Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Cu_2O -Catalyzed Selective 1,2-Addition of Acetonitrile to α , β -Unsaturated Aldehydes

Fengrui Che,^a Maorong Wang,^b Chunzheng Yu,^a Xiangyu Sun,^a Donghua Xie,^a Zonghua Wang*^a and Yuexia Zhang*^a

^aCollege of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China

E-mail: zhangyx@qdu.edu.cn; wangzonghua@qdu.edu.cn

Table of contents

I	General information	S2
II	General procedure for 1,2-addition of acetonitrile to α,β -unsaturated aldehydes	S 3
III	Gram scale synthesis of 2a and synthetic transformations of product 2a	S4
IV	Deuteration experiments	S 7
V	Characterizations data for all products	S10
VI	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S21
VII	References	S51

^bState Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, China

I. General information

All reagents and solvents were purchased from J&K Chemicals, Energy Chemical or other commercial suppliers and used as received without further purification. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker Avance III HD 400 (400 MHz) spectrometer, Bruker Avance 500 (500 MHz) spectrometer or Bruker Avance 600 (600 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker Avance III HD 400 (100 MHz), Bruker Avance 500 (125 MHz) spectrometer or Bruker Avance 600 (150 MHz) spectrometer. High resolution mass spectral analysis (HRMS) was performed on an Ultima Global spectrometer with an ESI source. Flash chromatography was performed using Qingdao Haiyang silica gel 100 - 200 with distilled solvents. Visualization was performed using a UV lamp.

II. General procedure for 1,2-addition of acetonitrile to α,β -unsaturated aldehydes

To a 4 mL vial with a magnetic stir bar was added Cu₂O (5.7 mg, 0.04 mmol, 10 mol%), KOtBu (67.2 mg, 0.6 mmol, 150 mol%) and CH₃CN (2.0 mL), the vial was cooled to 0 °C. 0.4 mmol α , β -unsaturated aldehyde (1) was then added and the resulting mixture was stirred at 0 °C (in ice bath) for about 1 – 10 min. The mixture was purified immediately by silica gel column chromatography once complete consumption of α , β -unsaturated aldehyde as monitored by TLC to afford the desired product 2.

III. Gram scale synthesis of 2a and synthetic transformations of product 2a

1. Gram scale synthesis of 2a

To a 50 mL round bottom flask equipped with a magnetic stir bar, was added Cu_2O (143.1 mg, 1.0 mmol, 10 mol%), KOtBu (1683.0 mg, 15.0 mmol, 150 mol%) and CH_3CN (25 mL). The flask was then located in the ice bath to cool to 0 $^{\circ}C$ without stirring. After that, **1a** (1321.6 mg, 10.0 mmol) was added and the resulting mixture was stirred to 0 $^{\circ}C$ for 5 min. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography (petroleum ether/ethyl acetate =3:1) to afford compound **2a** as a pale yellow oil, 1364.6 mg, 79% yield.

2. Hydrolysis of 2a to amide 3¹

To a stirred solution of 2a (86.5 mg, 0.5 mmol) in DMSO (1 mL), cooled in a ice bath, was added 30% H_2O_2 (200 uL) and K_2CO_3 (345.5 mg, 5.0 equiv), the mixture was allowed to warm up to room temperature. After 5 min, distilled water (20 mL) was added. The reaction mixture stirred at room temperature overnight until the completion of 2a (monitored by TLC). The mixture was extracted with dichloromethane (3 × 20 mL). The combined organic phase was dried over Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate/methanol = 3:1:0.2) to afford compound 3 as white solid, 91.0 mg, 95% yield.

3. Hydrolysis of 2a to acid 4^2

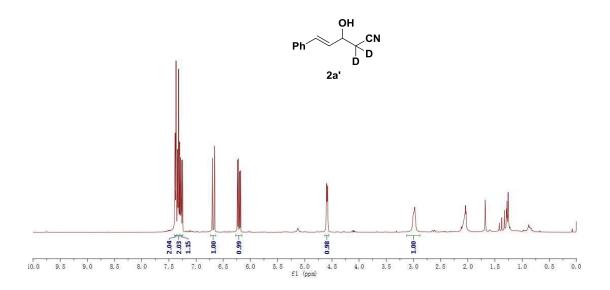
To a 50 mL round bottom flask equipped with a magnetic stir bar, was added the 2a (86.5 mg, 0.5 mmol), 3 M NaOH (3.7 mL), 30% H_2O_2 (1.3 mL). The reaction mixture was heated at 70 °C for 1 h and 90 °C for another 1 h, the reaction mixture was then cooled to room temperature. The solution was washed once with ethyl ether (3.0 mL). The aqueous solution was acidified with 2 M HCl (10 mL) and then extracted with dichloromethane (3 × 20 mL). The combined organic phase was dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate =2:1) to afford compound 4 as a white solid, 89.4 mg, 93% yield.

4. Transformation of 2a to functionalized benzuo[b] furans³

Step 1: To a 50 mL round bottom flask equipped with a magnetic stir bar, was added 2a (86.5 mg, 0.5 mmol), *p*-cresol (59.5 mg, 1.1 equiv), Re₂O₇ (12.1 mg, 5 mol%) and CH₃CN (2.0 mL). A refluxed condenser was attached, and then the reaction mixture was stirred at 80 °C overnight until complete consumption of 2a as monitored by TLC. The mixture was concentrated under reduced pressure and purified by silica gel

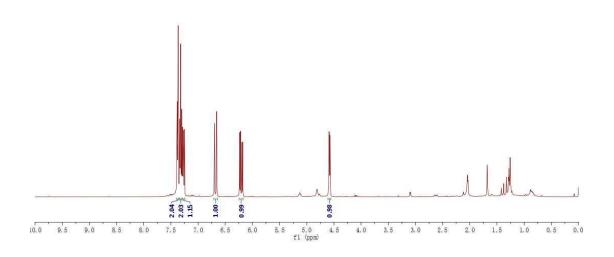
column chromatography (petroleum ether/ethyl acetate =10:1) to afford **5a** and **5b** as a mixture in 49% combined yield.

<u>Step 2</u>: To a 10 mL sealed tube equipped with a magnetic stir bar, was added mixed **5a** and **5b** obtained above (64.0 mg), PdCl₂(CH₃CN)₂ (3.2 mg, 5 mol%), benzoquinone (26.3 mg, 1.0 equiv). Then the mixture was dissolved in 1,4-dioxane (1.0 mL). The reaction mixture was placed in a preheated oil bath at 80 °C and stirred at 80 °C overnight. After consumption of **5a** and **5b** as monitored by TLC, the mixture was cooled to room temperature. Evaporation of the solvent followed by purification by silica gel column chromatography (petroleum ether/ethyl acetate =20:1) to afford **6a** and **6b** in 26% combined yield.

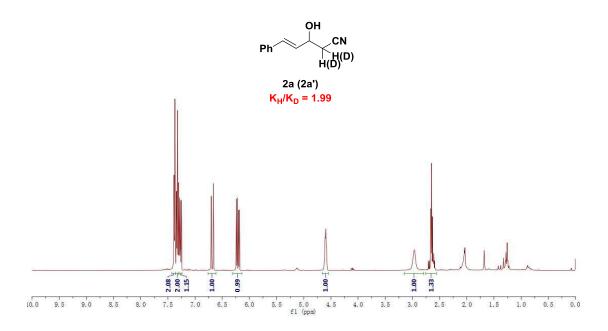

IV. Deuteration experiments

To a 4 mL vial with magnetic stir bar was added Cu_2O (5.7 mg, 0.04 mmol, 10 mol%), KOtBu (0.6 mmol, 67.2 mg, 150 mol%) and CD₃CN (2.0 mL, 99.8% D), the vial was then cooled to 0 °C. **1a** (52.9 mg, 0.4 mmol) was added and the resulting mixture was stirred at 0 °C (in ice bath) for 5 min. The mixture was purified immediately by silica gel column chromatography (petroleum ether/ethyl acetate =3:1) to afford **1a** 23.8 mg, **2a'** 34.3 mg.

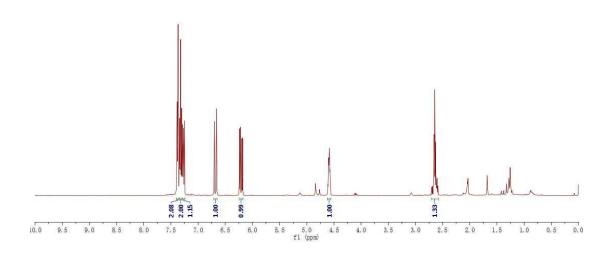
To a 4 mL vial with magnetic stir bar was added Cu_2O (5.7 mg, 0.04 mmol, 10 mol%), KOtBu (0.6 mmol, 67.2 mg, 150 mol%) and 2.0 mL 1:1 mixture of CH_3CN and CD_3CN , the vial was then cooled to 0 C. **1a** (52.9 mg, 0.4 mmol) was added and the resulting mixture was stirred at 0 C (in ice bath) for 5 min. The mixture was purified immediately by silica gel column chromatography (petroleum ether/ethyl acetate =3:1) to afford the mixture products of **2a** and **2a'**.


