Near Infrared Emitting Molecular Rotor Based on Merocyanine for Probing the Viscosity of Cellular Lipid Environments

Supporting Information

Tarushyam Mukherjee, Ramon J. Martinez-Sanchez, Kyong T. Fam, Sophie Bou, Ludovic Richert, Delphine Garnier, Yves Mély, Sriram Kanvah, Andrey S. Klymchenko, Mayeul Collot^{*}

Synthesis

2-bromocyclohex-1-ene-1-carbaldehyde. To a mixture of DMF (12.9 mL, 167.9 mmol, 3.3 eq) and CHCl₃ (80 mL) was added dropwise, under stirring and at 0 °C PBr₃ (15.4 mL, 152 mmol, 3 eq). After addition the solution was allowed to stir for 1 hour. To the solution was added cyclohexanone (5.27 mL, 50.9 mmol, 1 eq) and the mixture was allowed to stir for 17 hours at room temperature. The mixture was neutralized by slow addition of water (300 mL), followed by solid NaHCO₃ until a pH of 7-8 was obtained. The product was washed with water and brine and was extracted with DCM. The organic phase was dried over MgSO₄, filtered and evaporated. The crude was purified by column chromatography on silica gel (Heptane/EtOAc: 9/1) to obtain 2.654 g of **2-bromocyclohex-1-ene-1-carbaldehyde** (28%) as a yellow oil that was directly involved in the next step.

To a solution of 4-(Diethylamino)salicylaldehyde (1.375 g, 7.05 mmol, 1 eq) in DMF (30 mL) were added **2-bromocyclohex-1-ene-1-carbaldehyde** (2.654 g, 14.11 mmol, 2 eq) and Cs_2CO_3 (6.92 g, 21.17 mmol, 3 eq). The mixture was allowed to stir for 48 hours at room temperature. To the crude was then added Et_2O and the remaining Cs_2CO_3 was filtered off before the solvents were evaporated. The product was washed with water and brine and was extracted with DCM. The organic phase was dried over MgSO₄, filtered and evaporated. The crude was purified by column chromatography on silica gel (Heptane/DCM/EtOAc: 7/2/1) to obtain 383 mg of DDXC (19%) as a deep orange solid. ¹H NMR (in CDCl₃) was in accordance with the literature.¹

Typical procedure

MC-CEA. To a solution of DDXC (25 mg, 0.088 mmol, 1 eq) in Ac₂O (4 mL) was added ethyl cyanoacetate (27 mg, 0.241 mmol, 2.7 eq). The mixture was stirred for 2 hours at room temperature. The solvents were evaporated and the product was washed with water, then HCl 1 M and neutralized with saturated NaHCO₃ and was extracted with DCM. The organic phase was dried over MgSO₄, filtered and evaporated. The crude was purified by column chromatography on silica gel (DCM/EtOAc: 95/5) to obtain 28 mg of MC-CEA (84%) as a dark violet solid after lyophilization. Rf=0.83 (DCM/EtOAc: 95:5). ¹H-NMR (400 MHz, CDCl₃): δ 8.67 (s, 1H, HAr), 7.05 (d, *J* = 8.5 Hz, 1H, HAr), 6.77 (s, 1H, HAr), 6.49-6.46 (m, 2H, HAr), 4.34 (q, *J* = 7.1 Hz, 2H, CH₂ OEt), 3.42 (q, *J* = 8.3 Hz, 4H, CH₂

NEt), 2.97 (t, J = 6.1 Hz, 2H, CH₂), 2.56 (t, J = 5.7 Hz, 2H, CH₂), 1.81 (q, J = 6.1 Hz, 2H, CH₂), 1.39 (t, J = 7.1 Hz, 3H, CH₃ OEt), 1.23 (t, J = 8.3 Hz, 6H, 2 CH₃ NEt). ¹³C-NMR (126 MHz, CDCl₃): δ 166.14, 159.72, 155.12, 150.09, 147.26, 130.52, 127.76, 123.24, 119.24, 110.73, 108.73, 108.31, 97.03, 89.78, 61.35, 44.64, 29.31, 25.52, 21.00, 14.39, 12.63. HRMS (ES⁺), calcd for C₂₃H₂₇N₂O₃ [M+H]⁺ 379.2016, found 379.2001.

