Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Palladium-catalyzed double carbonylation of propargyl amines and aryl halides to access 1-aroyl-3-aryl-1,5-dihydro-2*H*-pyrrol-2-ones

Jun Ying,^a Zhengjie Le,^a Zhi-Peng Bao,^a and Xiao-Feng Wu^{*,a,b}

^a Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People's Republic

of China. Email: xiao-feng.wu@catalysis.de

^b Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany.

Table of Contents

1. General Information	S2
2. Preparation of TFBen	S2
3. Procedure for the Synthesis of Propargyl Amines	S2
3.1. General procedure for the synthesis of propargyl amines (1a, 1aa-1am)	S2
3.2. General procedure for the synthesis of propargylamines (1ap and 1aq)	S3
3.2.1. General procedure for the synthesis of propargyl alcohols	S3
3.2.2. General procedure for the synthesis of phthalimides	S3
3.2.3. General procedure for the cleavage of phthalimides	S4
4. Characterization of TFBen and Substrates	S4
5. General Procedure for Palladium-Catalyzed Double Carbonylation of Propargyl Amin	nes,
Aryl Halides, and TFBen	S10
6. Characterization of Products	S11
7. Characterization of Intermediate 2g'	S28
8. References	S28
9. Spectra of TFBen and Substrates	S29
10. Spectra of Products	S46
11. Spectra of Intermediate 2g'	580

1. General Information

Unless otherwise noted, all reactions were performed under nitrogen protection unless otherwise noted. All reagents were obtained from commercial sources and used as received without further purification. Column chromatography was performed on silica gel (200–300 mesh) using petroleum ether (bp 60–90 °C) and ethyl acetate as eluent. Reactions were followed with TLC (0.25 mm silica gel 20 cm×20 cm). Visualization was accomplished with UV light. ¹H and ¹³C NMR spectra were taken on 400 MHz instruments, and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ as solvent.

2. Preparation of TFBen

Formic acid (8.4 mL, 222.8 mmol, 5.0 equiv.) was added to acetic anhydride (16.8 mL, 178.2 mmol, 4.0 equiv) at rt. The mixture was stirred at 60 °C for 1 h and cooled to rt. The resulting solution was poured into a flask containing 1,3,5-trihydroxybenzene (5.62 g, 44.6 mmol, 1.0 equiv) and NaOAc (1.83 g, 22.3 mmol, 0.5 equiv). The mixture was stirred for 4 h in a water bath and then diluted with toluene (100 mL), washed with H_2O (50 mL) twice. Keep the organic phase in fridge (2-8 °C) ovemight. Then filtered and dried in vacuo to afford the desired product benzene-1,3,5-triyl triformate (TFBen) (5.1 g, 55%) as a white solid.

3. Procedure for the Synthesis of Propargyl Amines

3.1 General procedure for the synthesis of propargyl amine (1a, 1aa-1am)¹

$$R \stackrel{\text{II}}{\square} + = \bigwedge^{\text{NH}_2} \frac{\text{PdCl}_2(\text{PPh}_3)_2 (2 \text{ mol}\%) \text{, Cul (4 mol\%)}}{\text{THF/Et}_3\text{N} = 4:1 \text{, rt , overnight}} R \stackrel{\text{NH}_2}{\square}$$

To a solution of CuI (38.1 mg, 0.20 mmol, 4.0 mol %), PdCl₂(PPh₃)₂ (70.2 mg,

0.10 mmol, 2 mol %), and an aryl iodide (5.5 mmol, 1.1 equiv) in THF/Et₃N (4/1, 0.45 M) was added under nitrogen. Then, a propargyl amine (5.0 mmol, 1.0 equiv) was added and the mixture was stirred overnight at rt. A saturated NH₄Cl aqueous solution was added to the reaction mixture upon completion, then extracted with Et₂O three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (PE/EA/Et₃N=2/1/1%) to obtain the corresponding propargyl amines in high yields.

3.2 General procedure for the synthesis of propargyl amines (1ap and 1aq)²

3.2.1 General procedure for the synthesis of propargyl alcohols

To a solution of an alkyne (10 mmol, 1.0 equiv) in THF (28 mL) at 0 °C was added a solution of n-butyllithium (2.5 M in THF, 4 mL, 10 mmol, 1.0 equiv) drop-wise. After stirring for 30 min at 0 °C, an aldehyde (12 mmol, 1.2 equiv) was added and the mixture was stirred for an additional 30 min before a saturated aqueous solution of NH₄Cl (50 mL) was added. The organic layer was then separated and the aqueous phase was extracted twice with EtOAc (2 x 20 mL). The combined organic layers were eventually washed with brine (50 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography (PE/EA=10/1) over silica gel to afford pure propargyl alcohols.

3.2.2 General procedure for the synthesis of phthalimides

To a solution of a propargyl alcohol (10 mmol, 1.0 equiv) in THF (100 mL) at 0 °C was added triphenylphosphine (2.89 g, 11 mmol, 1.1 equiv), a phthalimide (1.62 g, 11 mmol, 1.1 equiv) and a solution of DEAD (40% wt in toluene, 5.9 mL, 13 mmol,

1.3 equiv). The reaction mixture was then stirred for 20 h at rt before the solvent was evaporated and triphenylphosphine oxide was precipitated by the addition of a 1:1 mixture of Et_2O/PE (40 mL). The precipitate was filtered through a plug of Celite and the solvent was evaporated under reduced pressure to afford a crude residue which was purified by flash column chromatography (PE/EA=10/1) over silica gel.