¹H NMR of 2a' (in CDCl₃)

wmr=0ct10=2019=1 CFR=X19X10=1=1HNMR=CDC13


¹H NMR of 2a' after Hydrogen-Deuterium Exchange with D₂O (in CDCl₃)

wmr-Oct10-2019-4 CFR-X19X10-2D-1HNMR-CDC13


$\underline{t=5min, Conversion} = 53\%, K_H/K_D = 1.99$

wmr=0ct10=2019=2 CFR=X19X10=2=1HNMR=CDC13

After Hydrogen-Deuterium Exchange with D₂O

wmr-Oct10-2019-3 CFR-X19X10-1D-1HNMR-CDC13

V. Characterizations data for all products

2a

(*E*)-3-hydroxy-5-phenylpent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 - 7.32 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.25 (m, 1H), 6.70 (d, J = 16.0 Hz, 1H), 6.23 (dd, J = 16.0, 6.8 Hz, 1H), 4.65 – 4.60 (m, 1H), 2.73 – 2.61 (m, 2H), 2.41 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 135.5, 133.0, 128.7, 128.4, 127.9, 126.7, 117.6, 68.7, 26.3.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{11}H_{11}NONa$ 196.0738; found 196.0736.

2b

(E)-3-hydroxy-5-(4-methoxyphenyl)pent-4-enenitrile: pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.44 (d, J = 15.6 Hz, 1H), 5.90 (dd, J = 15.6, 6.8 Hz, 1H), 4.40 (q, J = 5.6 Hz, 1H), 3.62 (s, 3H), 2.67 (s, 1H), 2.53 – 2.41 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 132.3, 128.2, 127.9, 125.7, 117.4, 114.0, 68.7, 55.2, 26.3.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{13}NO_2Na$ 226.0844; found 226.0850.

2c

(E)-3-hydroxy-5-(2-methoxyphenyl)pent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (dd, J = 7.6, 1.6 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.98 (d, J = 16.0 Hz, 1H), 6.92 – 6.84 (m, 2H), 6.24 (dd, J = 16.0, 6.8 Hz, 1H), 4.59 (q, J = 6.4 Hz, 1H), 3.81 (s, 3H), 2.70–2.58 (m, 2H), 2.39 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 157.2, 129.8, 128.9, 128.4, 127.6, 124.7, 120.9, 117.6, 111.2, 69.5, 55.7, 26.6.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{13}NO_2Na$ 226.0844; found 226.0851.

2d

(E)-3-hydroxy-5-(o-tolyl)pent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.41 (m, 1H), 7.19 – 7.15 (m, 3H), 6.94 (d, J = 15.6 Hz, 1H), 6.11 (dd, J = 16.0, 6.8 Hz, 1H), 4.67 – 4.61 (m, 1H), 2.74 – 2.62 (m, 3H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 135.8, 134.7, 130.9, 130.4, 129.4, 128.3, 126.2, 125.8, 117.1, 68.9, 26.4, 19.7.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{13}NONa$ 210.0895; found 210.0905.

2e

(E)-3-hydroxy-5-(m-tolyl)pent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.17 (m, 3H), 7.10 (d, J = 7.2 Hz, 1H), 6.66 (d, J = 16.0 Hz, 1H), 6.21 (dd, J = 15.6, 6.4 Hz, 1H), 4.64 – 4.57 (m, 1H), 2.72 – 2.64 (m, 2H), 2.58 (s, 1H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 136.7, 133.8, 131.6, 127.7, 126.9, 126.1, 125.8, 122.3, 115.5, 67.2, 24.7, 19.7.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{13}NONa$ 210.0895; found 210.0897.

2f

(E)-5-(4-(dimethylamino)phenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 6.57 (d, J = 15.6 Hz, 1H), 6.00 (dd, J = 15.6, 7.2 Hz, 1H), 4.58 – 4.52 (m, 1H), 2.96 (s, 6H), 2.70 – 2.61 (m, 2H), 2.50 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 150.8, 133.5, 128.1, 123.9, 123.7, 117.7, 112.5, 69.5, 40.7, 26.7.

HRMS (ESI-TOF) $[M+H]^+$ calcd. for $C_{13}H_{17}N_2O$ 217.1336; found 217.1339.

2g

(*E*)-5-(4-fluorophenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.04 – 6.98 (m, 2H), 6.66 (d, J = 16.0 Hz, 1H), 6.14 (dd, J = 16.0, 6.8 Hz, 1H), 4.64 – 4.58 (m, 1H), 2.86 (s, 1H), 2.73 – 2.61 (m, 2H).

¹³C **NMR** (100 MHz, CDCl₃) δ 162.6 (d, J_{C-F} = 246.5 Hz), 131.7 (d, J_{C-F} = 3.3 Hz), 131.6, 128.3 (d, J_{C-F} = 8.0 Hz), 127.7 (d, J_{C-F} = 2.1 Hz), 117.3, 115.6 (d, J_{C-F} = 21.6 Hz), 68.4, 26.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -112.86.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{11}H_{10}FNONa$, 214.0644 found, 214.0651.

2h

(*E*)-5-(2-fluorophenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.44 (m, 1H), 7.31 – 7.24 (m, 1H), 7.15 – 7.04 (m, 2H), 6.88 (d, J = 16.0 Hz, 1H), 6.35 (dd, J = 16.0, 6.8 Hz, 1H), 4.67 (q, J = 5.6 Hz, 1H), 2.77 – 2.65 (m, 2H), 2.62 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 160.0 (d, J_{C-F} = 248.6 Hz), 130.3 (d, J_{C-F} = 5.2 Hz), 129.4 (d, J_{C-F} = 8.5 Hz), 127.5 (d, J_{C-F} = 3.4 Hz), 125.1 (d, J_{C-F} = 3.3 Hz), 123.9 (d, J_{C-F} = 3.6 Hz), 123.0 (d, J_{C-F} = 12.0 Hz), 116.9, 115.5 (d, J_{C-F} = 21.9 Hz), 68.3, 25.9.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -117.33.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{11}H_{10}FNONa$ 214.0644; found 214.0645.

2i

(*E*)-5-(4-chlorophenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 4H), 6.64 (d, J = 15.6 Hz, 1H), 6.19 (dd, J = 16.0, 6.8 Hz, 1H), 4.61 (q, J = 5.6 Hz, 1H), 2.82 (s, 1H), 2.73 – 2.60 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 133.1, 133.0, 130.5, 127.9, 127.7, 126.9, 116.3, 67.4, 25.3.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{11}H_{10}CINONa$ 230.0349; found 230.0347.

2j

(E)-5-(2-bromophenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.19 – 7.14 (m,1H), 7.08 (d, J = 16.0 Hz, 1H), 6.22 (dd, J = 15.6, 6.4 Hz, 1H), 4.80 – 4.65 (m, 1H), 2.79 – 2.67 (m, 2H), 2.57 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 132.6, 130.2, 128.9, 128.1, 126.8, 124.8, 124.4, 121.0, 114.2, 65.6, 23.4.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{11}H_{10}BrNONa$ 273.9843; found 273.9850.

2k

(*E*)-5-(3-bromophenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.43 (dd, J = 8.4, 0.6 Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 6.67 (d, J = 15.6 Hz, 1H), 6.26 (dd, J = 15.6, 6.6 Hz, 1H), 4.69 – 4.64 (m, 1H), 3.01 (s, 1H), 2.76 – 2.66 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 137.8, 131.3, 131.2, 130.3, 129.7, 129.6, 125.5, 122.9, 117.3, 68.3, 26.4.

HRMS (ESI-TOF) [M+Na]⁺ calcd. for C₁₁H₁₀BrNONa 273.9843; found 273.9852.

21

(*E*)-5-(4-bromophenyl)-3-hydroxypent-4-enenitrile: white solid

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.55 (d, J = 16.0 Hz, 1H), 6.13 (dd, J = 16.0, 6.8 Hz, 1H),4.60 – 4.45 (m, 1H), 2.85 (s, 1H), 2.66 – 2.53 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 134.1, 131.4, 131.2, 128.4, 127.9, 121.9, 116.9, 68.0, 25.9.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{11}H_{10}BrNONa$ 273.9843; found 273.9825.

2m

(E)-4-(4-cyano-3-hydroxybut-1-en-1-yl)benzonitrile: brown solid

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 16.0 Hz, 1H), 6.31 (dd, J = 16.0, 6.4 Hz, 1H), 4.66 – 4.60 (m, 1H), 2.71 – 2.59 (m, 2H), 2.35 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.3, 132.6, 132.4, 128.7, 126.9, 118.9, 110.8, 63.1, 29.7.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{10}N_2ONa$ 221.0691; found 221.0712.

2n

(E)-5-(2,4-dichlorophenyl)-3-hydroxypent-4-enenitrile: pale yellow solid

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 2.4 Hz, 1H), 7.17 (dd, J = 8.4, 2.4 Hz, 1H), 6.99 (d, J = 15.6 Hz, 1H), 6.18 (dd, J = 15.6, 6.6 Hz, 1H), 4.68 – 4.60 (m, 1H), 2.80 (s, 1H), 2.72 – 2.62 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 134.1, 133.6, 132.1, 131.1, 129.2, 127.7, 127.5, 127.1, 116.7, 68.0, 25.9.

HRMS (ESI-TOF) [M+Na]⁺ calcd. for C₁₁H₉Cl₂NONa 263.9959; found 263.9959.