Determination of the configuration of MC-CEA by NMR studies.

Structure of MC-CEA

Atom numbering	¹ H	¹³ C
1	6.93 ppm, d, J _{нн} = ,1Н	108.8 ppm
2	6.96 ppm, dd, J _{нн} = , 1Н	127.8 ppm
3	-	110.7 ppm
4	_	155.1 ppm
5	6.37 ppm, br s, 1H	97.0 ppm
6	_	150.1 ppm
7	6.67 ppm, t, J _{HH} = , 1H	130.5 ppm
8	_	123.3 ppm
9	_	159.8 ppm
11	2.47 ppm, t, J _{нн} = , 2Н	29.3 ppm
12	1.72 ppm, quint., J _{нн} = ,	21.0 ppm
	2H	
13	2.88 ppm, t, J _{HH} = , 2H	25.6 ppm
14	_	108.2 ppm
16, 18	3.33 ppm, q, J _{нн} = , 4Н	44.6 ppm, 2C
17, 19	1.13 ppm, t, J _{нн} = , 6Н	12.6 ppm, 2C
20	8.58 ppm, s, 1H	147.3 ppm
21	-	89.8 ppm
22	_	166.2 ppm
25	4.25 ppm, q, J _{нн} = , 2Н	61.4 ppm
26	1.30 ppm, t, J _{нн} = , 3Н	14.4 ppm
27	-	119.3 ppm

Assignment of proton and carbon signals of MC-CEA in CDCl₃, room temperature and Larmor frequency of 126 MHz.

126 MHz

No NOE crosspeak was detected between the OEt moiety of the ester function (H_{25}/H_{26}) and the protons of the CH_2 -groups of the ring (H_{12}/H_{13}) . This is in line with a structure in which the alkene proton H_{20} is in *cis* of the ester group. However, one may argue that the absence of a crosspeak in a spectrum is not a definite proof, since many other parameters could also lead to this result (unfavorable dynamics or conformation, unsuitable parameters for this transition, smaller intensity NOE...).

Carbon-13 spectra are generally measured using proton decoupling methods such as CPD (composite pulse decoupling), which lead to singlets in absence of other I=1/2 nuclei. Although the spectra are easier to interpret that way (less lines, more favourable S/N ratio), some information about the coupling constants get lost.

The values of the ${}^{3}J_{CH}$ coupling constants between H₂₀ and the carbons attached to C₂₁ strongly depend upon the geometry of the double bond. A *cis* configuration in respect to said vinylic proton should lead to smaller ${}^{3}J_{CH}$ coupling constants than a *trans* configuration.^{2, 3, 4}

A ¹³C spectrum (without proton decoupling) was recorded in $CDCl_3$ on a Bruker 500 MHz Avance III spectrometer by modifying our usual proton-decoupled *zgpg30* experiment to obtain a gated sequence (d1 = 5 s, PLW12 = 0W).

The δ = 119.3 ppm singlet corresponding to the nitrile carbon C₂₇ splits into a doublet (${}^{3}J_{CH}$ = 12.92 Hz) while C₂₂ becomes a doublet of triplet (${}^{3}J_{CH}$ = 6.60 Hz and 3.22 Hz) due to H₂₀ and H₂₅ respectively. Additionally, coupling constants > 12 Hz are only reported in case of *trans* configurations^[1,2,3]. This confirms that the nitrile moiety stands in *trans* position in respect to the vinylic proton while the ester is positioned in *cis*. The conformation of the double bond was thus confirmed to be *E*.