3.2.3 General procedure for the cleavage of phthalimides

To a solution of a phthalimide (3 mmol, 1 equiv) in EtOH (26 mL) was added hydrazine hydrate (0.9 mL, 18 mmol, 6 equiv) drop-wise and the resulting mixture was stirred at reflux for 3 h. The formed pasty precipitate was then filtered through a plug of Celite, washed with Et₂O (20 mL) and the solvent was evaporated under reduced pressure. The crude residue was finally purified by flash column chromatography (PE/EA/Et₃N=2/1/1%) over silica gel to afford the desired pure propargylamines.

4. Characterization of TFBen and Substrates

Benzene-1,3,5-triyl triformate, TFBen³ White solid, mp. 53.2-55.6 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.24 (s, 3H), 6.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.06, 150.30, 112.62.

2-Methyl-4-phenylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 90% yield.

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.39 - 7.29$ (m, 2H), 7.21 (dd, J = 5.1, 2.0 Hz, 3H), 1.68 (s, 2H), 1.43 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 131.4, 128.2, 127.7, 123.4, 97.1, 79.9, 45.5, 31.8.$

1aa

2-Methyl-4-(p-tolyl)but-3-yn-2-amine¹

This compound was obtained as a yellow oil in 86% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.30$ (d, J = 8.1 Hz, 1H), 7.09 (d, J = 7.9 Hz, 2H), 2.33 (s, 2H), 1.85 (s, 2H), 1.50 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 137.7, 131.4, 128.9, 120.3, 96.2, 80.1, 45.6, 31.8, 21.37.$

1ab

2-Methyl-4-(*m*-tolyl)but-3-yn-2-amine¹

This compound was obtained as a yellow oil in 78% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.32 - 7.15$ (m, 3H), 7.09 (d, J = 7.3 Hz, 1H), 2.32 (s, 3H), 1.78 (s, 2H), 1.50 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 137.8, 132.1, 128.7, 128.5, 128.1, 96.7, 80.1, 45.6, 31.8, 21.1.

1ac

2-Methyl-4-(*m*-tolyl)but-3-yn-2-amine¹

This compound was obtained as a yellow oil in 78% yield.

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.32 - 7.15$ (m, 3H), 7.09 (d, J = 7.3 Hz, 1H), 2.32 (s, 3H), 1.78 (s, 2H), 1.50 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 137.8, 132.1, 128.7, 128.5, 128.1, 96.7, 80.1, 45.6, 31.8, 21.1.

1ad

4-(4-Ethylphenyl)-2-methylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 90% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.32$ (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 1.87 (s, 2H), 1.49 (s, 6H), 1.21 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 144.1$, 131.5, 127.7, 120.6, 96.3, 80.1, 45.6, 31.8, 28.7, 15.3.

(4-(*tert*-Butyl)phenyl)-2-methylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 91% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.39 - 7.30$ (m, 4H), 1.80 (s, 2H), 1.52 (s, 6H), 1.33 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 150.9, 131.2, 125.2, 120.4, 96.4, 80.0, 45.6, 34.7, 31.9, 31.2.$

4-(4-Methoxyphenyl)-2-methylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 94% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.36$ (d, J = 7.0 Hz, 2H), 6.86 (d, J = 7.1 Hz, 2H), 3.84 (s, 3H), 1.88 (s, 2H), 1.53 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 159.3, 132.9, 115.5, 113.8, 95.5, 79.8, 55.2, 45.7, 31.9.$

4-(4-Fluorophenyl)-2-methylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 73% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.38 - 7.23$ (m, 2H), 6.94 (t, J = 8.7 Hz, 2H), 1.71 (s, 2H), 1.45 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 162.2$ (d, J = 246.2 Hz), 133.3 (d, J = 8.2 Hz), 119.4, 115.3 (d, J = 22.0 Hz), 96.6, 78.9, 45.6, 31.8.

1ah

4-(4-Chlorophenyl)-2-methylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 75% yield.

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.31 - 7.28$ (m, 2H), 7.24 (d, J = 8.4 Hz, 2H), 1.80 (s, 2H), 1.47 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 133.7, 133.0, 132.7, 128.5, 121.9, 97.9, 78.9, 45.6, 31.7.

2-Methyl-4-(4-(trifluoromethyl)phenyl)but-3-yn-2-amine¹

This compound was obtained as a yellow oil in 80% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.54$ (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 1.80 (s, 2H), 1.51 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 131.7, 129.6 (q, *J* = 32.5 Hz), 127.3, 125.1 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 272.2 Hz), 99.5, 78.9, 45.7, 31.6.