20

(*E*)-3-hydroxy-5-(2,4,5-trimethoxyphenyl)pent-4-enenitrile: yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.00 – 6.92 (m, 2H), 6.51 (s, 1H), 6.14 (dd, J = 16.0, 7.2 Hz, 1H), 4.62 (q, J = 6.0 Hz, 1H), 3.93 – 3.84 (m, 9H), 2.79 – 2.65 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 151.7, 150.1, 143.2, 127.3, 126.2, 117.4, 116.0, 110.0, 97.3, 69.2, 56.5, 56.4, 55.9, 26.3.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{14}H_{17}NO_4Na$ 286.1055; found 286.1063.

2p

(*E*)-3-hydroxy-5-(3,4,5-trimethoxyphenyl)pent-4-enenitrile: yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 6.64 – 6.56 (m, 3H), 6.14 (dd, J = 16.0, 6.8 Hz, 1H), 4.62 (q, J = 5.6 Hz, 1H), 3.87 (s, 6H), 3.85 (s, 3H), 2.76 – 2.63 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 153.2, 138.2, 132.8, 131.3, 127.5, 117.2, 103.8, 68.6, 60.9, 56.1, 26.3.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{14}H_{17}NO_4Na$ 286.1055; found 286.1060.

2q

(E)-5-(3,4-dimethylphenyl)-3-hydroxypent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 (s, 1H), 7.14 – 7.07 (m, 2H), 6.62 (d, J = 15.6 Hz, 1H), 6.16 (dd, J = 15.6, 6.8 Hz, 1H), 4.58 (q, J = 5.6 Hz, 1H), 2.72 (s, 1H), 2.70 – 2.62 (m, 2H), 2.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 137.0, 136.8, 133.1, 132.9, 129.9, 127.9, 126.8, 124.2, 117.3, 68.7, 26.3, 19.7, 19.5.

HRMS (ESI-TOF) [M+Na]⁺ calcd. for C₁₃H₁₅NONa 224.1051; found 224.1056.

2r

(*E*)-3-hydroxy-4-methyl-5-phenylpent-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 2H), 7.31 – 7.25 (m, 3H), 6.66 (s, 1H), 4.54 (t, J = 6.4 Hz, 1H), 2.77 – 2.65 (m, 3H), 1.91 (d, J = 1.2 Hz, 3H).

¹³C NMR (100MHz,CDCl₃) δ 134.8, 134.6, 127.1, 126.4, 125.8, 125.1, 115.7, 71.3, 22.8, 11.4.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{13}NONa$ 210.0895; found 210.0899.

2s

(E)-3-hydroxy-5-(naphthalen-1-yl)pent-4-enenitrile: pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.59 – 7.42 (m, 5H), 6.26 (dd, J = 15.6, 6.8 Hz, 1H), 4.74 (q, J = 6.0 Hz, 1H), 2.79 – 2.67 (m, 2H), 2.51 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 133.6, 133.4, 131.3, 131.1, 130.3, 128.8, 128.7, 126.4, 126.0, 125.6, 124.3, 123.6, 117.2, 68.8, 26.5.

HRMS (ESI-TOF) [M+Na]⁺ calcd. for C₁₅H₁₃NONa 246.0895; found 246.0898.

2t

(E)-3-hydroxy-5-(naphthalen-2-yl)pent-4-enenitrile: pale yellow solid

¹**H NMR** (600 MHz, CDCl₃) δ 7.78 – 7.73 (m, 3H), 7.69 (s, 1H), 7.54 – 7.51 (m, 1H), 7.45 – 7.43 (m, 2H), 6.79 (d, J = 16.2 Hz, 1H), 6.29 (dd, J = 16.2, 6.6 Hz, 1H), 4.65 – 4.58 (m, 1H), 2.94 (s, 1H), 2.69 – 2.60 (m, 2H).

¹³C NMR (150 MHz, CDCl₃) δ 133.3, 133.2, 132.9, 132.8, 128.3, 128.2, 128.0, 127.6, 127.1, 126.4, 126.2, 123.3, 117.4, 68.5, 26.3.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{15}H_{13}NONa$ 246.0895; found 246.0900.

2u

(*E*)-3-hydroxy-5-(thiophen-2-yl)pent-4-enenitrile: brown oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, J = 4.8 Hz, 1H), 7.01 (d, J = 3.2 Hz, 1H), 6.97 (dd, J = 4.8, 3.6 Hz, 1H), 6.84 (d, J = 15.6 Hz, 1H), 6.05 (dd, J = 15.6, 6.4 Hz, 1H), 4.62 – 4.57 (m, 1H), 2.73 – 2.61 (m, 2H), 2.26 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.4, 127.5, 127.2, 127.1, 126.1, 125.4, 117.0, 68.5, 26.3.

HRMS (ESI-TOF) [M+Na]⁺ calcd. for C₉H₉NOSNa 202.0303; found 202.0305.

2v

(*E*)-5-(furan-2-yl)-3-hydroxypent-4-enenitrile: brown oil

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (d, J = 1.6 Hz, 1H), 6.46 (dd, J = 16.0, 0.8 Hz, 1H), 6.31 (dd, J = 3.2, 2.0 Hz, 1H), 6.24 (d, J = 3.6 Hz, 1H), 6.08 (dd, J = 16.0, 6.4 Hz, 1H), 4.55 - 4.49 (m,1H), 2.64 – 2.52 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.3, 142.6, 126.3, 120.7, 117.2, 111.5, 109.7, 68.1, 26.3.

HRMS (ESI-TOF) [M+Na]⁺ calcd. for C₉H₉NO₂Na 186.0531; found 186.0534.

2w

(*E*)-3-hydroxy-7-phenylhept-4-enenitrile: pale yellow oil

¹**H NMR** (600 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.21 – 7.16 (m, 3H), 5.87 – 5.81 (m, 1H), 5.53 (dd, J = 15.0, 6.6 Hz, 1H), 4.38 (q, J = 6.0 Hz, 1H), 2.72 (t, J = 7.8Hz, 2H), 2.58 – 2.49 (m, 2H), 2.42 – 2.37 (m, 2H), 2.09 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 141.2, 133.9, 129.9, 128.4, 128.3, 126.0, 117.2, 68.5, 35.1, 33.7, 26.2.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{13}H_{15}NONa$, 224.1051 found, 224.1056.

2x

(E)-3-hydroxydec-4-enenitrile: pale yellow oil

¹**H NMR** (500 MHz, CDCl₃) δ 5.86 – 5.79 (m, 1H), 5.54 (dd, J = 15.5, 7.0 Hz, 1H), 4.45 – 4.38 (m, 1H), 2.63 – 2.53 (m, 2H), 2.09 – 2.03 (m, 3H), 1.43 – 1.36 (m, 6H), 0.95 – 0.90 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 135.9, 129.7, 117.9, 69.3, 32.6, 31.9, 29.1, 26.9, 23.0, 14.6.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{10}H_{17}NONa$ 190.1208; found 190.1218.

2y

(E)-3-hydroxydodec-4-enenitrile: pale yellow oil

¹**H NMR** (400 MHz, CDCl₃) δ 5.87 – 5.79 (m, 1H), 5.58 – 5.51 (m, 1H), 4.48 – 4.38 (m, 1H), 2.64 – 2.53 (m, 2H), 2.20 – 2.00 (m, 3H), 1.44 – 1.28 (m, 10H), 0.89 (t, J = 6.4 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 135.4, 129.1, 117.3, 68.7, 32.0, 31.7, 29.1, 28.8, 26.3, 22.6, 14.1.

HRMS (ESI-TOF) $[M+Na]^+$ calcd. for $C_{12}H_{21}NONa$ 218.1521; found 218.1525.

3

(E)-3-hydroxy-5-phenylpent-4-enoic acid: white solid

¹**H NMR** (500 MHz, CD₃CN) δ 7.41 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.27 – 7.23 (m, 1H), 6.63 (d, J = 16.5 Hz, 1H), 6.30 (dd, J = 16.0, 6.0 Hz, 1H), 4.65 – 4.60 (m, 1H), 3.49 (s, 1H), 2.59 (dd, J = 15.5, 4.5 Hz, 1H), 2.51 (dd, J = 15.5, 8.5 Hz, 1H).

¹³C NMR (125 MHz, CD₃CN) δ 173.2, 137.8, 132.3, 130.5, 129.6, 128.6, 127.3, 69.4, 42.4.

4

(E)-3-hydroxy-5-phenylpent-4-enamide: white solid

¹**H NMR** (400 MHz, DMSO-d₆) δ 7.42 – 7.38 (m, 2H), 7.32 (t, J = 7.2 Hz, 3H), 7.22 (t, J = 7.2 Hz, 1H), 6.83 (s, 1H), 6.54 (d, J = 16.0 Hz, 1H), 6.30 (dd, J = 15.6, 5.2 Hz, 1H), 5.12 (d, J = 4.8 Hz, 1H), 4.55 – 4.48 (m, 1H), 2.34 – 2.23 (m, 2H).

¹³C NMR (100 MHz, DMSO-d₆) δ 172.8, 137.3, 133.9, 129.1, 128.5, 127.8, 126.7, 68.7, 44.1.