Zoom on the carbonyl signal of the ¹³C NMR spectrum (δ = 166.2 ppm) of MC-CEA, in CDCl₃, at 126 MHz, room temperature

MC-2CN. Rf=0.32 (DCM/EtOAc 9/1). Conditions for column chromatography (DCM/Heptane) to obtain 18 mg of C1 (77%) as a dark blue solid after lyophilization. ¹H-NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H, HAr), 7.12 (d, *J* = 8.8 Hz, 1H, HAr), 6.92 (s, 1H, HAr), 6.56 (dd, *J* = 8.7, 2.1 Hz, 1H, HAr), 6.50 (d, *J* = 2.2 Hz, 1H, HAr), 3.47 (q, *J* = 7.1 Hz, 4H, CH₂ NEt), 2.88 (t, *J* = 6.0 Hz, 2H, CH₂), 2.60-2.57 (m, 2H, CH₂), 1.82 (t, *J* = 6.1 Hz, 2H, CH₂), 1.27 (t, *J* = 7.1 Hz, 6H, CH₃ NEt). ¹³C NMR (126 MHz, Chloroform-d) δ 159.89, 155.12, 149.36, 132.56 , 128.17 , 118.81 , 116.69 , 109.59 , 108.99 , 96.87 , 44.98 , 28.95 , 24.71 , 20.74 , 12.56. HRMS (ES⁺), calcd for C₂₁H₂₂N₃O [M+H]⁺ 332.1757, found 332.1744.

¹³C NMR spectrum of MC-2CN (CDCl₃)

MC-Mel. Rf=0.37 (DCM/EtOAc 9/1). Conditions for column chromatography: 100% DCM to 8/2 DCM/EtOAc, yield=79%. Dark green solid after lyophilization. ¹H-NMR (400 MHz, CDCl₃): δ 8.86 (s, 1H, HAr), 7.20-7.17 (m, 1H, HAr), 7.09 (s, 1H, HAr), 6.63-6.60 (m, 2H, HAr), 3.47 (q, *J* = 7.1 Hz, 4H, CH₂ NEt), 2.68 (t, *J* = 5.8 Hz, 2H, CH₂), 2.60

(t, *J* = 6.0 Hz, 2H, CH₂), 1.79 (m, 8H, CH₂, 2 CH₃), 1.26 (t, *J* = 7.1 Hz, 6H, CH₃ NEt). ¹³C-NMR (126 MHz, CDCl₃): δ 164.13, 155.91, 151.05, 148.50, 134.77, 134.71, 128.39, 123.38, 112.78, 111.74, 110.41, 102.66, 99.29, 96.87, 44.83, 29.38, 29.09, 26.95, 21.77, 12.62. HRMS (ES⁺), calcd for C₂₄H₂₈NO₅ [M+H]⁺ 410.1962, found 410.1946.

¹³C NMR spectrum of MC-Mel (CDCl₃)

MC-Ind. Rf=0.34 (Heptane/EtOAc 6:4). Conditions for column chromatography: 9/1 to 6/4 Heptane:EtOAc, yield=58%. Dark green powder after lyophilization. ¹H-NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H, HAr), 7.82 (td, *J* = 7.8, 4.2 Hz, 2H, HAr), 7.66-7.64 (m, 2H, HAr), 7.12 (d, *J* = 8.8 Hz, 1H, HAr), 6.93 (s, 1H, HAr), 6.61 (d, *J* = 2.2 Hz, 1H, HAr), 6.55 (dd, *J* = 8.8, 2.5 Hz, 1H, HAr), 3.46 (q, *J* = 7.1 Hz, 4H, CH₂ NEt), 3.17 (t, *J* = 6.0 Hz, 2H, CH₂), 2.66 (dd, *J* = 5.8, 5.6 Hz, 2H, CH₂), 1.84 (t, *J* = 6.0 Hz, 2H, CH₂), 1.26 (t, *J* = 7.1 Hz, 6H, CH₃ NEt). ¹³C-NMR (126 MHz, CDCl₃): δ 192.78, 189.83, 162.88, 155.69, 150.56, 142.30, 140.01, 139.40, 133.51, 133.11, 132.44, 127.98, 124.19, 121.58, 121.51, 120.09, 113.38, 111.60, 109.55, 97.05, 44.77, 29.77, 28.91, 21.56, 12.67. HRMS (ES⁺), calcd for C₂₇H₂₆NO₃ [M+H]⁺ 412.1907, found 412.1889.