4-(3-Amino-3-methylbut-1-yn-1-yl)benzonitrile¹

This compound was obtained as a yellow oil in 82% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.60$ (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 1.82 (s, 2H), 1.52 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 132.0, 131.9, 128.4, 118.5, 111.2, 101.6, 78.8, 45.8, 31.6.$

1ak Ph

4-([1,1'-Biphenyl]-4-yl)-2-methylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 90% yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.64 - 7.43$ (m, 8H), 7.39 (d, J = 7.4 Hz, 1H), 1.81 (s, 2H), 1.57 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 140.5$, 140.4, 132.0, 128.9, 127.6, 127.0, 126.9, 97.8, 79.9, 45.7, 31.9.

1al

2-Methyl-4-(naphthalen-1-yl)but-3-yn-2-amine¹

This compound was obtained as a yellow oil in 87% yield.

¹H NMR (400 MHz, CDCl₃): $\delta = 8.36$ (d, J = 8.3 Hz, 1H), 7.85 (dd, J = 19.0, 8.1 Hz, 2H), 7.71 – 7.52 (m, 3H), 7.49 – 7.40 (m, 1H), 1.96 (s, 2H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 133.3, 133.2, 130.1, 128.3, 128.2, 126.7, 126.3, 128.4,$

126.1, 125.2, 121.0, 102.2, 78.2, 46.0, 32.0.

2-Methyl-4-(thiophen-3-yl)but-3-yn-2-amine¹

This compound was obtained as a yellow oil in 75% yield.

¹H NMR (400 MHz, CDCl₃): $\delta = 7.33$ (dd, J = 2.9, 1.1 Hz, 1H), 7.19 (dd, J = 4.9, 3.0 Hz, 1H), 7.04 (dd, J = 5.0, 1.0 Hz, 1H), 1.77 (s, 2H), 1.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 129.9$, 127.9, 125.1, 122.3, 96.6, 75.1, 45.6, 31.8.

1ap

1am

4-Phenylbut-3-yn-2-amine¹

This compound was obtained as a yellow oil in 30% yield.

¹H NMR (400 MHz, CDCl₃): $\delta = 7.44$ (dd, J = 6.4, 3.0 Hz, 2H), 7.32 (dd, J = 6.8, 3.9 Hz, 3H), 3.96 (dd, J = 13.3, 6.6 Hz, 1H), 1.67 (s, 2H), 1.48 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 131.5$, 128.2, 127.9, 123.3, 94.0, 81.5, 39.4, 24.6.

1-Phenylpent-1-yn-3-amine¹

This compound was obtained as a yellow oil in 35% yield. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50 - 7.38$ (m, 2H), 7.31 (dd, J = 4.5, 2.0 Hz, 3H), 3.75 (t, J = 6.7 Hz, 1H), 1.68 (s, 2H), 1.11 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 131.6$, 128.2, 127.9, 123.4, 92.8, 82.6, 45.5, 31.3, 10.4.

5. General Procedure for Palladium-Catalyzed Double Carbonylation

of Propargyl Amines, Aryl Halides, and TFBen

To a solution of propargyl amine **1** (0.5 mmol, 1.0 equiv), $Pd(acac)_2$ (7.6 mg, 5 mol %), DPPF (55.4 mg, 20 mol %), and a 2.5 mL vial containing TFBen (315 mg, 1.5 mmol, 3.0 equiv) were added to an oven-dried tube (15 mL) which was then placed under vacuum and refilled with nitrogen three times. Et₃N (140 µL, 1.0 mmol, 2.0 equiv), an aryl halide (0.6 mmol, 1.2 equiv) and DMSO (2.0 mL) were added into the tube via syringe. The tube was sealed and stirred at 110 °C for 24 h. Upon the reaction was completed, the resulting mixture was filtered through a pad of tripolite and washed with EtOAc. The filtrate was concentrated under vacuum and purified by silica gel column using chromatography (petroleum ether / acetone) to obtain the desired products **2**.

6. Characterization of Products

2a

1-Benzoyl-5,5-dimethyl-3-phenyl-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (116.4 mg, 80%). mp. 126-128 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.89 - 7.86$ (m, 2H), 7.64 - 7.55 (m, 3H), 7.52 - 7.43 (m, 5H), 7.43 (s, 1H), 1.83 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.5, 152.6, 136.3, 132.4, 131.3, 130.3, 129.1, 128.6, 128.0, 127.9, 127.3, 63.6, 24.6.

HRMS (ESI): [M+H⁺]calcd for C₁₉H₁₈NO₂⁺,292.1332; found, 292.1352.

5,5-Dimethyl-1-(4-methylbenzoyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (131.1 mg, 86%). mp. 127-129 °C

¹**H NMR** (**400 MHz**, **CDCl**₃): δ = 7.87 (dt, *J* = 4.4, 2.6 Hz, 2H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.47 – 7.42 (m, 3H), 7.41 (s, 1H), 7.29 (d, *J* = 8.2 Hz, 2H), 2.46 (s, 3H), 1.82 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.2, 168.5, 152.4, 141.8, 133.4, 132.4, 130.3, 129.0, 128.7, 128.5, 128.2, 127.3, 63.6, 24.6, 21.7.

HRMS (ESI): [M+Na⁺]calcd for C₂₀H₁₉NNaO₂⁺,328.1308; found, 328.1325.