5a

(E)-3-(2-hydroxy-5-methylphenyl)-5-phenylpent-4-enenitrile: pale yellow gum

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.26 - 7.21 (m, 1H), 7.00 (s, 1H), 6.93 (dd, J = 8.0, 1.0 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 6.57 (d, J = 16.0 Hz, 1H), 6.48 (dd, J = 16.0, 7.5 Hz, 1H), 5.10 (s, 1H), 4.13 (q, J = 7.0 Hz, 1H), 2.90 (d, J = 7.0 Hz, 2H), 2.26 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 150.7, 136.9, 131.9, 130.5, 128.6, 128.5, 128.4, 127.7, 126.7, 126.5, 118.7, 115.8, 40.1, 22.7, 20.6.

5b

(*E*)-5-(2-hydroxy-5-methylphenyl)-5-phenylpent-3-enenitrile: pale yellow gum

¹**H NMR** (500 MHz, CDCl₃) δ 7.30 (d, J = 7.5 Hz, 2H), 7.26 – 7.21 (m, 2H), 7.19 (d, J = 7.0 Hz, 2H), 6.88 (s, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.35 (dd, J = 15.5, 7.0 Hz, 1H), 5.34 – 5.27 (m, 1H), 5.00 (d, J = 7.0 Hz, 1H), 4.69 (s, 1H), 3.14 (d, J = 5.5 Hz, 2H), 2.26 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 150.8, 141.6, 137.1, 130.0, 129.9, 129.2, 129.0, 128.6, 128.5, 127.9, 126.8, 126.5, 119.4, 115.9, 47.3, 20.6, 20.4.

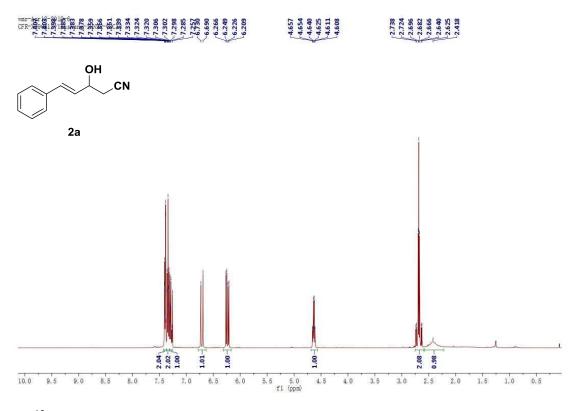
6a

2-(2-benzyl-5-methylbenzofuran-3-yl)acetonitrile: pale yellow gum

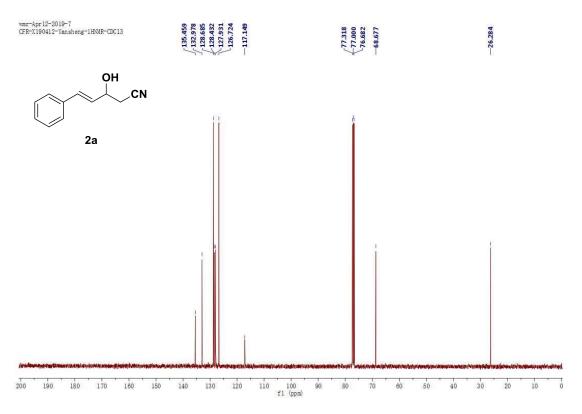
¹**H NMR** (500 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 7.26 – 7.22 (m, 3H), 7.09 (dd, J = 8.5, 1.0 Hz, 1H), 4.14 (s, 2H), 3.60 (s, 2H), 2.45 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 154.1, 152.3, 136.4, 132.6, 128.8, 128.5, 127.6, 125.3, 120.6, 118.3, 110.8, 104.5, 32.8, 21.3, 12.6.

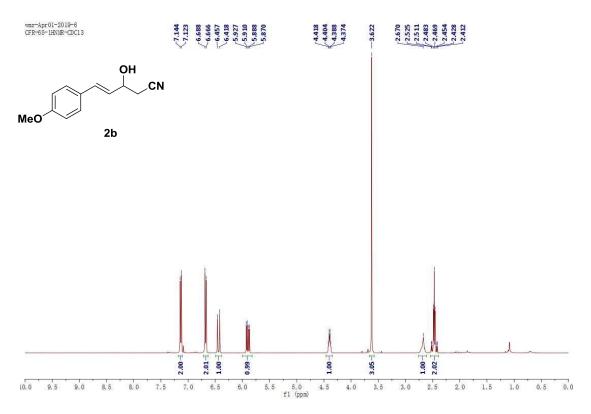
6b

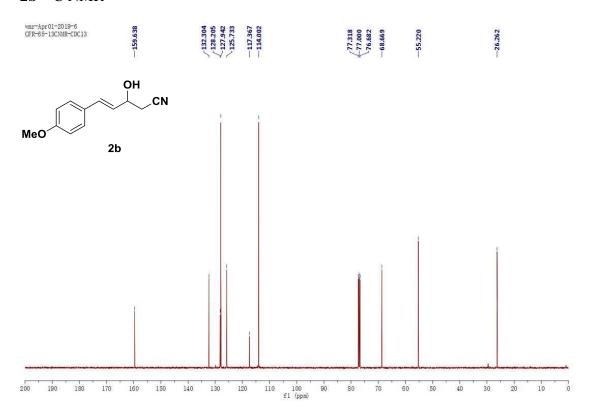

3-(5-methyl-3-phenylbenzofuran-2-yl)propanenitrile: pale yellow gum

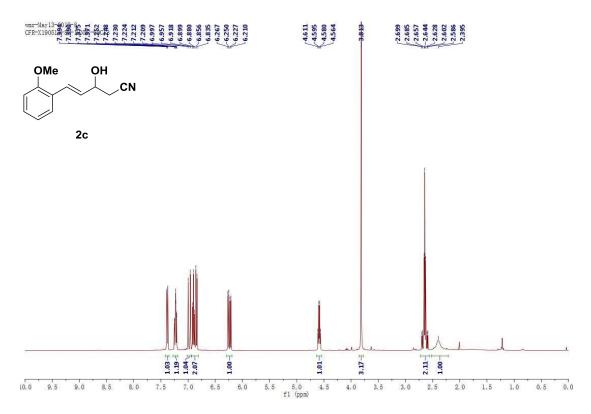
¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.28 (m, 4H), 7.27 – 7.21 (m, 2H), 7.06 (dd, J = 8.5, 1.0 Hz, 1H), 6.48 (s, 1H), 3.11 (t, J = 7.5 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.42 (s, 3H).

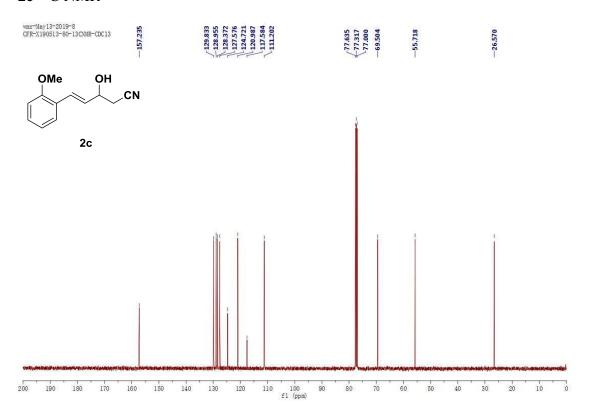

¹³C NMR (150 MHz, CDCl₃) δ 154.1, 153.2, 136.4, 132.3, 128.3, 126.9, 125.7, 118.5, 116.8, 110.4, 103.6, 24.8, 21.2, 16.2.

