Supporting Information

Aza-BODIPY encapsulated polymeric nanoparticles as effective nanodelivery system for photodynamic cancer treatment

Jongjit Treekoon^a, Kantapat Chansaenpak^b*, Gamolwan Tumcharern^b, Zurain Syahira Zalman Zain^c, Hong Boon Lee^d, Chin Siang Kue^c*, Anyanee Kamkaew^a*

^a School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

^b National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand 12120

^c Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia

^d School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia

Page

¹ H and ¹³ C Nuclear Magnetic resonance (NMR) spectra	2
Mass spectrometry results	4
Absorption and emission of AZB-I in water	4
Intensity, number, and volume-based DLS distribution results	5
Stability test and In vitro dye-releasing profile of AZB-I@PEG-b-PCL NPs	6
Singlet oxygen generation of AZB-I@PEG-b-PCL NPs	8
Colocalization study of AZB-I@PEG-b-PCL NPs with Lyso- and MitoTrackers	8
Biocompatibility of AZB-I@PEG-b-PCL with normal cells	9
Body weight changes of AZB-I@PEG-b-PCL at 160 mg/kg	10
Table S2. The formulations and the obtained DLS sizes of AZB-I@PEG-b-PCL compations those of other aza-BODIPY-based nanoparticles	
References	

1. ¹H and ¹³C Nuclear Magnetic resonance (NMR) spectra

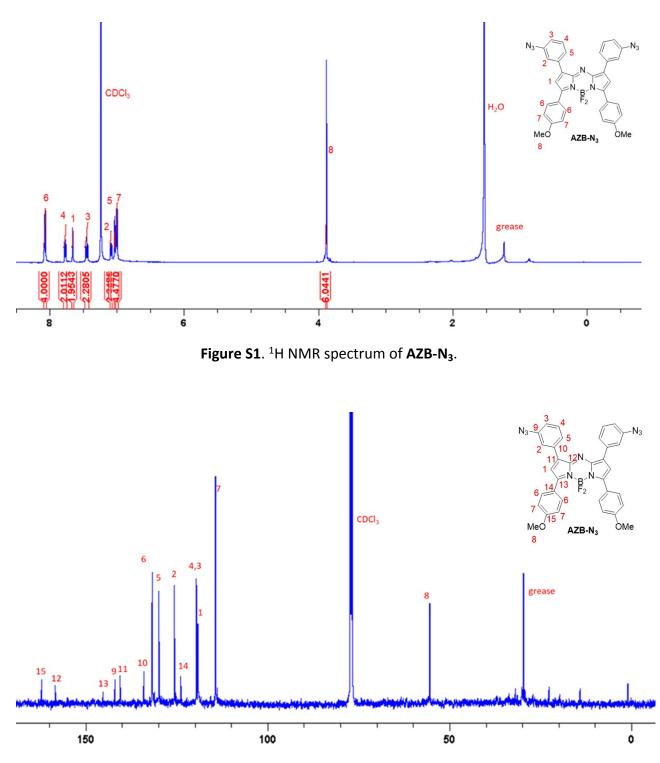
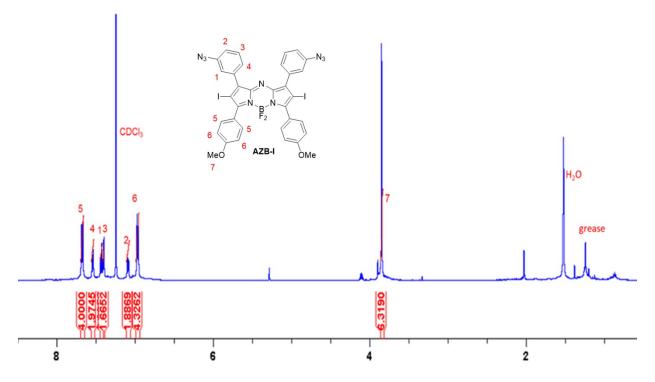



Figure S2. ¹³C NMR spectrum of AZB-N₃.