2c

5,5-Dimethyl-1-(2-methylbenzoyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a **yellow oil** (91.5 mg, 60%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.84$ (dt, J = 5.1, 3.2 Hz, 2H), 7.44 (s, 1H), 7.43 – 7.40 (m, 4H), 7.36 – 7.28 (m, 3H), 2.41 (s, 3H), 1.87 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 169.8, 167.9, 153.0, 137.5, 133.9, 132.3, 130.2, 130.1, 129.4, 129.1, 128.5, 127.3, 125.8, 125.6, 63.3, 24.2, 19.1.

HRMS (ESI): [M+H⁺]calcd for C₂₀H₂₀NO₂⁺,306.1489; found, 306.1509.

5,5-Dimethyl-1-(3-methylbenzoyl)-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (96.1 mg, 63%). mp. 116-118 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.89 - 7.85$ (m, 2H), 7.57 - 7.40 (m, 6H), 7.38 (s, 1H), 7.37 (s, 1H), 2.46 (s, 3H), 1.82 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.3, 168.4, 152.6, 137.8, 136.4, 132.4, 132.0, 130.3, 129.1, 128.6, 128.3, 127.8, 127.3, 63.5, 24.6, 21.4.

HRMS (**ESI**): [M+H⁺]calcd for C₂₀H₂₀NO₂⁺,306.1489; found, 306.1505.

1-(4-Ethylbenzoyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (127.6 mg, 80%). mp. 141-143 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.87 - 7.83$ (m, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.45 - 7.40 (m, 3H), 7.39 (s, 1H), 7.30 (d, J = 8.2 Hz, 2H), 2.75 (q, J = 7.6 Hz, 2H), 1.80 (s, 6H), 1.31 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.5, 152.4, 148.0, 133.5, 132.5, 130.3, 129.0, 128.5, 128.3, 127.5, 127.2, 63.6, 28.9, 24.6, 15.1.

HRMS (ESI): [M+H⁺]calcd for C₂₁H₂₂NO₂⁺,320.1645; found, 320.1662.

1-(4-(tert-Butyl)benzoyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (135.3 mg, 78%). mp. 188-190 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.88 - 7.84$ (m, 2H), 7.59 - 7.57 (m, 2H), 7.51 - 7.42 (m, 5H), 7.40 (s, 1H), 1.81 (s, 6H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.5, 154.8, 152.5, 133.2, 132.6, 130.4, 129.0, 128.6, 128.3, 127.3, 124.9, 63.6, 35.0, 31.2, 24.7.

HRMS (ESI): [M+H⁺]calcd for C₂₃H₂₆NO₂⁺,348.1958; found, 348.1971.

1-(4-Methoxybenzoyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (130.0 mg, 81%). mp. 130-132 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.87$ (dd, J = 7.9, 1.7 Hz, 2H), 7.63 – 7.60 (m, 2H), 7.46 – 7.40 (m, 3H), 7.39 (s, 1H), 6.98 – 6.95 (m, 2H), 3.89 (s, 3H), 1.80 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.6, 168.6, 162.4, 152.4, 132.5, 130.7, 130.4, 129.0, 128.5, 128.2, 127.2, 113.3, 63.7, 55.4, 24.8.$

HRMS (**ESI**): [M+H⁺]calcd for C₂₀H₂₀NO₃⁺, 322.1438; found, 322.1453.

2h

1-(4-Fluorobenzoyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a **white solid** (115.8 mg, 75%). mp. 131-133 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.87 - 7.83$ (m, 2H), 7.65 - 7.60 (m, 2H), 7.48 - 7.43 (m, 3H), 7.42 (s, 1H), 7.18 - 7.12 (m, 2H), 1.81 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ =168.9, 168.5, 164.6 (d, *J* = 251.8 Hz), 152.7 (d, *J* = 3.1 Hz), 132.4, 132.3 (d, *J* = 3.3 Hz), 130.6 (d, *J* = 8.9 Hz), 130.2, 129.3, 128.7, 127.2, 115.1 (d, J = 22.0 Hz), 63.7, 24.6.

HRMS (ESI): [M+H+]calcd for C₁₉H₁₇FNO₂+,310.1238; found, 310.1256.

1-(4-Chlorobenzoyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a white solid (131.6 mg, 81%). mp. 135-137 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.85 - 7.81$ (m, 2H), 7.55 - 7.51 (m, 2H), 7.45 (s, 1H), 7.44 - 7.41 (m, 5H), 1.80 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 168.9, 168.5, 152.7, 137.4, 134.6, 132.4, 130.1, 129.4, 129.2, 128.6, 128.3, 127.2, 63.7, 24.5.

HRMS (**ESI**): [M+H+]calcd for C₁₉H₁₇ClNO₂+,326.0942; found, 326.0958.

5,5-Dimethyl-3-phenyl-1-(4-(trifluoromethyl)benzoyl)-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a white solid (149.0 mg, 83%). mp. 168-170 °C

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.84 - 7.80$ (m, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 7.44 (s, 1H), 7.47 - 7.41 (m, 3H), 1.83 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 168.6$, 168.4, 153.0, 139.8, 132.4, 132.5 (q, J = 32.7 Hz), 129.9, 129.3, 128.6, 128.0, 127.2, 125.1 (q, J = 3.9 Hz), 123.8 (q, J = 272.5 Hz), 63.7, 24.4.