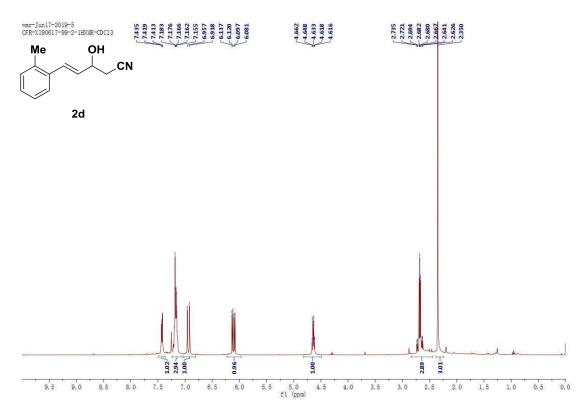
VI. ¹H and ¹³C NMR

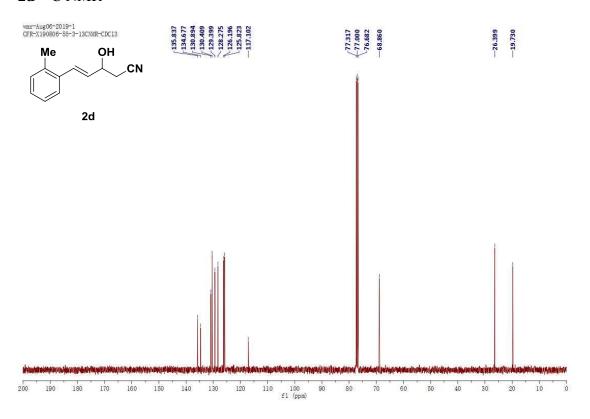

2a-¹H NMR

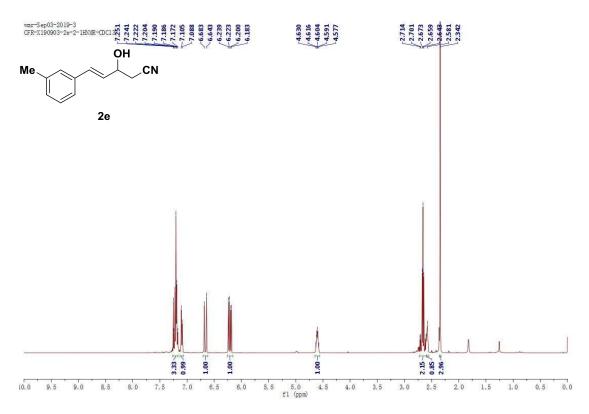

2a-¹³C NMR

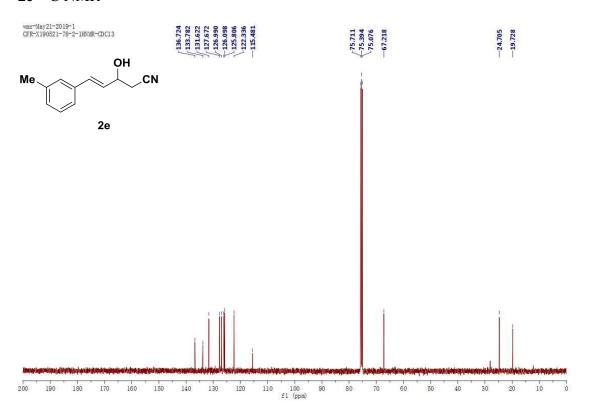

2b-¹H NMR

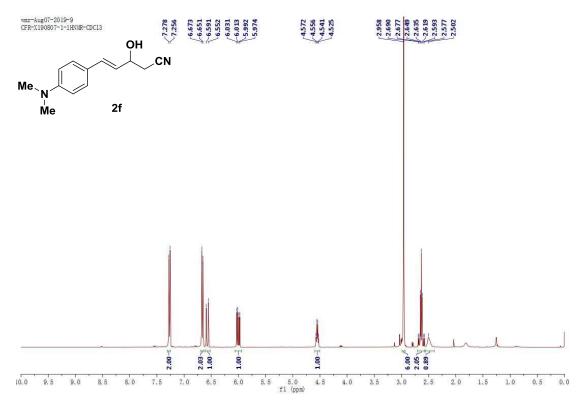

2b-¹³C NMR

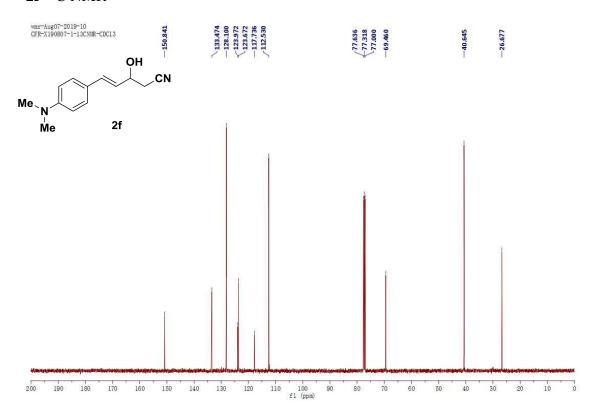

2c-¹H NMR

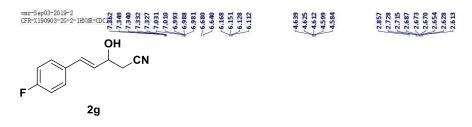

2c-¹³C NMR

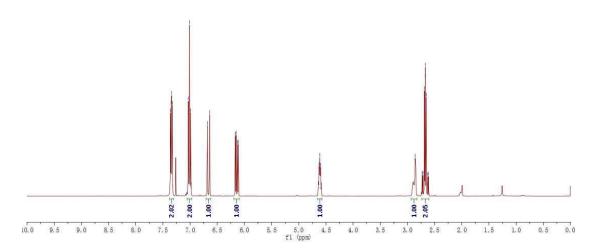

2d-¹H NMR


2d-¹³C NMR

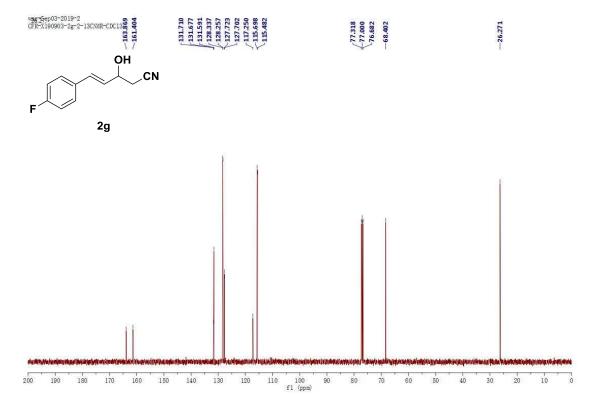

2e-¹H NMR


2e-¹³C NMR

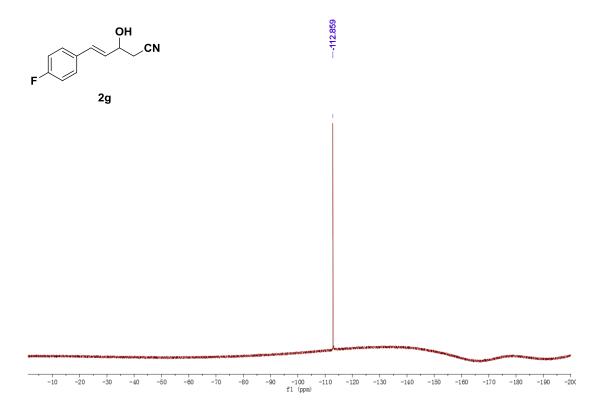

2f-¹H NMR

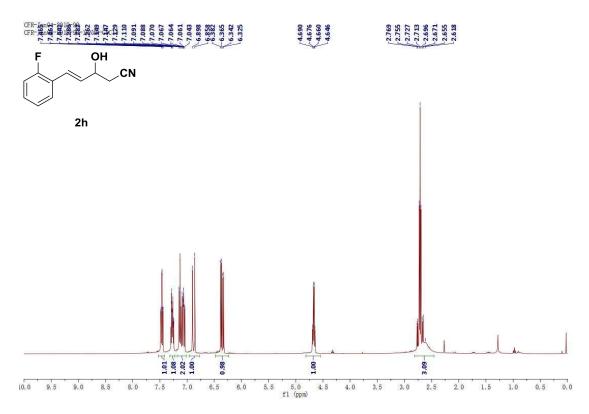