¹³C NMR spectrum of MC-Ind (CDCl₃)

HRMS spectrum of MC-Ind

MC-TB. Rf=0.14 (heptane/EtOAc 8/2). Conditions for column chromatography: 9/1 to 6/4 heptane/EtOAc, yield=39%. Dark green powder after lyophilization. ¹H-NMR (400 MHz, CDCl₃): δ 8.84 (s, 1H, HAr), 7.28 (d, *J* = 9.5 Hz, 2H, HAr), 6.71 (dd, *J* = 8.9, 2.5 Hz, 1H, HAr), 6.66 (d, *J* = 2.3 Hz, 1H, HAr), 4.56-4.52 (m, 4H, 2 NCH₂ NBu), 3.49 (q, *J*

= 7.1 Hz, 4H, CH₂ NEt), 2.74 (t, J = 6.0 Hz, 2H, CH₂), 2.66 (d, J = 5.9 Hz, 2H, CH₂), 1.79 (m, 6H, CH₂, 2 CH₂ nBu), 1.44 (sextet, J = 7.6 Hz, 4H, CH₂), 1.27 (t, J = 7.1 Hz, 6H, CH₃ NEt), 0.99 (t, J = 7.4 Hz, 6H, CH₃ nBu). ¹³C-NMR (126 MHz, CDCl₃): δ 178.58, 165.68, 161.00, 156.56, 151.71, 148.66, 137.26, 128.85, 123.72, 116.94, 112.71, 111.59, 104.59, 96.57, 47.95, 45.01, 31.88, 29.73, 29.70, 29.35, 22.70, 21.94, 20.32, 13.93, 12.59. HRMS (ES⁺), calcd for C₃₀H₄₀N₃O₃S [M+H]⁺ 522.2785, found 522.2762.

¹H NMR spectrum of MC-TB (CDCl₃)

- Synthesis of MC-TB-Mito

1. was synthesized according to a described procedure.⁵

OEt

OEt

он

HN

3. To a solution of DMF (5 mL), POCl₃ (1.8 mL, 19.24 mmol, 3 eq) was added dropwise at 0°C under stirred, and was allowed to react for 10 min under argon atmosphere. To the solution was added 2 (1.611 g, 6.414 mmol, 1 eq) previously solubilized in 5 mL DMF and the mixture was heated up to 65°C and stirred for 2 hours. Without evaporating the solvents, water was slowly added (200 mL), and then it was neutralized with NaHCO₃. The product was washed with water and brine and extracted with DCM. The organic phase was dried over MgSO₄, filtered and evaporated. The crude was purified by column chromatography on silica gel (Heptane/EtOAc 9/1 to 7/3) to obtain 1.351 g of 3 (75%) as a clear oil. Rf=0.38 (Heptane/EtOAc 7/3). ¹H-NMR (400 MHz, CDCl₃): δ 11.61 (s, 1H, CHO), 9.50 (d, J = 0.5 Hz, 1H, HAr), 7.29-7.27 (m, 1H, HAr), 6.31 (dd, J = 8.9, 2.5 Hz, 1H, HAr), 6.10 (d, J = 2.4 Hz, 1H, HAr), 4.17 (q, J = 7.1 Hz, 2H, CH₂ OEt), 3.46-3.36 (m, 4H, CH₂ NEt), 2.37 (t, J = 7.0 Hz, 2H, CH₂), 1.99-1.91 (m, 2H, CH₂), 1.28 (t, J = 7.1 Hz, 3H, CH₃ OEt), 1.21 (t, J = 7.1 Hz, 3H, CH₃ NEt). ¹³C-NMR (126 MHz, CDCl₃): δ 192.02, 172.78, 164.32, 154.34, 135.38, 111.58, 104.51, 96.93, 60.62, 49.55, 45.30, 31.18, 22.56, 14.21, 12.31. HRMS (ES⁺), calcd for C₁₅H₂₂NO₄ [M+H]⁺ 280.1543, found