HRMS (ESI): [M+H⁺]calcd for C₂₀H₁₇F₃NO₂⁺,360.1206; found, 360.1221.

5,5-Dimethyl-3-phenyl-1-(4-(trifluoromethoxy)benzoyl)-1,5-dihydro-2*H*-pyrrol-2-one According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a white solid (133.1 mg, 71%). mp. 124-126 °C ¹H NMR (400 MHz, CDCl₃): δ = 7.83 – 7.79 (m, 2H), 7.64 – 7.61 (m, 2H), 7.46 – 7.42 (m, 3H), 7.41 (s, 1H), 7.29 (d, *J* = 7.7 Hz, 2H), 1.80 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 168.6, 168.4, 152.8, 151.2, 134.5, 132.4, 130.1, 129.9, 129.2, 128.6, 127.2, 120.6, 120.4 (q, *J* = 258.3 Hz), 63.7, 24.5. HRMS (ESI): [M+H⁺]calcd for C₂₀H₁₇F₃NO₃⁺, 376.1155; found, 376.1165.

4-(2,2-Dimethyl-5-oxo-4-phenyl-2,5-dihydro-1*H*-pyrrole-1-carbonyl)benzonitrile

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a **white solid** (118.5 mg, 75%). mp. 158-160 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.81 - 7.78$ (m, 2H), 7.77 - 7.73 (m, 2H), 7.64 - 7.61 (m, 2H), 7.46 (s, 1H), 7.44 - 7.40 (m, 3H), 1.82 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 168.5, 168.0, 153.2, 140.5, 132.2, 131.8, 129.8, 129.3, 128.7, 128.1, 127.2, 118.3, 114.3, 63.7, 24.3.

HRMS (ESI): [M+H+]calcd for C₂₀H₁₇N₂O₂+,317.1285; found, 317.1296.

1-(4-Acetylbenzoyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (121.5 mg, 73%). mp. 156-158 °C

¹**H NMR (400 MHz, CDCl₃):** δ = 8.09 (s, 2H), 7.84 (s, 2H), 7.66 (s, 2H), 7.46 (s, 1H), 7.44 (s, 3H), 2.71 (s, 3H), 1.86 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 197.4, 169.0, 168.5, 152.9, 140.6, 138.5, 132.3, 130.0, 129.2, 128.6, 128.0, 127.7, 127.2, 63.7, 26.8, 24.4.

HRMS (**ESI**): [M+H⁺]calcd for C₂₁H₂₀NO₃⁺,334.1438; found, 334.1451.

2n

Methyl 4-(2,2-dimethyl-5-oxo-4-phenyl-2,5-dihydro-1*H*-pyrrole-1-carbonyl)benzoate

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (143.1 mg, 82%). mp. 123-125 °C

¹H NMR (400 MHz, CDCl₃): $\delta = 8.10$ (d, J = 8.5 Hz, 2H), 7.78 – 7.74 (m, 2H), 7.57 – 7.55 (m, 2H), 7.38 (s, 1H), 7.37 (dd, J = 5.5, 2.0 Hz, 3H), 3.93 (s, 3H), 1.77 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.1$, 168.4, 166.4, 152.8, 140.5, 132.3, 132.0, 129.9, 129.3, 129.2, 128.6, 127.5, 127.2, 63.6, 52.3, 24.4.

HRMS (ESI): [M+H⁺]calcd for C₂₁H₂₀NO₄⁺,350.1387; found, 350.1405.

20

1-([1,1'-Biphenyl]-4-carbonyl)-5,5-dimethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (150.5 mg, 82%). mp. 201-203 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.86$ (dd, J = 7.8, 1.7 Hz, 2H), 7.72 - 7.64 (m, 6H), 7.50 (t, J = 7.5 Hz, 2H), 7.44 (s, 1H), 7.43 - 7.39 (m, 4H), 1.83 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 169.8, 168.5, 152.6, 144.1, 140.3, 134.9, 132.5, 130.2, 129.1, 128.8, 128.7, 128.6, 127.8, 127.3, 127.2, 126.7, 63.7, 24.6.

HRMS (ESI): [M+H+]calcd for C₂₅H₂₂NO₂+,368.1645; found, 368.1655.

$1\-(2\-Naphthoyl)\-5,5\-dimethyl\-3\-phenyl\-1,5\-dihydro\-2H\-pyrrol\-2\-one$

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (146.6 mg, 86%). mp. 170-172 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.15$ (s, 1H), 7.94 (dd, J = 16.9, 8.2 Hz, 3H), 7.88 – 7.83 (m, 2H), 7.65 – 7.55 (m, 3H), 7.44 (s, 1H), 7.42 (dd, J = 5.9, 4.6 Hz, 3H), 1.87 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 170.1$, 168.4, 152.6, 134.6, 133.7, 132.5, 132.4, 130.2, 129.1, 129.0, 128.6, 127.8, 127.6, 127.5, 127.2, 126.5, 124.6, 63.6, 24.6. HRMS (ESI): [M+H⁺]calcd for C₂₃H₂₀NO₂⁺, 342.1489; found, 342.1502.

