4.6 Wt%	Cnem Eur. J. 2012 , 18,
			1./6	1.04 mmol/g	8673 - 8680
12		150			Inora Cham Commun
13.	INI-IVIUF-1	152	1.57 WL%	_	111019. Chem. Commun.
					2013, 104,78-82
1/	<u></u> <u> </u>	1225	10.1 w/t%	_	Chem Commun
1 7.		1223	10.1 W(/)		chemi communi,

			2.29		2015 , <i>51</i> , 12478-
			mmol/g		12481
15.	BIF-9-Li	1523	6.6 wt%	-	J. Am. Chem.Soc. 2009 ,
			1.5 mmol/g		<i>131,</i> 6111-6113
16	rht-MOF-1	2100	17.7 wt%	10.7 wt%	Chem.
			4.02	2.43 mmol/g	Commun. 2015 ,
			mmol/g		<i>51,</i> 9636-9639
17.	CAU-1	1268	24.1 wt%	-	Energy Environ. Sci.
			5.47		2011 , <i>4</i> , 4522-4527
			mmol/g		
18.	{[Zn ₂ (TPOM)(3,7-	267	5.53 wt%	3.69 wt%	ACS Appl. Mater.
	DBTDC) ₂]	&	1.25	0.83 mmol/g	Interfaces 2020 , 12,
	·7H ₂ O·DMA} _n	432	mmol/g	&	11724-11736
	&		&	4.43 wt%	
	{[Cd ₂ (TPOM)(3,7-		7.42 wt%	1.008	
	DBTDC) ₂]		1.68	mmol/g	
	·6H₂O·3DMF} _n		mmol/g		
19.	FJU-44	629.5	16.38 wt%	-	Inorg. Chem. 2019 , 58,
			3.72		7754–7759
			mmol/g		
20.	CSMCRI-9	-	14.69 wt%	7.59 wt%	This work
			3.34	1.72 mmol/g	
			mmol/g		

Table S4. A comparison of catalytic performance of activated **CSMCRI-9** in CO₂ cycloaddition to that of other MOF materials

SI. No.	MOF	Reaction Condition	Yield (%)	Reference
1.	Co-MOF-74	100 °C, 19.7 bar, 4 h	96	Catal. Today 2012, 185. 35-40
2.	Mg-MOF-74	100 °C, 19.7 bar, 4 h	95	<i>Energy Environ. Sci.</i> 2012, <i>5</i> , 6465-6473
3.	Cr-MIL-101	25 °C, 8 bar, 48 h	95	J. Catal. 2013, 298, 179-185
4.	Hf-NU-1000	RT, 1 bar, 56 h	100	J. Am. Chem. Soc. 2014, 136, 15861- 15864
5.	gea-MOF-1	120 °C, 20 bar, 6h	85	Nat. Chem, 2014 , 6, 673– 680
6.	{Cu(Hip)₂(Bpy)}n (CHB)	120 °C, 12bar, 6h	56	Green Chem, 2014 , 16, 1607– 1616
7.	Ni-TCPE2	100 °C, 9.9 bar, 12 h	86.2	J. Am. Chem. Soc. 2015, 137, 15066-