280.1550.

HRMS spectrum of 3

4. To a solution of **3** (1.351 g, 4.84 mmol, 1 eq) in DMF (15 mL) was added 2-bromocyclohex-1-ene-1-carbaldehyde (1.82 g, 9.68 mmol, 2 eq) and Cs₂CO₃ (4.73 g, 14.52, 3 eq). The mixture was stirred for 24 hours at room temperature before the solvents were evaporated. The product was washed with water and brine and extracted with DCM. The organic phase was dried over MgSO₄, filtered and evaporated. The

crude was purified by column chromatography on silica gel (DCM/EtOAc 9/1 to 7/3) to obtain 258 mg of **4** (14%) as a bright orange solid. Rf=0.57 (DCM/EtOAc 8/2). ¹H-NMR (400 MHz, CDCl₃): δ 10.22 (s, 1H, CHO), 7.01 (d, *J* = 8.6 Hz, 1H, HAr), 6.66 (s, 1H, HAr), 6.46 (dd, *J* = 8.6, 2.5 Hz, 1H, HAr), 6.40 (d, *J* = 2.3 Hz, 1H, HAr), 4.15 (q, *J* = 7.1 Hz, 2H, CH₂ OEt), 3.43-3.33 (m, 4H, CH₂ NEt), 2.54 (td, *J* = 6.2, 1.0 Hz, 2H, CH₂), 2.43 (t, *J* = 6.1 Hz, 2H, CH₂), 2.37 (t, *J* = 7.1 Hz, 2H, CH₂), 1.93 (t, *J* = 7.6 Hz, 2H, CH₂), 1.70 (t, *J* = 6.1 Hz, 2H, CH₂), 1.27 (t, *J* = 7.1 Hz, 3H, CH₃ OEt), 1.19 (t, *J* = 7.1 Hz, 3H, CH₃ NEt). ¹³C-NMR (126 MHz, CDCl₃): δ 187.36, 173.16, 162.40, 154.12, 149.74, 128.39, 127.65, 123.32, 111.34, 110.56, 108.06, 97.44, 60.63, 49.50, 45.17, 31.32, 29.78, 22.61, 21.54, 20.60, 14.18, 12.21. HRMS (ES⁺), calcd for C₂₂H₂₈NO₄ [M+H]⁺ 370.2013, found 370.2003.

N OH S. N O SC O SC O W di

5. To a solution of **4** (258 mg, 0.7 mmol, 1 eq) in methanol/water (5:3, 8 mL) was added NaOH (168 mg, 4.2 mmol. 6 eq). The mixture was stirred for 30 minutes at room temperature. Without evaporating the solvents, the product was washed with citric acid 10% and extracted with DCM. The solvent was evaporated and the crude was used directly in the next step. 100 mg (42%) as an orange/red solid. Rf=0.73

(DCM/MeOH 95/5). HRMS (ES⁺), calcd for $C_{20}H_{24}NO_4$ [M+H]⁺ 342.1700, found 342.1699.