2q

5,5-Dimethyl-3-phenyl-1-(thiophene-3-carbonyl)-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a **white solid**

(112.8 mg, 76%). mp. 108-110 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.93$ (dd, J = 2.9, 1.3 Hz, 1H), 7.88 – 7.85 (m, 2H), 7.46 – 7.41 (m, 3H), 7.38 (s, 1H), 7.36 (dd, J = 5.1, 1.3 Hz, 1H), 7.33 – 7.30 (m, 1H), 1.78 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 168.4, 164.3, 152.5, 137.3, 132.5, 131.0, 130.3, 129.1, 128.6, 127.8, 127.2, 124.6, 63.8, 24.7.

HRMS (ESI): [M+H⁺]calcd for C₁₇H₁₆NO₂S⁺,298.0896; found, 298.0911.

1-Methacry loyl-5, 5-dimethyl-3-phenyl-1, 5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (89.2 mg, 70%). mp. 73-75 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.86$ (dd, J = 7.9, 1.5 Hz, 2H), 7.46 – 7.41 (m, 3H), 7.35 (s, 1H), 5.31 (s, 1H), 5.24 (s, 1H), 2.09 (s, 3H), 1.70 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 171.2, 168.2, 152.7, 142.8, 132.4, 130.2, 129.1, 128.6, 127.2, 116.7, 63.0, 24.1, 19.2.

HRMS (ESI): [M+H⁺]calcd for C₁₆H₁₈NO₂⁺,256.1332; found, 256.1351.

5,5-Dimethyl-3-phenyl-1-(2-phenylacryloyl)-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a green oil (107.8 mg, 68%).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.75 - 7.72$ (m, 2H), 7.48 (dd, J = 5.2, 3.0 Hz, 3H), 7.39 - 7.36 (m, 5H), 7.33 (s, 1H), 5.78 (s, 1H), 5.47 (s, 1H), 1.80 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ =169.2, 167.4, 152.7, 146.9, 136.0, 132.3, 131.7, 130.0, 129.2, 129.0, 128.8, 128.6, 128.5, 128.5, 128.3, 128.2, 127.4, 127.3, 127.2, 127.1, 125.9, 114.9, 63.0, 24.0.

HRMS (ESI): [M+H+]calcd for C₂₁H₂₁NO₂+,318.1489; found, 318.1502.

2aa

1-Benzoyl-5,5-dimethyl-3-(p-tolyl)-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (132.7 mg, 87%). mp. 146-148 °C

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.77$ (d, J = 8.2 Hz, 2H), 7.63 – 7.54 (m, 3H), 7.48 (t, J = 7.4 Hz, 2H), 7.37 (s, 1H), 7.25 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H), 1.82 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.6, 151.7, 139.1, 136.4, 132.2, 131.2, 129.2, 128.0, 127.9, 127.4, 127.1, 63.5, 24.6, 21.4.

HRMS (ESI): [M+H⁺]calcd for C₂₀H₂₀NO₂⁺,306.1489; found, 306.1507.

1-Benzoyl-5,5-dimethyl-3-(o-tolyl)-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (106.7 mg, 70%). mp. 143-145 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.60 - 7.51$ (m, 3H), 7.45 (t, J = 7.5 Hz, 2H), 7.36 -7.24 (m, 4H), 7.20 (s, 1H), 2.37 (s, 3H), 1.85 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.5, 155.7, 136.5, 136.1, 134.5, 131.2, 130.4, 130.0, 129.7, 128.8, 128.0, 127.9, 125.7, 64.1, 24.7, 20.4.

HRMS (ESI): $[M+H^+]$ calcd for $C_{20}H_{20}NO_2^+$, 306.1489; found, 306.1506.

1-Benzoyl-5,5-dimethyl-3-(*m*-tolyl)-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (122.0 mg, 80%). mp. 81-83 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.73$ (s, 1H), 7.68 – 7.55 (m, 4H), 7.50 (t, J = 7.4 Hz, 2H), 7.42 (s, 1H), 7.37 – 7.32 (m, 1H), 7.25 (d, J = 7.6 Hz, 1H), 2.43 (s, 3H), 1.84 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.5, 152.6, 138.2, 136.4, 132.5, 131.2, 130.2, 129.9, 128.5, 128.0, 127.9, 127.8, 124.4, 63.5, 24.6, 21.5.

HRMS (ESI): $[M+N a^+]$ calcd for $C_{20}H_{20}NO_2^+$, 306.1489; found, 306.1507.

1-Benzoyl-3-(4-ethylphenyl)-5,5-dimethyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (129.2 mg, 81%). mp. 125-127 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.78$ (d, J = 8.2 Hz, 2H), 7.62 – 7.53 (m, 3H), 7.48 (t, J = 7.4 Hz, 2H), 7.37 (s, 1H), 7.27 (d, J = 8.1 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.81 (s, 6H), 1.28 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.6, 151.8, 145.5, 136.3, 132.3, 131.2, 128.1, 128.0, 127.9, 127.6, 127.2, 63.5, 28.7, 24.6, 15.5.