				15069
8.	Zn-NTTA	100 °C, 10bar, 8h	98.2	ACS Appl. Mater.
				Interfaces 2016 , 8,
				31746-31756
9.	UiO-67-IL	90 °C, 1 bar, 12 h	98	Inorg. Chem,
				2017 , <i>56</i> , 2337–
				2344
10.	ZnMOF-1- NH ₂	80 °C, 8bar, 8h	88	Dalton Trans., 2018 ,
				<i>47,</i> 8041–8051
11.	${[LnL(H_2O)_2] \cdot H_2O}_n$	70 °C, 1bar, 12h	89.7	Cryst. Growth Des.
				2018 , <i>18</i> , 2956–2963
12.	MOF-892	80 °C, 1 bar, 16h	82	ACS Appl. Mater.
				Interfaces 2018 , 10,
				733-744
13.	NH ₂ -MIL-101(AI)	120 °C, 18 bar, 6h	96	Dalton Trans. 2018, 47,
				418-428
14.	InDCPN-Cl	80 °C, 1 bar, 24 h	71	Chem. Mater. 2019 ,
				<i>31,</i> 1084–1091
15.	[{Co(TCPB) _{0.5} (H ₂ O)}·	RT, 1bar, 24 h	94	Cryst. Growth Des.
	DMF] _n			2019, <i>19</i> , 2010-2018
16.	{[Co(OBA)(L)] <i>x</i> G} _n	60 °C, 1 bar, 12 h	99	J. Mater. Chem. A,
				2019 , 7, 2884-2894
17.	{[Zn ₂ (3-	40 °C, 1 bar, 24h	55	Inorg. Chem. 2020 , 59,
	tpom)(L) ₂]·2H ₂ O} _n			4273-4281
18.	{[Cu-	RT, 1 bar, 24 h	68	ACS Appl. Mater.
	(MTABA)(H ₂ O)]·4H ₂ O			Interfaces 2020 , 12,
	·2EtOH·DMF} _n			37137-37146
19.	CoMOF-2	40 °C, 1 bar, 12 h	99	Appl. Cat. A, 2020 ,
				<i>590,</i> 117375
20.	CSMCRI-9	65°C, 10 bar, 6 h	99.9	This work

Table S5. Calculation of standard deviation of fluorescence intensity and limit of detection for **9a** towards DCNA

Blank Readings (9a)	Fluorescence Intensity(CPS)
Reading 1	15377871
Reading 2	15354689
Reading 3	15321964
Reading 4	15288782
Reading 5	15227191
Standard Deviation (σ)	59097.84
Slope from Graph (<i>m</i>)	1.858 x 10 ⁶ μM ⁻¹
Detection limit $(3\sigma/m)$	95 nM

Limit of Detection (LOD)	62.4 ppb
--------------------------	----------

Table S6. Calculation of standard deviation of fluorescence intensity and limit of detection for **9a** towards TNP

Blank Readings (9a)	Fluorescence Intensity(CPS)
Reading 1	15377871
Reading 2	15354689
Reading 3	15321964
Reading 4	15288782
Reading 5	15227191
Standard Deviation (σ)	59097.84
Slope from Graph (<i>m</i>)	2.679 x 10 ⁶ μM ⁻¹
Detection limit $(3\sigma/m)$	66 nM
Limit of Detection (LOD)	43.4 ppb

Table S7. Calculation of standard deviation of fluorescence intensity and limit of detection

 for **9a** towards NZF

Blank Readings (9a)	Fluorescence Intensity(CPS)
Reading 1	15377871
Reading 2	15354689
Reading 3	15321964
Reading 4	15288782
Reading 5	15227191
Standard Deviation (σ)	59097.84
Slope from Graph (<i>m</i>)	956324.05 μM ⁻¹
Detection limit $(3\sigma/m)$	0.18 μΜ
Limit of Detection (LOD)	118.3 ppb

Detailed calculations of limit of detection (LOD) for 9a.

Limit of detection (LOD) = $3\sigma/k$, where σ is the standard deviation of five consecutive blank measurements of emission intensity of **9a** at regular time intervals, k = slope of the curve of decrease in fluorescence intensity of **9a** versus volume of added analyte.

Now, the five consecutive emission intensities (in CPS unit) at regular time intervals are

15377871, 15354689, 15321964, 15288782 and 15227191

Standard deviation (σ) = square root of { $\Sigma(x_i-\mu)^2/(N-1)$ }, where x_i are the each value of emission intensity, μ is the mean of emission intensities and N is the number of intensity values.

Xi	μ	x _i -μ	(x _i -μ) ²	Σ(x _i -μ) ²
15377871	15314099.4	63771.6	4066816966.56	1.397×10 ¹⁰
15354689		40589.6	1647515628.16	
15321964		7864.6	61851933.16	
15288782		-25317.4	640940742.76	
15227191		-86908.4	7553069990.56	

Table S8. Calculation of standard deviation of emission intensities for 9a

Here N = 5

So, σ = square root of {(1.397×10¹⁰)/(5-1)} = 59097.84

For DCNA, slope of the graph from the linear region of fluorescence intensity of **9a** versus concentration of DCNA (k) = $1.858 \times 10^6 \mu M^{-1}$