HRMS spectra of 5

6. To a solution of **5** (100 mg, 0.29 mmol, 1 eq) in DMF (5 mL) was added (3-ammoniopropyl) triphenylphosphonium di bromide⁷ (180 mg, 0.377 mmol, 1.3 eq), HATU (133 mg, 0.350 mmol, 1.2 eq) and DIEA (0.5 mL, 2.94 mmol, 10 eq). The mixture was allowed to stir for 5 hours at room temperature before the solvents were evaporated. The product was washed with water

and brine and extracted with DCM. The organic phase was dried over MgSO₄, filtered and evaporated. The crude was purified by column chromatography on silica gel (DCM/MeOH 9/1 to 8/2) to obtain 30 mg of **6** (14%) as orange oil. Rf=0.76 (DCM/MeOH 8/2). ¹H-NMR (400 MHz, CDCl₃): δ 10.24 (s, 1H, CHO), 7.78 (dd, *J* = 7.2, 2.2 Hz, 4H), 7.71-7.61 (m, 15H), 7.01 (d, *J* = 8.6 Hz, 1H), 6.63 (s, 1H), 6.49-6.44 (m,

2H), 3.47-3.37 (m, 5H), 3.33-3.29 (m, 2H), 3.25-3.17 (m, 3H), 2.54-2.52 (m, 2H), 2.42 (t, J = 6.0 Hz, 2H), 2.31 (t, J = 7.2 Hz, 2H), 1.91-1.87 (m, 5H), 1.71-1.68 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H). HRMS (ES⁺), calcd for C₄₁H₄₄BrN₂O₃P [M]⁺ 643.3084, found 643.3073.

¹H NMR spectrum of **6**

HRMS spectrum of 6

MC-TB-Mito. To a solution of 6 (29 mg, 0.040 mmol) in acetic anhydride (4 mL) was added 1,3-Di-*N*-butyl-2-thiobarbituric acid (24 mg, 0.094 mmol, 2.3 eq) and sodium acetate (9 mg, 0,109 mmol, 2.7 eq). The mixture was allowed to stir at room temperature for 20 min before being evaporated. To the mixture was neutralized by slow addition of of water (300 mL), followed by

solid NaHCO₃ until a pH of 7-8 was obtained. The product was extracted with DCM and washed with water and brine. The organic phase was dried over MgSO₄, filtered and evaporated. The crude was purified by column chromatography on silica gel (DCM/MeOH: 9/1) to obtain 7 mg of **MC-TB-Mito** (17%) as a dark green solid after lyophilization.

Figure S1. Normalized absorption (A, C, E, G, I) and emission (B, D, F, H, J) spectra of the merocyanines in various solvents with increasing polarity. Concentration was 5 μ M. Excitation was 560 nm expect for MC-TB (640 nm).

Solvent	λ_{Abs} max	3	FWHM _{abs}	$\lambda_{\scriptscriptstyle Em}max$	$\rm FWHM_{\rm Em}$	Stoke Shift	φ
Joivent	(nm)	(M ⁻¹ .cm ⁻¹)	(nm)	(nm)	(nm)	(nm)	Ŧ
toluene	544	32,600	115	675	138	131	0.007
dioxane	543	34,000	116	673	131	130	0.008
ACN	555	39,600	119	646	92	91	0.03
DMSO	567	36,600	121	659	89	92	0.08
MeOH	591	37,500	120	648	83	57	0.07

Table S1. Photophysical properties of MC-CEA in various solvents

Table S2. Photophysical properties of MC-2CN in various solvents

Solvent	λ_{Abs} max	3	FWHM _{abs}	λ_{Em} max		Stoke Shift	φ
Solvent	(nm)	(M⁻¹.cm⁻¹)	(nm)	(nm)	(nm)	(nm)	т
toluene	555	42,800	108	681	130	126	0.004
dioxane	553	35,800	109	633	111	80	0.006
ACN	564	42,800	111	648	83	84	0.03
DMSO	619	47,600	101	662	77	43	0.07
MeOH	609	57,800	109	646	76	37	0.03