HRMS (ESI): [M+H⁺]calcd for C₂₁H₂₂NO₂⁺,320.1645; found, 320.1662.

2ae

1-Benzoyl-3-(4-(tert-butyl)phenyl)-5,5-dimethyl-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (154.4 mg, 89%). mp. 127-129 °C

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.82 - 7.77$ (m, 2H), 7.61 - 7.53 (m, 3H), 7.46 (dd, J = 11.9, 5.2 Hz, 4H), 7.37 (s, 1H), 1.81 (s, 6H), 1.37 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.6, 152.3, 151.9, 136.3, 132.3, 131.2, 128.0, 127.4, 126.9, 125.5, 63.5, 34.7, 31.2, 24.6.

HRMS (ESI): [M+H⁺]calcd for C₂₃H₂₆NO₂⁺,348.1958; found, 348.1978.

1-Benzoyl-3-(4-methoxyphenyl)-5,5-dimethyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (146.0 mg, 91%). mp. 159-161 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.82$ (d, J = 8.7 Hz, 2H), 7.61 – 7.52 (m, 3H), 7.47 (t, J = 7.4 Hz, 2H), 7.30 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 1.80 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.7, 160.2, 150.6, 136.4, 131.8, 131.2, 128.5, 127.9, 127.9, 122.8, 113.9, 63.4, 55.3, 24.7.

HRMS (ESI): $[M+H^+]$ calcd for $C_{20}H_{20}NO_3^+$, 322.1438; found, 322.1456.

1-Benzoyl-3-(4-fluorophenyl)-5,5-dimethyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a white solid (115.9 mg, 75%). mp. 150-152 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.87 - 7.82$ (m, 2H), 7.60 - 7.54 (m, 3H), 7.48 (t, JJ = 7.5 Hz, 2H), 7.37 (s, 1H), 7.11 (t, J = 8.7 Hz, 2H), 1.81 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 170.0$, 168.3, 163.2 (d, J = 249.4 Hz), 152.1, 136.2, 131.5, 131.3, 129.1 (d, J = 8.1 Hz), 127.9 (d, J = 11.7 Hz), 126.3 (d, J = 3.3 Hz), 115.7, 115.5, 63.6, 24.6.

HRMS (ESI): [M+H⁺]calcd for C₁₉H₁₇FNO₂⁺,310.1238; found, 310.1257.

1-Benzoyl-3-(4-chlorophenyl)-5,5-dimethyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a **white solid**

(118.6 mg, 73%). mp. 114-116 °C

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.80$ (d, J = 8.5 Hz, 2H), 7.60 – 7.54 (m, 3H), 7.48 (t, J = 7.5 Hz, 2H), 7.41 (d, J = 3.2 Hz, 2H), 7.38 (s, 1H), 1.81 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.0, 168.2, 152.7, 136.2, 135.1, 131.3, 128.8, 128.7, 128.5, 128.0, 127.9, 63.6, 24.5.

HRMS (ESI): [M+H⁺]calcd for C₁₉H₁₇ClNO₂⁺,326.0942; found, 326.0955.

2ai

1-Benzoyl-5,5-dimethyl-3-(4-(trifluoromethyl)phenyl)-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a white solid (129.2 mg, 72%). mp. 84-86 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.98$ (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.61 – 7.56 (m, 3H), 7.52 (s, 1H), 7.49 (t, J = 7.4 Hz, 2H), 1.84 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 170.0, 167.9, 154.1, 136.0, 133.7, 131.4, 131.0, 130.7, 128.0, 127.9, 127.5, 125.4 (q,$ *J*= 3.9 Hz), 123.9 (q,*J*= 272.2 Hz), 63.8, 24.5.HRMS (ESI): [M+H⁺]calcd for C₂₀H₁₇F₃NO₂⁺,360.1206; found, 360.1220.

4-(1-Benzoyl-5,5-dimethyl-2-oxo-2,5-dihydro-1*H*-pyrrol-3-yl)benzonitrile

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 5:1) to give the product as a **white solid**

(123.2 mg, 78%). mp. 163-165 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.95 - 7.92$ (m, 2H), 7.67 - 7.64 (m, 2H), 7.55 - 7.51 (m, 3H), 7.50 (s, 1H), 7.46 - 7.41 (m, 2H), 1.79 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 169.9, 167.6, 154.8, 135.9, 134.6, 132.3, 131.5, 131.0, 128.0, 127.9, 127.8, 118.5, 112.6, 64.0, 24.4.

HRMS (ESI): $[M+H^+]$ calcd for $C_{20}H_{17}N_2O_2^+$, 317.1285; found, 317.1295.

3-([1,1'-Biphenyl]-4-yl)-1-benzoyl-5,5-dimethyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (156.0 mg, 85%). mp. 157-159 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.97$ (d, J = 8.4 Hz, 2H), 7.68 (dd, J = 7.7, 5.1 Hz, 4H), 7.60 (ddd, J = 7.4, 6.9, 4.1 Hz, 3H), 7.54 – 7.49 (m, 4H), 7.46 (s, 1H), 7.43 (t, J = 7.3 Hz, 1H), 1.85 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 168.5, 152.4, 141.8, 140.4, 136.3, 132.0, 131.3, 129.2, 128.9, 128.0, 127.9, 127.7, 127.2, 127.1, 63.6, 24.6.