So, the LOD value for DCNA = (3×59097.84)/ 1.858×10⁶ μ M = 95421.7×10⁻⁶ μ M = 95×10³×10⁻⁶×10⁻⁶M = 95×10⁻⁹ M = 95 nM

i.e. LOD = 95 nM×mass of asymmetric unit of **CSMCRI-9** = 95×658.61 ppb = 62.4 ppb

Similarly, for TNP, slope of the graph from the linear region of fluorescence intensity of **9a**versus concentration of TNP (k) = $2.679 \times 10^6 \,\mu\text{M}^{-1}$

So, the LOD value for TNP = $(3 \times 59097.84)/2.679 \times 10^{6} \mu M = 66178.9 \times 10^{-6} \mu M = 66 \times 10^{3} \times 10^{-6} M = 66 \times 10^{-9} M = 66 \text{ nM}$

i.e. LOD = 66 nM× mass of asymmetric unit of CSMCRI-9 = 66×658.61 ppb = 43.4 ppb

For NZF, slope of the graph from the linear region of fluorescence intensity of **9a**versus concentration of NZF (k) =956324.05 μ M⁻¹

So, the LOD value for NZF = $(3 \times 59097.84)/956324.05\mu$ M = 0.18 μ M.

i.e. LOD = 0.18μ M × mass of asymmetric unit of **CSMCRI-9** = $0.18 \times 658.61 \text{ ppb}$ = 118.3 ppb.

Table S9. A comparison of quenching constant, their LOD values, of various luminescentMOFs used for detection of DCNA

SI. No.	LMOF/ Coordination Polymer	Quenching constant (M ⁻¹)	Limit of Detection (LOD)	Medium used	Ref.
1.	{Zn ₄ (TPOM)(1,4-NDC) ₄ } _n	2.74 × 10 ⁴	0.28 ppm	water	ACS Appl. Mater. Interfaces 2018 , 10, 42406–42416
2.	[Zn ₂ (bpdc) ₂ (BPyTPE)]	_	0.13 ppm	DCM	Chem. Commun. 2017 , 53, 9975 9978
3.	[Zn ₂ (L) ₂ (TPA)]. 2H ₂ O	2.36 × 10 ⁴	0.39 ppm	Methanol	New J. Chem. 2019 , 43, 23532361
4.	[Zn₃(DDB)(DPE)]·H₂O	3.3×10 ⁴	166 ppb	water	Dalton Trans., 2019 , 48, 16776– 16785
5.	[Cd ₃ (CBCD) ₂ (DMA) ₄ (H ₂ O) ₂]·10DMA	4.47×10^4	145 ppb	DMA	Dalton Trans. 2019 , 48, 2683–2691
6.	[Mg ₂ (APDA) ₂ (H ₂ O) ₃]·5DMA·5H ₂ O	7.50 × 10 ⁴	150 ppb	DMF	Inorg. Chem. 2018 , 57, 13330–13340
7.	[Ag(CIP ⁻)]	5.2 × 10 ⁴	105 ppb	DMF	Dalton Trans. 2019 , 48, 10892–10900
8.	CSMCRI-9	4.96 × 10 ⁴	95 nM 62.4 ppb	water	This work

Table S10. A comparison of quenching constant, their LOD values, of various luminescent MOFs used for detection of TNP

SI. No.	LMOF/Coordination polymer	Quenching constant (M ⁻¹)	Limit of Detection (LOD)	Medium used	Ref.
1.	bio- MOF-1 [Zn ₈ (ad) ₄ (BPDC) ₆ O·2 Me ₂ NH ₂]·G (G=DMF and water)	4.6×10^{4}	12.9 nM (2.9 ppb)	water	Chem. –Eur. J., 2015 , 21, 965 – 969
2.	Ur-MOF [Zn₄(DMF) (Ur)₂(NDC)₄]	10.83×10^{4}	7.1 μM (1.63 ppm)	water	Cryst. Growth Des., 2015 , 15, 4627–4634
3.	$Zn_2(H_2L)_2(Bpy)_2(H_2O)_3 \cdot H_2O$	1.36 × 10 ⁴	0.49 μM	water	Cryst. Growth Des. 2017 , 17, 3170-3177
4.	{[Cd ₂ (tdz) ₂ (4,4'-bpy) ₂]·6.5H ₂ O} _n	4.86 × 10 ⁴	1.4 ppm	water	Dalton Trans., 2019 , 48, 2388- 2398
5.	[Tb ₂ (L ₉) ₃ (H ₂ O) ₂].21H ₂ O	9.2 × 10 ³	67 ppb	water	J. Mater. Chem. A, 2017 , 5, 1952-

