Tailored structuring of functionalized silsesquioxanes in an one-step approach

Robert Winkler,** Stéphane Pellet-Rostaing* and Guilhem Arrachart **

ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.

Material synthesis	Page S2
Figure S1. FT-IR spectra of the sample P5, ν =1800-1600 cm ⁻¹ .	Page S3
Figure S2. Typical FT-IR spectrum of the residual material after the TGA analysis.	Page S4
Figure S3. TEM images of samples: a) and b) P1-TA- Δ and c) P1-TB- Δ .	Page S5
Figure S4. WAXS patterns of materials P5-HB and P5-TB.	Page S6
Table S1. Fit parameters for the qualitative fit P5-TB/- Δ .	Page S6

Material synthesis

The silica hybrid material (SHM) synthesis was adapted from literature.¹

In a typical synthesis, 1.5 mmoles of organosilane precursor PX were added to 50 mL of water and the pH was adjusted to basic (NH₄OH, pH 9) or acidic (HCl, pH 1.5) conditions. After stirring for two weeks in a sealed flask, the obtained precipitate was dried by freeze drying and washed with 60 mL (3x20 mL) EtOH/water (1/1) followed by 60 mL (3x20 mL) of EtOH and analysed. Afterwards, the materials were heated to 130 °C for 24 h to promote the condensation and washed in the same order to remove possible degradation products.

¹ Winkler, R.; Pellet-Rostaing, S.; Arrachart, G. Selective Extraction of REEs Thanks to One-Pot Silica Hybrid Materials. *Appl. Sci.* **2020**, *10* (21), 7558.

Figure S1. FT-IR spectra of the sample P5, $v = 1800-1600 \text{ cm}^{-1}$.

Figure S2. Typical FT-IR spectrum of the residual material after the TGA analysis. The peaks indicate crystalline silica structures like e.g. β -cristobalite.

Figure S3. TEM images of samples: a) and b) P1-TA- Δ and c) P1-TB- $\Delta.$

The scale is represented on the lower right.

Figure S4. WAXS patterns of materials P5-HB and P5-TB.

Parameter	Fresh material	After thermal treatment	Description
$ \rho_{CH2} $	0.73E-10 cm ⁻²	0.73E-10 cm ⁻²	SLD of the alkyl chains
$ \rho_{SiOx} $	1.23E-10 cm ⁻²	1.6E-10 cm ⁻²	SLD of the Si-O-Si network
$ ho_{HG}$	1.04E-10 cm ⁻²	0.85E-10 cm ⁻²	SLD of the headgroup
σ_{SiOx}	0.06 nm	0.06 nm	FWHM of the Si-O-Si network
σ_{HG}	1.3 nm	1.44 nm	FWHM of the headgroup
d	5.95 nm	6.7 nm	Separation distance

	noromotors fo	r + h a a u a litati	v_{0} fit DF TD / A
Table ST. FIL	Darameters 10	r the qualitati	ve IIL PS-16/-0.