Table S3. Photophysical properties of MC-Mel in various solvents

Solvent	λ _{Abs} max (nm)	€ (M ⁻¹ .cm ⁻¹)	FWHM _{abs} (nm)	λ _{εm} max (nm)	FWHM _{Em} (nm)	Stoke Shift (nm)	ф
toluene	574	40,000	106	657	102	83	0.003
dioxane	575	47,400	119	659	99	84	0.003
ACN	629	66,200	90	668	68	39	0.008
DMSO	641	61,400	84	682	64	41	0.03
MeOH	635	86,400	57	664	54	29	0.05

Table S4. Photophysical properties of MC-Ind in various solvents

Solvent	$\lambda_{\text{Abs}}\text{max}$	3	FWHM _{abs}	$\lambda_{\scriptscriptstyle Em}max$	${\rm FWHM}_{\rm Em}$	Stoke Shift	φ
Joivent	(nm)	(M ⁻¹ .cm ⁻¹)	(nm)	(nm)	(nm)	(nm)	
toluene	600	48,800	119	684	104	84	0.006
dioxane	601	54,600	122	686	97	85	0.005
ACN	664	66,200	100	700	54	36	0.01
DMSO	679	80,000	91	714	54	35	0.05
MeOH	674	106,600	52	699	42	25	0.08

Table S5. Photophysical properties of MC-TB in various solvents

Solvent	$\lambda_{\text{Abs}}\text{max}$	3	FWHM _{abs}	$\lambda_{\scriptscriptstyle Em}max$		Stoke Shift	ቀ
	(nm)	(M ⁻¹ .cm ⁻¹)	(nm)	(nm)	(nm)	(nm)	т
toluene	668	74,600	97	701	90	33	0.005
dioxane	667	74,400	94	700	85	33	0.005
ACN	673	104,200	54	705	57	32	0.001
DMSO	684	101,000	56	716	53	32	0.003
MeOH	672	106,000	59	698	49	26	0.01

Figure S3. Normalized absorption and excitation spectra of the merocyanines in toluene (top line) and MeOH (bottom line). Concentration was 5 μ M.

Figure S4. Difference between MCs with open and cyclic substituents illustrated by representative examples: MC-CEA (in blue) and MC-TB (in red). Absorption (A) and emission (B) spectra in MeOH depicting the various vibration bands at the steady state and the excited state respectively. Black arrows depict the possible rotation around the σ bounds.

Figure S5. Absorption (A) and emission (B) spectra of MC-CEA in various solutions of Glycerol/MeOH mixture. (C) Correlation of the fluorescence quantum yield with the viscosity of the medium according to the displayed Förster–Hoffmann equation. Concentration of the dye was 1 μ M. Temperature was 20°C.

Figure S6. Absorption (A) and emission (B) spectra of MC-2CN in various solutions of Glycerol/MeOH mixture. (C) Correlation of the fluorescence quantum yield with the viscosity of the medium according to the displayed Förster–Hoffmann equation. Concentration of the dye was 5 μ M. Temperature was 20°C.

Figure S7. Absorption (A) and emission (B) spectra of MC-Mel in various solutions of Glycerol /MeOH mixture. (C) Correlation of the fluorescence quantum yield with the viscosity of the medium according to the displayed Förster–Hoffmann equation. Concentration of the dye was 5 μ M. Temperature was 20°C.

Figure S8. Absorption (A) and emission (B) spectra of MC-Ind in various solutions of Glycerol/MeOH mixture. (C) Correlation of the fluorescence quantum yield with the viscosity of the medium according to the displayed Förster–Hoffmann equation. Concentration of the dye was 5 μ M. Temperature was 20°C.

Figure S9. Absorption (A) and emission (B) spectra of MC-TB in various solutions of Glycerol/MeOH mixture. (C) Correlation of the fluorescence quantum yield with the viscosity of the medium according to the displayed Förster–Hoffmann equation. Concentration of the dye was 5 μ M. Temperature was 20°C.

Figure S10. Assessment of MCs's cytotoxicity at various concentrations using the MTT test.