					1956
6.	[Cd(L4)(L5)]n	2.68×10^4	0.27 μM (62 ppb)	water	Dalton Trans., 2016 , 45, 7881- 7892
7.	{[Zn ₂ (TPOM)(NH ₂ -BDC) ₂].4H ₂ O} _n	4.6×10^{4}	0.98 µM	DMF	J. Mater. Chem. A, 2016 , 4, 15494–15500
8.	BUT-12 [Zr ₆ O ₄ (OH) ₈ (H ₂ O) ₄ (CTTA) _{8/3}]	3.1 × 10⁵	23 ppb	water	J. Am. Chem. Soc., 2016 , 138, 6204–6216
9.	$\{ [Cd_4(L_6)_2(2-amino-4,4-bipyridine)_3(H_2O)_2](8DMF)(8H_2O)\}_n$	3.89×10^{4}	1.98 ppm	Ethanol	Inorg. Chem. 2016 , 55, 1741- 1747
10.	[(CH ₃) ₂ NH ₂] ₃ [Zn ₄ Na(L ₃) ₃].4CH ₃ OH.2DMF	3.2 × 10 ⁴	5 μΜ	DMF	J. Mater Chem. A 2015 , 3, 7224-7228
11.	eq:massessessessessessessessessessessessesse	7.66 × 10 ⁴	0.81 μM	Acetonitrile	Inorg. Chem. 2019 , 58, 9749- 9755
12.	[Tb(TCBA)(H ₂ O) ₂] ₂ ·DMF	4.69 × 10 ⁶	1.64 ppb	Ethanol	Inorg. Chem. 2019 , 58, 8198-8207
13.	{[Cd(ATAIA)].4H2O}n	1.59× 10 ⁷	0.94 nM	Water	ACS Appl. Mater. Interfaces 2018 , 10, 25360–25371
14.	[Tb(1,3,5-BTC)] _n	3.4× 10 ⁴	81 nM	Ethanol	J. Mater. Chem. A, 2013 , 1, 8745– 8752
15.	CSMCRI-9	2.46 × 10 ⁴	66 nM 43.4 ppb	water	This work

Table S11. A comparison of quenching constant, their LOD values, of various luminescentMOFs used for detection of NZF

SI. No.	LMOF/ Coordination Polymer	Quenching constant (M ⁻¹)	Limit of Detection (LOD)	Medium used	Ref.
1.	[Mg ₂ (APDA) ₂ (H ₂ O) ₃]. 5DMA.5H ₂ O	9.00×10^{4}	108 ppb	DMF	Inorg. Chem. 2018 , 57, 13330–13340
2.	[Cd ₃ (CBCD) ₂ (DMA) ₄ (H ₂ O) ₂]·10DMA	9.72 × 10 ⁴	85 ppb	DMA	Dalton Trans. 2019 , 48, 2683– 2691
3.	BUT-12 BUT-13	1.1 × 10 ⁵ 7.5 × 10 ⁴	58 ppb 90 ppb	water	J. Am. Chem. Soc. 2016 , 138, 6204–6216