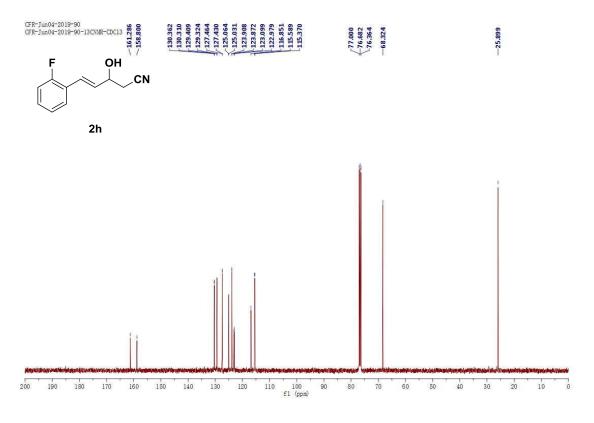
2f-¹³C NMR

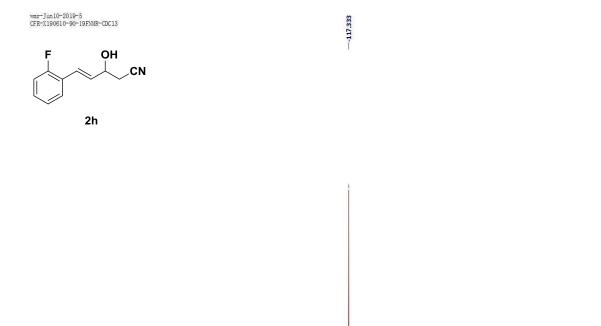


2g-¹H NMR

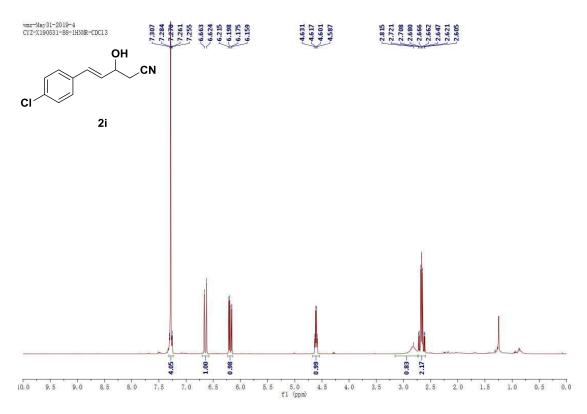



2g-¹³C NMR

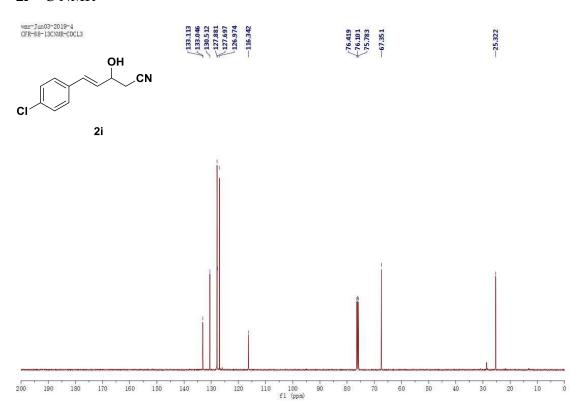



2h-¹H NMR

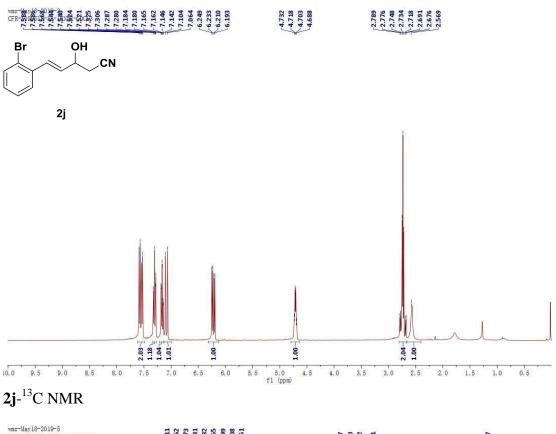
2h-¹³C NMR

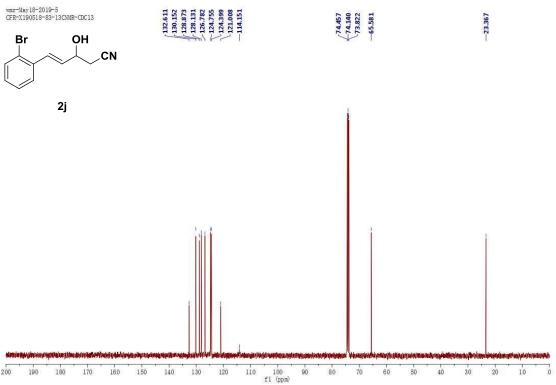


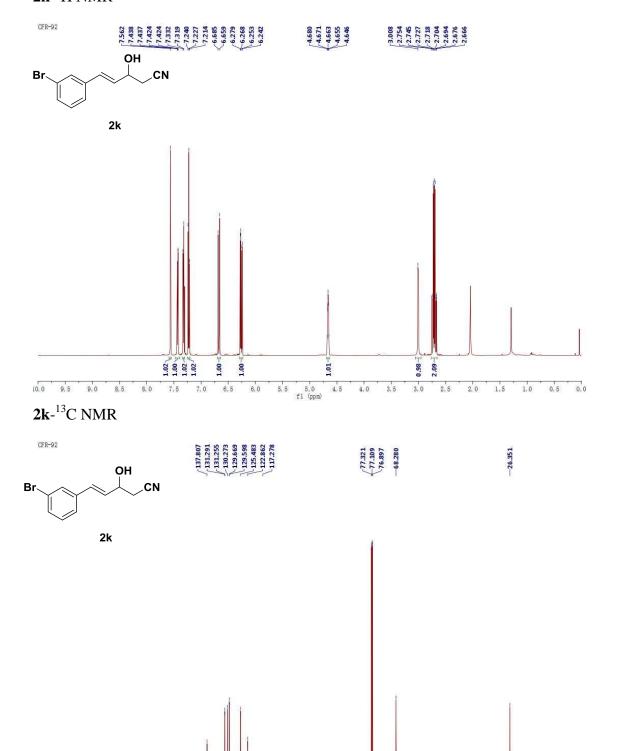
2h-¹⁹F NMR



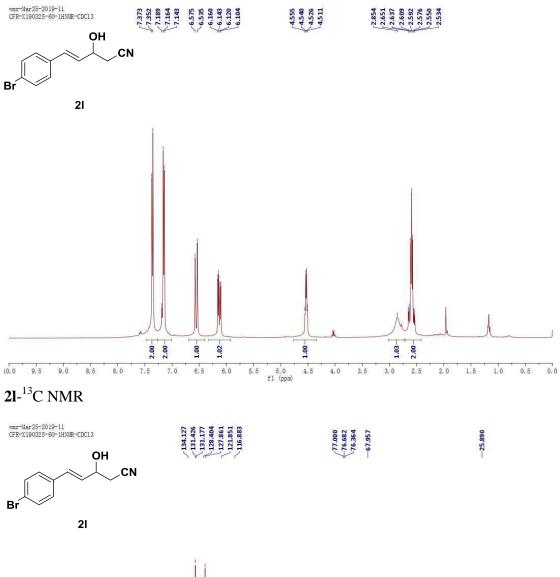
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

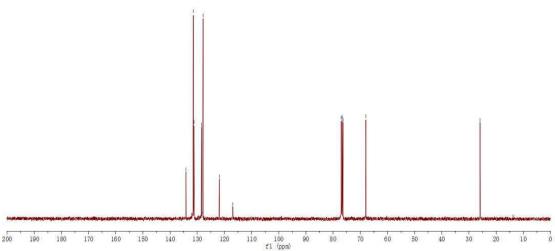

2i-¹H NMR


2i-¹³C NMR

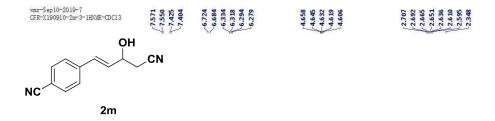

2j-¹H NMR

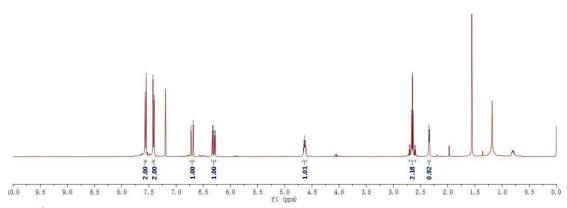
110 100 90 fl (ppm)

