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Water stability of Zr-MOG-2 

Varies of aqueous solution with a wide range of pH (1-12) is formulated 

with sulfuric acid (H2SO4) and sodium hydroxide (NaOH) for water 

stability testing. As evidenced by the powder XRD of Fig. S1, Zr-MOG-

2 remained intact after soaking for 24 h in an aqueous solution of pH=1-

10. The XRD diffraction peak of the Zr-MOG-2 xerogel changed 

significantly after the pH＞10. This may be due to the fact that the strong 

alkaline atmosphere changed the charged properties of the ARG and 

affected the interaction between the central metal ion and the ligand (The 

isoelectric point of arginine is pH=10.76). In addition, the fluorescence 

emission spectrum of the Zr-MOG-2 did not change significantly after 

treatment with different pH atmospheres (Fig. S2). It is implies that the Zr-

MOG-2 has stable photoluminescence properties in a wide pH range. The 

LMCT effect is not destroyed by the strong alkaline environment. 

Therefore, Zr-MOG-2 has excellent photoluminescence stability in water, 

making it a promising new sensing material in water-related systems. 
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Fig. S1 The PXRD pattern of Zr-MOG-2 xerogel after being immersed in 

aqueous solutions of different pH for 24 h.  
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Fig. S2 Fluorescence intensity of Zr-MOG-2 xerogel in different pH 

aqueous solution. 
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Fig. S3 O1s XPS of BTC (a), Zr-MOG-1 (b) and Zr-MOG-2 (c). Zr3d 

XPS of Zr-MOG-1 and Zr-MOG-2 (d). 
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Fig. S4 Rheological curves of Zr-MOG-1 and Zr-MOG-2. 
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Swelling kinetics measurement and analysis 

Accurately weigh a certain amount of xerogel sample and place it in 

deionized water. The water on the surface of the gel is removed at regular 

intervals. The mass of the gel after removing the surface moisture is 

recorded until the recorded mass is constant, indicating that the swelling 

has reached equilibrium. The result is shown in Fig. S5. The swelling 

degree (Qt) of the gel is calculated according to the following formula: 

                                                         𝑸𝒕 =
𝒎𝒕−𝒎𝒅

𝒎𝒅
                                                S1 

Where mt is the weight of the gel when the time period is t or the mass is 

constant, md is the quality of xerogel without swelling.  

The swelling degree of Zr-MOG-1 and Zr-MOG-2 at equilibrium is 

estimated to be 1.814 and 2.106, respectively. The results indicate that the 

introduction of ARG increases the hydrophilicity of the gel so that Zr-

MOG-2 xerogel can absorb water and swell more quickly. 

 

 

 

Fig. S5 Swelling behavior of Zr-MOG-1 and Zr-MOG-2 in aqueous 

solution at 25 °C. 
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Determine and analysis the moisture content of the gel 

 

The Zr-MOG-1 and Zr-MOG-2 hydrogel samples were taken out and the 

surface moisture was removed. Weigh its quality. The sample is then placed 

in the freeze dryer and freeze-dried until constant weight. The mass of the 

xerogel obtained is weighed to estimate the moisture content. The moisture 

content (mass fraction) in the sample is calculated by the following formula: 

                                              𝐖 =
𝒎−𝒎𝟎

𝒎
× 𝟏𝟎𝟎%                                       S2 

Where m is the mass of the hydrogel sample, m0 is the mass of the xerogel 

after the sample is lyophilized. The moisture content of Zr-MOG-1 and 

Zr-MOG-2 at equilibrium is estimated to be 23.78% and 34.39%, 

respectively. The result may be attributed to the factor that the introduction 

of the ligand ARG form a certain interaction with water and improve the 

water retention of the gel. 
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Fig. S6 TGA curves of Zr-MOG-1 xerogel and Zr-MOG-2 xerogel. 
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Fig. S7 Fluorescence emission spectra of Zr-MOG-1 and Zr-MOG-1 with 

ARG at 370 nm. 

 

 



11 

 

 

 

Fig. S8 Fluorescence emission spectra of BTC and ARG at 370 nm. 
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Fig. S9 Fluorescence lifetime spectra of Zr-MOG-1 and Zr-MOG-2. 
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Fig. S10 Local fluorescence spectrum when Zr-MOG-2 coexists with 

different single ion. 
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Figure S11 The effect of soaking time (a) and temperature (b) on the 

fluorescence quenching efficiency of Zr-MOG-2. 
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Fig. S12 Selectively optimized local spectra of Zr-MOG-2 coexist with 

CrO4
2- in the presence of other ions. 
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Fig. S13 Fluorescence emission spectra of Zr-MOG-2 in the mixed ions 

solution with or without CrO4
2- (0.1mM). Mixed ions: Cd2+, Na+, Ce3+, 

Nd3+, Er3+, F-, Ac-, SO4
2-, HSO4

-, CO3
2-, HCO3

-, H2PO4
-, HPO4

2- and PO4
3- 

(0.1mM each) 
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Fig. S14 Langmuir model fitting for the adsorption of CrO4
2- by Zr-MOG-