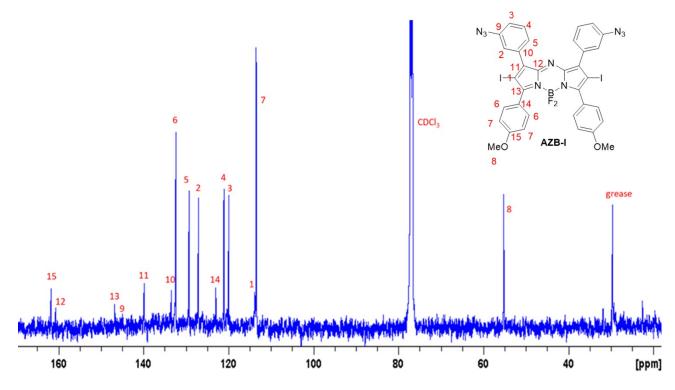


Figure S4. ¹³C NMR spectrum of AZB-I.

2. Mass spectrometry results

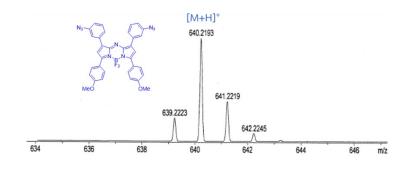


Figure S5. Mass spectrum of AZB-N₃.

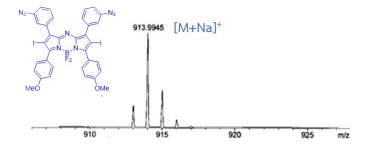


Figure S6. Mass spectrum of AZB-I.

3. Absorption and emission of AZB-I in water

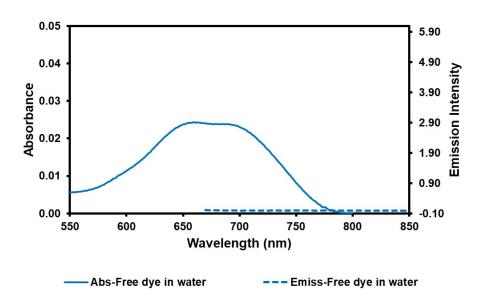
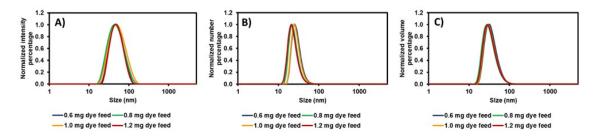
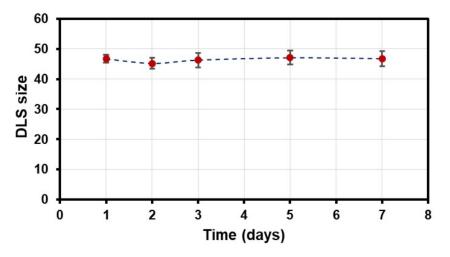


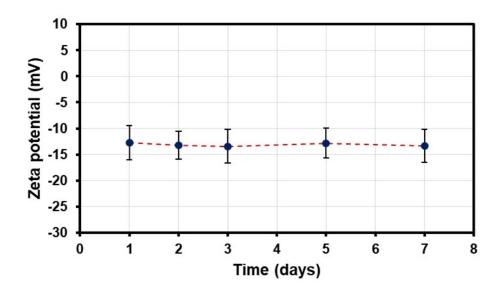
Figure S7. Absorption and emission of free dye AZB-I in water.

4. Intensity, number, and volume-based DLS distribution results

Table S1. Average intensity, number, and volume-based DLS sizes of **AZB-I@PEG-***b***-PCL** prepared from different amount of dye feed.