4.	{[Eu ₂ (BCA) ₃ (H ₂ O)(D	2.2 × 10 ⁴	0.16 μM	water	Chem.–Eur. J. 2017 , 23, 10293 –
	$MF)_3]\cdot 0.5DMF\cdot H_2O_n$				10300
5.	${[Zn_2(Py_2TTz)_2(BDC)_2]}$	1.726×10^4	0.91 μM	water	Cryst. Growth Des. 2018 , 18,
	$\cdot 2(DMF) \cdot 0.5(H_2O)$				7173-7182
6.	TMPyPE@bio-MOF-	4.48×10^{4}	0.11 ppm	water	J. Mater. Chem. C, 2019 , 7,
	1				83838388
7.	{[Tb(TATMA)(H ₂ O)·2	3.0×10^{4}	NA	water	Inorg. Chem. 2019 , 58,
	H ₂ O} _n				7746-7753
8.	[(Zn ₄ O) ₂ (PDDA) ₆ (H ₂ O	6.08×10^{4}	NA	DMF	Cryst. Growth Des. 2019 , 19,
)2]·10DMF				5228-5236
9.	[NaCd ₂ (L)(BDC) _{2.5}].9	5.06×10^{4}	162 ppb	DMF	J. Mater. Chem. A, 2017 , 5,
	H ₂ O				15797–15807
10.	CSMCRI-9	4.81×10^{4}	0.18 μM	water	This work
			118.3 ppb		

Table S12. HOMO and LUMO energy levels of different pesticides calculated by density functional theory (DFT) at B3LYP/6-311++G** accuracy level, using Gaussian 09 package of programs

Analytes	HOMO (eV)	LUMO (eV)	Energy gap (eV)
DCNA	-6.67	-3.01	3.66
TCHDE	-6.47	-1.33	5.14
DCP	-6.64	-1.15	5.49
HCL	-7.12	-1.17	5.95
IPT	-6.04	-0.56	5.48
BHP	-6.08	-0.70	5.38
DUN	-6.34	-1.06	5.28
bpg	-7.47	-1.55	5.92

Table S13. HOMO and LUMO energy levels of different nitroanalytes calculated by density functional theory (DFT) at B3LYP/6-311++G** accuracy level, using Gaussian 09 package of programs

Analytes	HOMO (eV)	LUMO (eV)	Energy gap (eV)
TNP	-8.61	-4.30	4.31
2,4-DNP	-8.05	-3.77	4.28
4-NP	-7.34	-2.75	4.59
3-NP	-7.20	-2.90	4.30
2-NP	-7.22	-3.18	4.04
2,4-DNT	-8.42	-3.39	5.03
4-NT	-7.70	-2.79	4.91
DMDNB	-8.65	-2.83	5.82
bpg	-7.47	-1.55	5.92

Table S14. HOMO and LUMO energy levels of different antibiotics calculated by density functional theory (DFT) at B3LYP/6-311++G** accuracy level, using Gaussian 09 package of programs

Analytes	HOMO (eV)	LUMO (eV)	Energy gap (eV)
NZF	-6.79	-3.14	3.65
NFT	-7.37	-3.66	3.71
FZD	-7.15	-3.49	3.66
DTZ	-7.30	-2.76	4.54
MDZ	-7.34	-2.85	4.49
ODZ	-7.32	-2.89	4.43
SMZ	-6.53	-1.17	5.36
SDZ	-6.59	-1.46	5.13
THI	-7.70	-2.00	5.70
bpg	-7.47	-1.55	5.92

References

- 1. *SAINT*+, version 6.02; Bruker AXS: Madison, WI, 1999.
- 2. G. M. Sheldrick, *SADABS*, Empirical Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1997.
- 3. XPREP, version 5.1; Siemens Industrial Automation Inc.: Madison, WI, 1995.
- 4. G. M. Sheldrick, *SHELXTL* Reference Manual: version 5.1; Bruker AXS: Madison, WI, 1997.
- 5. G. M. Sheldrick, *SHELXL-2014*/7; University of Göttingen: Göttingen, Germany.
- 6. A. L. Spek, *PLATON*; The University of Utrecht: Utrecht, The Netherlands, 1999.
- 7. http://www.topos.ssu.samara.ru; V. A. Blatov, IUCrCompCommNewsletter 2006, 7, 4.
- 8. S. Nandi, D. Chakraborty, R. Vaidhyanathan, Permanently Porous Single Molecule H-Bonded Organic Framework for Selective CO₂ Capture, *Chem. Commun.* 2016, **52**, 7249-7252.
- Y. Yuan, J. T. Li, X. D. Sun, G. H. Li, Y. L. Liu, G. Verma and S. Q. Ma, Indium-organic frameworks based on dual secondary building units featuring halogen-decorated channels for highly effective CO₂ fixation, *Chem. Mater.*, 2019, **31**, 1084–1091.