2 xerogel. The Langmuir model is as follows: 

                                             
Ce

Qe
=

Ce

qm
+

1

qmKL

  

Where Qe is the amount of CrO4
2− adsorbed on the adsorbent at equilibrium; 

Ce represents the equilibrium concentration of CrO4
2−; qm is the maximum 

adsorption capacity; KL is the Langmuir constant.  
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Fig. S15 The nonlinear fit curve of Zr-MOG-2 xerogel in a wide 

concentration of CrO4
2- aqueous solution. 
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Fig. S16 Effects of (a) Stirring rate and (b) Temperature on the adsorption 

capacity of Zr-MOG-2 xerogel adsorpt CrO4
2−. 
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Fig. S17 UV-vis spectra of the simulated water samples with or without 

CrO4
2- before and after adsorption with Zr-MOG-2 xerogel. 
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Fig. S18 UV-vis spectra of the simulated water samples before and after 

adsorption the removal process with Zr-MOG-2 xerogel. 
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Fig. S19 SEM (a), TEM (b) and EDX (c) images of Zr-MOG-2 xerogel 

after adsorption in simulated water samples with CrO4
2-. 
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Fig. S20 UV-vis spectra of Zr-MOG-2 xerogel, Zr-MOG-2 xerogel after 

adsorption in simulated water samples  and Zr-MOG-2 xerogel after 

adsorption in simulated water samples with CrO4
2-. 

 

 

 

 

 

 

 

 



24 

 

 

Fig. S21 XRD pattern of Zr-MOG-2 xerogel after adsorption of CrO4
2-. 
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Fig. S22 FTIR spectrum of Zr-MOG-2 xerogel after adsorption of CrO4
2-. 
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Table S1. Elemental analyses for Zr-MOG-1 and Zr-MOG-2. 

Materials 
Element content (%) 

C H N 

Zr-MOG-1 39.87 5.351 0.775 

Zr-MOG-2 29.22 4.285 5.299 
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Table S2 The assay compared with reference for detection of CrO4
2-. 

Materials used 
Analytical 

method 

Linear range 

(mM) 
LOD (ppb) Reference 

{[Zn(L)]•CH3CN

}n  
Fluorescence  0-1 4.37×104 1 

{[Cd(CIP)2(H2O)2

]n•2.5H2O} 
Fluorescence 0-6.5×102 4.6×105 2 

[Zn3(DDB)(DPE)

]•H2O 
Fluorescence 

0-0.1 

 
75 3 

[Zn2(TPOM)(ND

C)2]•3.5H2O 
Fluorescence 0–1.6×10-3 5.13×102 4 

[Zn2(TPOM)(NH2

-BDC)2]•4H2O 
Fluorescence 0-0.1 5.58×102 5 

{[Cd(bimb)Cl2] • 

1.5H2 O}n 
Fluorescence 0-0.03 2.17×103 6 

{[Cd1.5(bbib)2.5 

Cl2] • 3H2O • NO 

3}n 

Fluorescence 0-0.035 3.30×103 6 

USTC-5 Fluorescence 0-1 2.21×103 7 

[[Zn3(μ4-cpboda) 

2(μ2-H2O) 

2(DMF)2(H2O)2 ] 

• 3DMF 

·3HCOOH•3H2 

O]n 

Fluorescence 0-0.055 600 8 

1β-DMAc Fluorescence 0-0.14 4.44×102 9 

Zr-MOG-2 
Fluorescence 

"turn off" 

0.5×10-3- 

10.2×10-3 
5.2 This work 
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Table S3 Fluorescence lifetime of Zr-MOG-2 treated with different 

concentrations of CrO4
2-. 

Analyzed material Fluorescence lifetime (τ, s) 

Zr-MOG-2 2.23×10-10 

Zr-MOG-2+CrO4
2- (6.7 μM) 1.04×10-10 

Zr-MOG-2+CrO4
2- (67 μM) 9.75×10-11 

Zr-MOG-2+CrO4
2- (670 μM) 9.62×10-11 

 

Resonance energy transfer efficiency is calculated from following equation: 

Q = (1 −
𝛕

𝛕0
) × 100%                  S3 

where τ is the fluorescence lifetime of the Zr-MOG-2 after treatment with 

different concentrations of CrO4
2-, τ0 is the fluorescence lifetime of pure 

Zr-MOG-2. 
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Table S4 The adsorption compared with reference of CrO4
2- 

Adsorbent Qm (mg/g) Reference 

Magnetic biochar 77.5 10 

{[Ag8(tz)6](NO3)2•6H2O}n 37 11 

[Zn2(TIPA)2(OH)(NO3)3]•5H
2O 

133.8 12 

UiO-66-me-PyDC 50.1 13 

[Co2(btec)-(bipy)(DMF)2]n 30.68 14 

BiOBr 32.5 15 

Zr-MOG-2 xerogel 90 This work 
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