Entry ^a	Amount of	Average	Average	Average	PDI
	dye feed	Intensity-	Number-	Volume-	(n = 3)
	(mg)	based DLS	based DLS	based DLS	
		size (nm)	size (nm)	size (nm)	
		(n = 3)	(n = 3)	(n = 3)	
1	0.6	47.2	29.7	37.3	0.144
		(± 2.0)	(± 1.7)	(± 1.5)	(± 0.014)
2	0.8	44.6	25.2	33.0	0.166
		(± 4.0)	(± 0.5)	(± 0.5)	(± 0.016)
3	1.0	46.7	28.3	35.8	0.170
		(± 1.3)	(± 0.6)	(± 0.6)	(± 0.010)
4	1.2	48.2	25.3	33.6	0.173
		(± 1.9)	(± 1.6)	(± 1.0)	(± 0.011)


Figure S8. Dynamic Light Scattering (DLS) intensity-based (A), number-based (B), and volume-based size distributions.

5. Stability test and *In vitro* dye-releasing profile of AZB-I@PEG-*b*-PCL NPs

Stability test

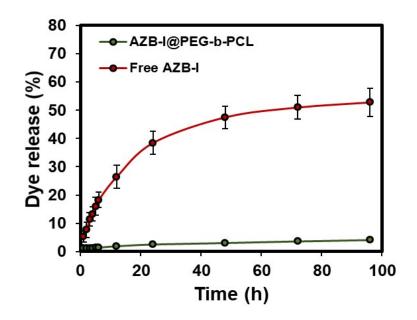


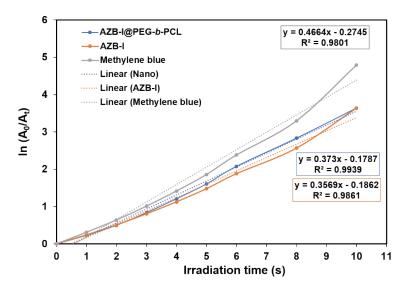
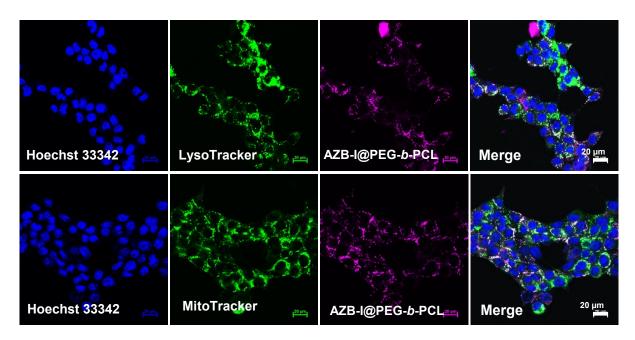
Figure S9. The DLS size evolution of **AZB-I@PEG-***b***-PCL** NPs (1 mg dye feed) incubated in physiological conditions (phosphate buffer solution 0.1M, pH 7.4, 37 °C) for 7 days.

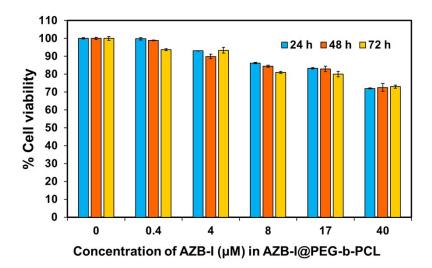
Figure S10. The zeta potential evolution of **AZB-I@PEG-***b***-PCL** NPs (1 mg dye feed) incubated in physiological conditions (phosphate buffer solution 0.1M, pH 7.4, 37 °C) for 7 days.

6. In vitro dye-releasing profile

Figure S11. *In vitro* **AZB-I** release profile from **AZB-I@PEG-***b***-PCL** NPs. Free **AZB-I** release was used as control. Error bars represents mean ± standard deviation (n= 3).

7. Singlet oxygen generation of AZB-I@PEG-b-PCL NPs


Figure S12. The first order kinetic plot of DPBF vs irradiation times.