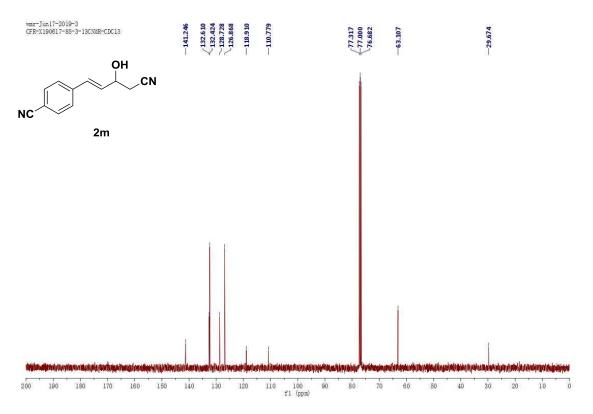

140


170

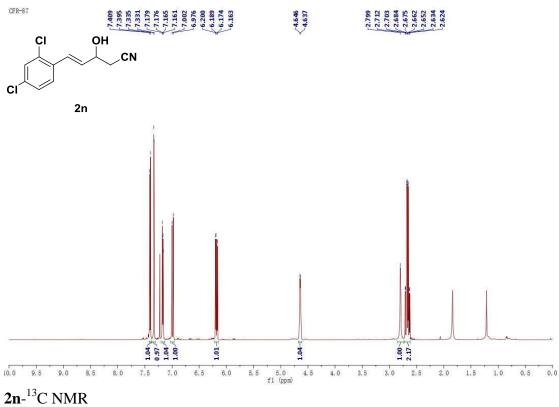
160 150

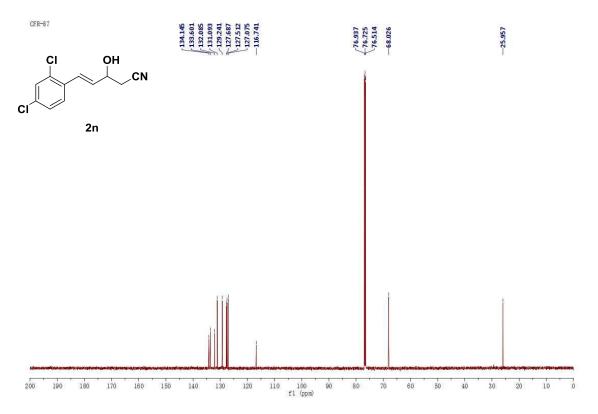

130

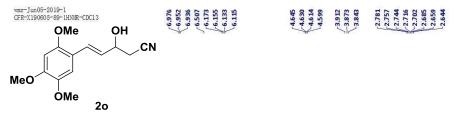

21-¹H NMR

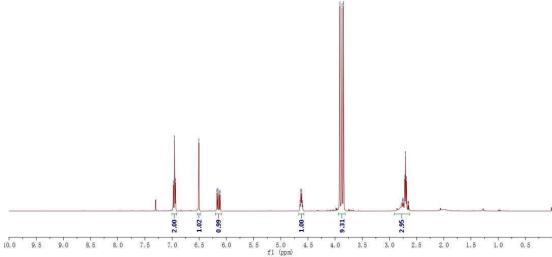


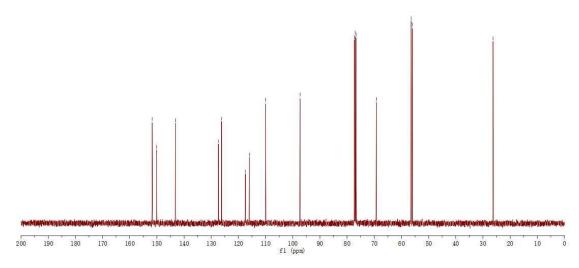
2m-¹H NMR

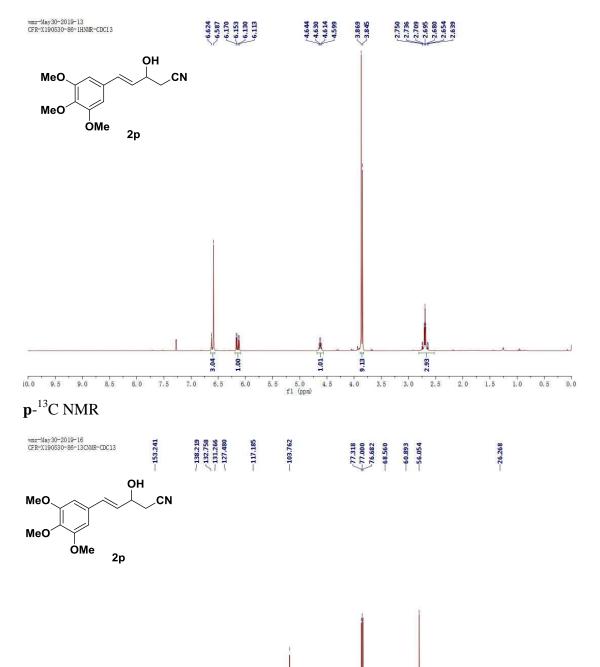



2m-¹³C NMR

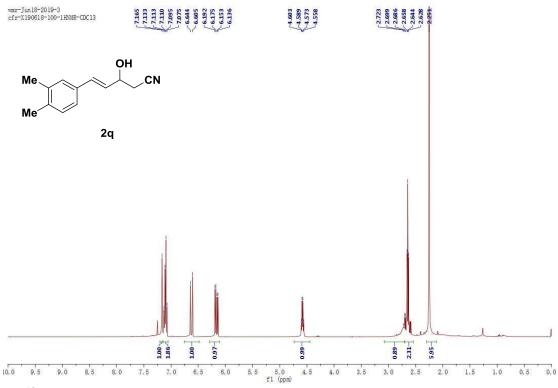




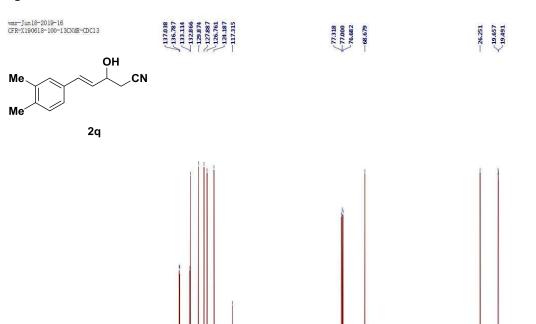

20-¹H NMR



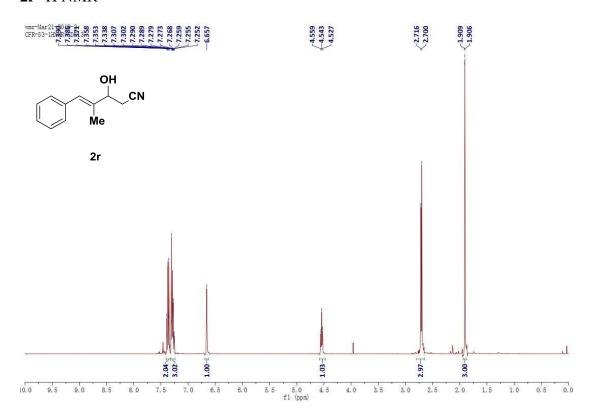
20-¹³C NMR



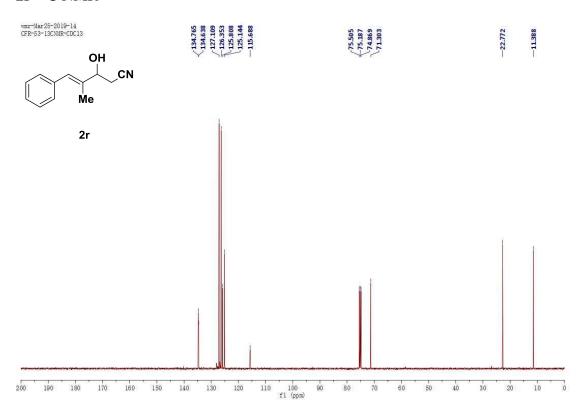
110 100 fl (ppm)



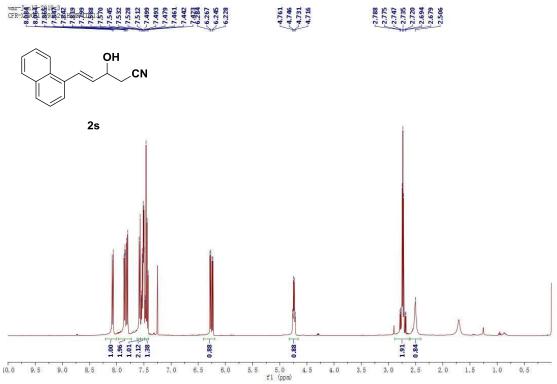
2q-¹³C NMR

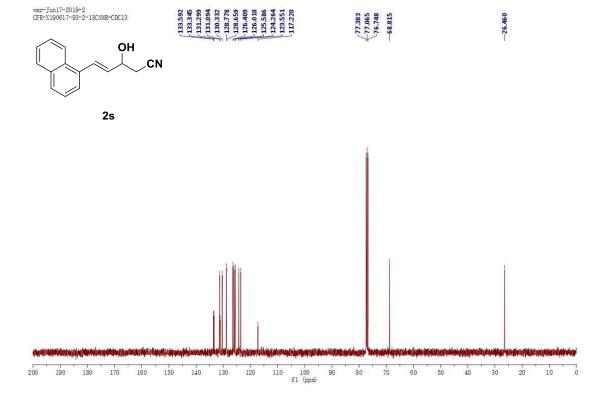

170 160 150

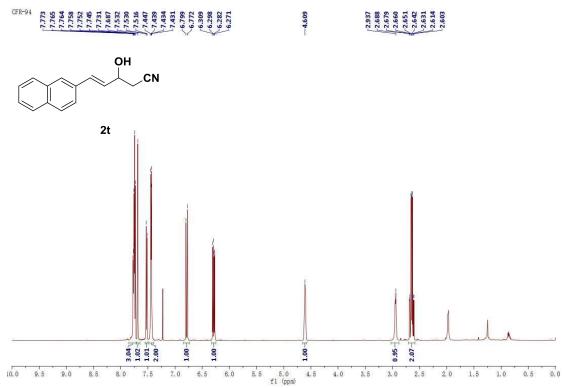
140

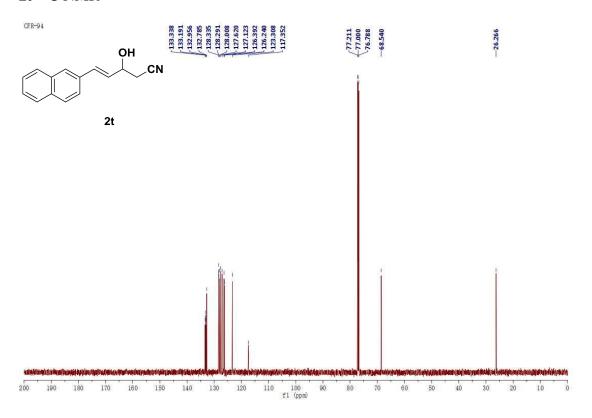


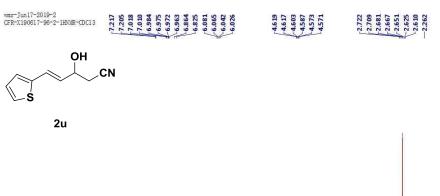
110 100 90 fl (ppm)