Figure S11. (A) Absorption and (B) emission spectra of MC-TB in PBS (black lines) and vitamine E acetate, VEA (red lines).

% glycerol	Mean Tau (ns)	τ1 (ns)	% τ1	t2 (ns)	% τ2	_
0	0.16	0.16	1.00	-	-	
20	0.26	0.26	1.00	-	-	
40	0.42	1.02	0.01	0.42	0.99	
60	0.76	0.69	0.90	1.41	0.10	
80	1.25	0.91	0.65	1.88	0.35	
100	1.97	1.65	0.69	2.68	0.31	
Rhod800 (ref)	1.98	1.98	1.00	-	-	

Table S6. Measured lifetime values of MCTB in various Glycerol/Methanol mixtures.

Figure S12. Assessment of MC-TB-Mito's cytotoxicity at various concentrations using the MTT test.

Figure S13. Laser scanning confocal images of HeLa cells incubated with MC-TB-Mito (1 μ M), displaying heterogeneous intensity within the cell population. The white stars indicate the cells displaying higher signals. Scale bar is 15 μ m.

Figure S14. FLIM imaging analysis. (A) Mean fluorescence intensity and (B) mean lifetime of cells in both + an - nystatin conditions, showing that the lifetime of non-fluorescent cells could not be measured due to low fluorescence intensity of cells during FLIM imaging. 'ns' on the graph signifies non-significant difference.

References

- (1) Tong, Z.-X.; Liu, W.; Huang, H.; Chen, H.-Z.; Liu, X.-J.; Kuang, Y.-Q.; Jiang, J.-H. A Ratiometric Fluorescent pH Probe Based on Keto–enol Tautomerization for Imaging of Living Cells in Extreme Acidity. *Analyst* 2017, 142 (20), 3906–3912. https://doi.org/10.1039/C7AN01103B.
- (2) Duddeck, H. E. Pretsch, P. Bühlmann, C. Affolter. Structure Determination of Organic compounds—Tables of Spectra Data. Springer, Berlin, 2000. 421 Pp. plus CD-ROM. Price £ 40.39, DM 79.00. ISBN 3 540 67815 8. *Magn. Reson. Chem.* 2002, 40 (3), 247–247. https://doi.org/10.1002/mrc.960.
- (3) Vogeli, U.; Philipsborn, W. von. Vicinal C,H Spin Coupling in Substituted Alkenes. Stereochemical Significance and Structural Effects. *Org. Magn. Reson.* 1975, 7 (12), 617–627. https://doi.org/10.1002/mrc.1270071213.
- Bie, M. J. A. de. Carbon-13 NMR Spectroscopy. Hans-Otto Kalinowski, Stefan Berger and Siegmar Braun. John Wiley & Sons, Ltd (1988); doi.org/10.1002/recl.19881071110.
- (5) Synthesis of New Benzo[a]phenoxazinium Probes Possessing Carboxylic Ester, Hydroxyl and Amino Functional Groups: Photophysical Studies in Dry Ethanol and Conjugation with CdTe Quantum Dots. *Dyes Pigments* **2014**, *110*, 203–213. https://doi.org/10.1016/j.dyepig.2014.04.006.
- Minoshima, M.; Kikuta, J.; Omori, Y.; Seno, S.; Suehara, R.; Maeda, H.; Matsuda, H.; Ishii, M.; Kikuchi, K. In Vivo Multicolor Imaging with Fluorescent Probes Revealed the Dynamics and Function of Osteoclast Proton Pumps. *ACS Cent. Sci.* 2019, 5 (6), 1059–1066. https://doi.org/10.1021/acscentsci.9b00220.

(7) Kuang, Y.; Sechi, M.; Nurra, S.; Ljungman, M.; Neamati, N. Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma. *J. Med. Chem.* **2018**, *61* (4), 1576–1594. https://doi.org/10.1021/acs.jmedchem.7b01463.