8. Colocalization study of AZB-I@PEG-b-PCL NPs with Lyso- and MitoTrackers

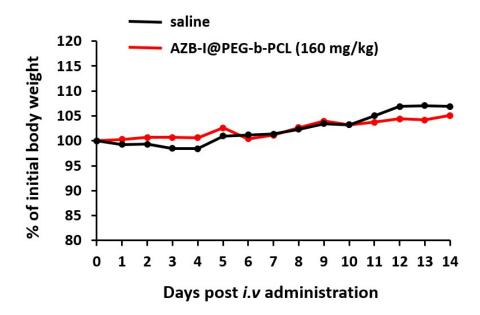


Figure S13. Colocalization study of AZB-I@PEG-b-PCL with LysoTracker (Top row) and MitoTracker (Bottom row).

9. Biocompatibility of AZB-I@PEG-b-PCL with normal cells

Figure S14. Relative cell viability of HEK-293 cells after treated various concentration of **AZB-**I within **AZB-I@PEG-b-PCL** NPs and the cells were kept in the dark for 24, 48 and 72 h (data are presented as means \pm SD (n = 3). **10.** Mice body weight changes of **AZB-I@PEG-b-PCL** at 160 mg/kg

Figure S15. Mice body weight changes of **AZB-I@PEG-***b***-PCL** at 160 mg/kg (red) and control saline (black) post single i.v administration.

Table S2. The formulations and the obtained DLS sizes of **AZB-I@PEG-***b***-PCL** compared with those of other aza-BODIPY-based nanoparticles

Entry	Structure	Polymer used	λ _{Abs} / λ _{Emiss} (nm)	Homogenization	Average DLS size (nm)	Reference
1		PEG- <i>b</i> -PLA	860 /925	Sonication (180 W)	138.4±17.3	[1]
2	MeO HeO 	PEG	652 / 730	Sonication (200 W)	81.7 ± 7.5	[2]
3	Meg MeO Br N Br N Br N Br CMe Br Me Br Me CMe Br Me CMe Br Me CMe CMe	PEG	690 / 775	Sonication (180 W)	68.1 ± 9.7	[3]
4	C ₀ H ₁ O C ₀ H ₁ O	DSPE-mPEG 5000	678 / 712	Sonication (220 W)	142	[4]
5		DSPE-mPEG 5000	580 / 720	Sonication (175 W)	66.3 ± 6.6	[5]
6	$\begin{matrix} N_3 \\ I \\ K_1 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 $	PEG-b-PCL	693/ 730	Stirring	44.6 (± 4.0) – 48.2 (± 1.9)	This work

* PEG-co-PLA = polyethylene glycol-*b*- polylactic acid, PEG = polyethylene glycol, DSPE-mPEG5000 = 1,2-distearoyl-sn-glycero-3-phospho ethanolamine-N-[methoxy(polyethylene glycol)-5000]

References

Tian J, Zhou J, Shen Z, Ding L, Yu J-S, Ju H. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chemical Science. 2015;6(10):5969-77.
Chen D, Tang Q, Zou J, Yang X, Huang W, Zhang Q, et al. pH-Responsive PEG–Doxorubicin-Encapsulated Aza-BODIPY Nanotheranostic Agent for Imaging-Guided Synergistic Cancer Therapy. Advanced Healthcare Materials. 2018;7(7):1701272.

[3] Chen D, Zhang J, Tang Y, Huang X, Shao J, Si W, et al. A tumor-mitochondria dual targeted aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy. Journal of Materials Chemistry B. 2018;6(27):4522-30.

[4] Zhao M, Xu Y, Xie M, Zou L, Wang Z, Liu S, et al. Halogenated Aza-BODIPY for Imaging-Guided Synergistic Photodynamic and Photothermal Tumor Therapy. Advanced Healthcare Materials. 2018;7(18):1800606.

[5] Xiao W, Wang P, Ou C, Huang X, Tang Y, Wu M, et al. 2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy. Biomaterials. 2018;183:1-9.