HRMS (ESI): [M+H⁺]calcd for C₂₅H₂₂NO₂⁺,368.1645; found, 368.1657.

1-Benzoyl-5,5-dimethyl-3-(naphthalen-1-yl)-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (146.6 mg, 86%). mp. 149-151 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.98 - 7.90$ (m, 3H), 7.66 - 7.50 (m, 7H), 7.48 - 7.42 (m, 2H), 7.42 (s, 1H), 1.94 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 170.1$, 168.8, 156.8, 136.1, 133.8, 133.1, 131.4, 131.2, 129.3, 128.7, 128.0, 127.9, 127.7, 126.6, 126.0, 125.1, 124.6, 64.4, 24.8. HRMS (ESI): [M+H⁺]calcd for C₂₃H₂₀NO₂⁺, 342.1489; found, 342.1507.

2am

2al

1-Benzoyl-5,5-dimethyl-3-(thiophen-3-yl)-1,5-dihydro-2H-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a white solid (118.8 mg, 80%). mp. 108-110 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.18$ (dd, J = 2.9, 1.1 Hz, 1H), 7.61 – 7.56 (m, 3H), 7.49 (t, J = 7.4 Hz, 2H), 7.44 (dd, J = 5.1, 1.2 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.29 (s, 1H), 1.81 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ = 170.0, 168.4, 150.1, 136.3, 131.3, 130.7, 128.0, 127.9, 125.9, 125.7, 125.0, 63.9, 24.7.

HRMS (ESI): [M+H⁺]calcd for C₁₇H₁₆NO₂S⁺,298.0896; found, 298.0910.

1-Benzoyl-5-methyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a **black** solid (55.4 mg, 40%). mp. 114-116 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.83$ (dd, J = 7.4, 1.8 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.52 – 7.42 (m, 4H), 7.41 (s, 1H), 5.16 (qd, J = 6.7, 2.0 Hz, 1H), 1.62 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 169.6, 168.2, 146.0, 134.8, 132.0, 130.3, 129.1, 128.9, 128.5, 127.9, 127.2, 55.0, 17.7.

HRMS (ESI): [M+H⁺]calcd for C₁₈H₁₆NO₂⁺,278.1176; found, 278.1192.

2aq

2ap

1-Benzoyl-5-ethyl-3-phenyl-1,5-dihydro-2*H*-pyrrol-2-one

According to general procedure for reaction, the crude residue was purified by flash chromatography (petroleum ether / acetone = 10:1) to give the product as a **black** solid (61.1 mg, 42%). mp. 118-120 °C

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.86 - 7.82$ (m, 2H), 7.77 - 7.73 (m, 2H), 7.63 - 7.58 (m, 1H), 7.54 - 7.47 (m, 4H), 7.43 (s, 1H), 7.41 (d, J = 1.4 Hz, 1H), 5.17 (ddd, J = 7.2, 3.4, 2.4 Hz, 1H), 1.30 (s, 2H), 1.05 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 168.6, 144.5, 135.6, 134.7, 132.1, 130.4, 129.1, 128.5, 127.9, 127.2, 59.6, 23.9, 8.3.

HRMS (ESI): [M+H⁺]calcd for C₁₉H₁₈NO₂⁺,292.1332; found, 292.1343.

7. Characterization of Intermediates 2g'

2g'

4-Methoxy-N-(2-methyl-4-phenylbut-3-yn-2-yl)benzamide

This compound was obtained as a white solid. mp. 175-177 °C.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.78$ (d, J = 8.7 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.31 (dd, J = 6.0, 2.6 Hz, 1H), 6.92 (d, J = 8.7 Hz, 1H), 6.41 (s, 1H), 3.85 (s, 2H), 1.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): $\delta = 166.0, 162.1, 131.8, 128.7, 128.2, 127.4, 122.9, 113.6, 93.0, 81.3, 55.4, 48.9, 29.1.$

8. References

1 J. Ying, Z. Le and X. -F. Wu, Org. Lett., 2020, 22, 194-198.

2 A. Kolleth, S. Christoph, S. Arseniyadis and J. Cossy, *Chem. Commun.*, 2012, 48, 10511-10513.

3 (a) L. Jiang, X. Qi and X.-F. Wu, *Tetrahedron*, 2016, **57**, 3368-3370; (b) L. Jiang, R. Li, C. Zhou, X. Qi, J.-B. Peng and X.-F. Wu, *Mol. Catal.*, 2017, **433**, 8-11.

9. Spectra of TFBen and Substrates

S30

S31

1ab

S34

S35

S36

1ah

S40

1ak

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

10. Spectra of Products

2a

2d

S52

2h

2k

2 n

S61

2q

2r

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

2aa

2ab

2ad

2ae

2ai

fl (ppm) 90 80 70 60 50 40 30 20 10

2al

130 110 fl (ppm) 150 90 80 70 60 50 40 30

fl (ppm) 90 80 70 60 50 40 30

2ap

11. Spectra of Intermediate 2g'