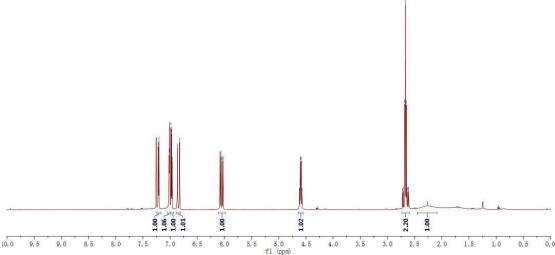

2r-¹H NMR


2r-¹³C NMR

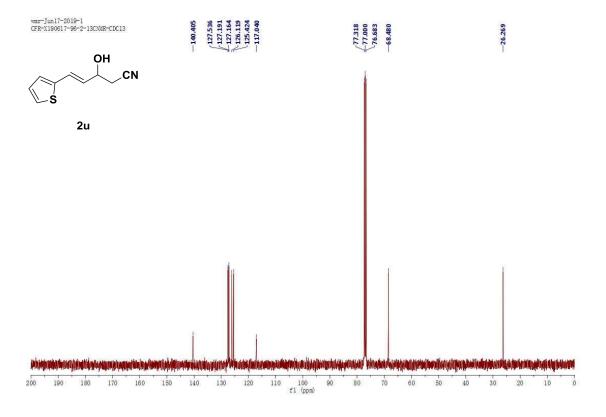

2s-¹H NMR


2s-¹³C NMR

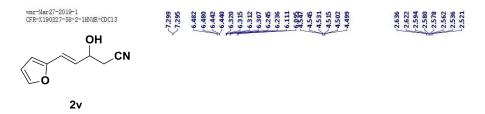

2t-¹H NMR

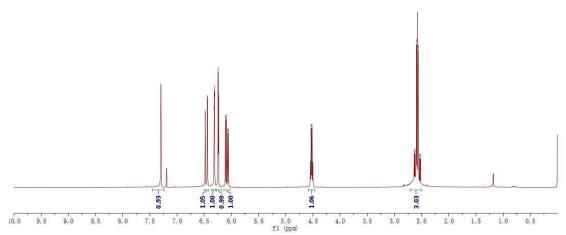


2t-13C NMR

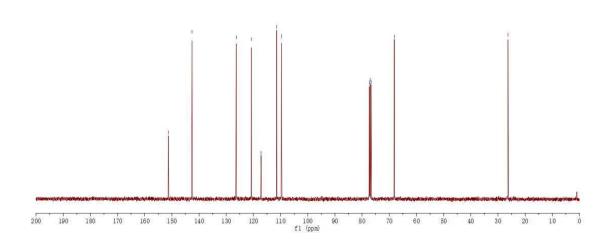


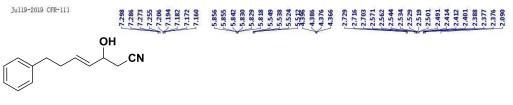
2u-1H NMR

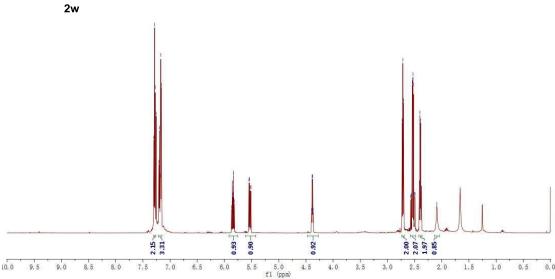


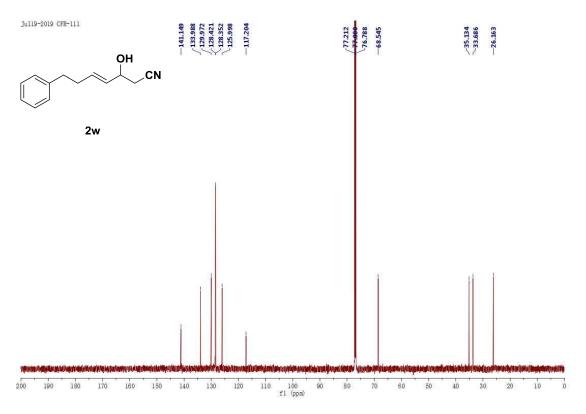


2u-¹³C NMR

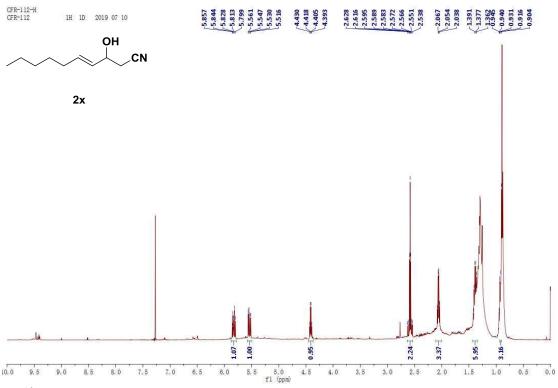

2v-¹H NMR

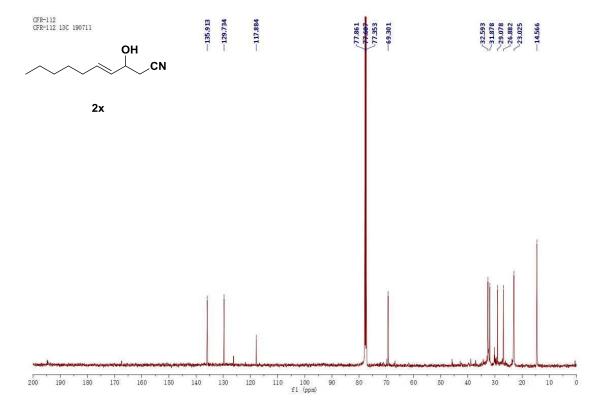


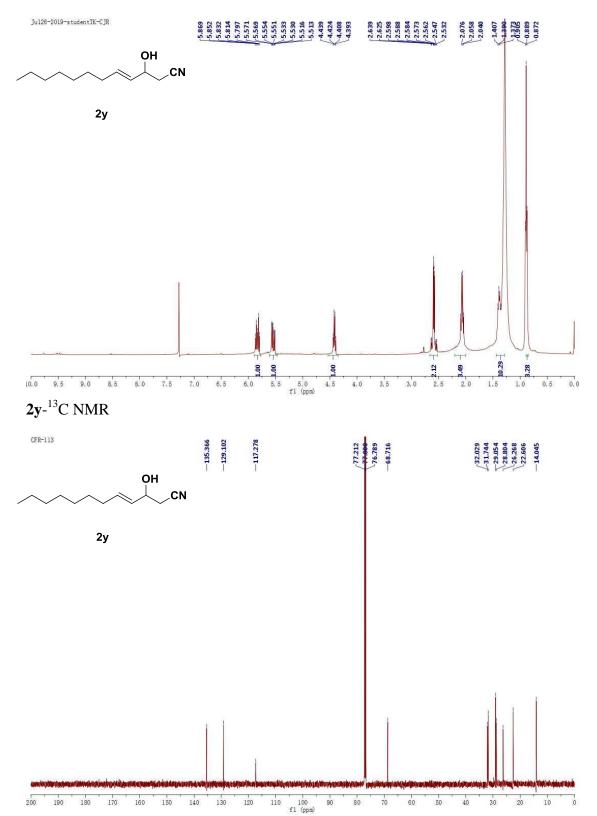

2v-¹³C NMR

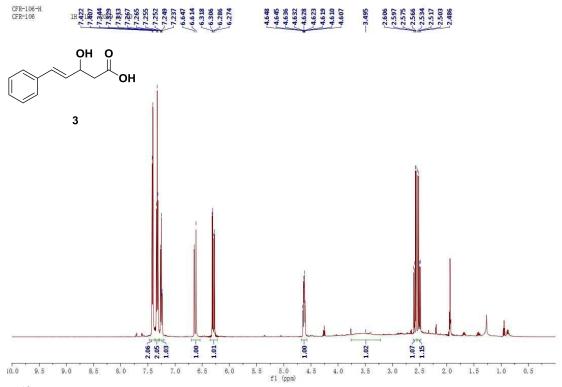


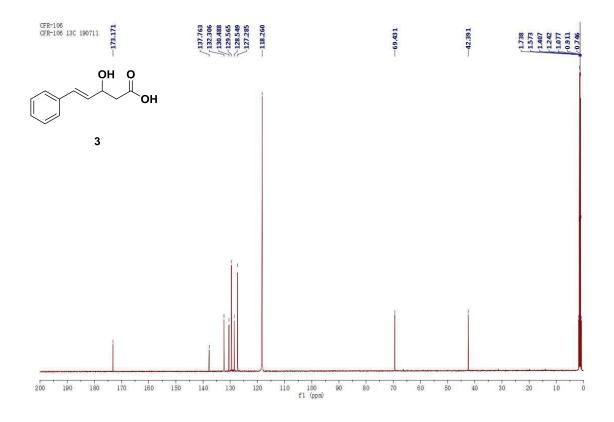
2w-¹H NMR

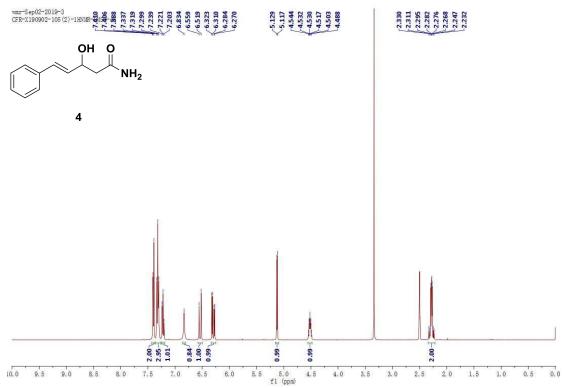


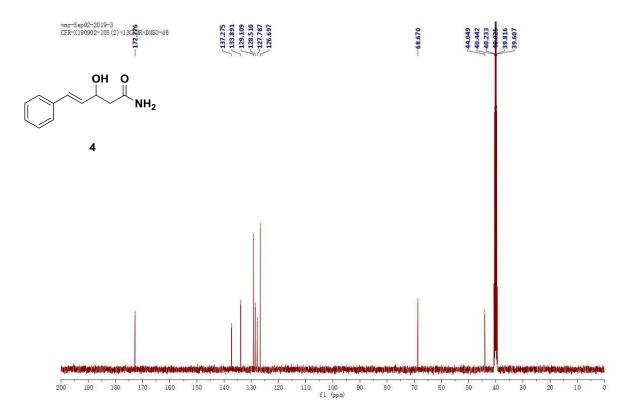

2w-¹³C NMR

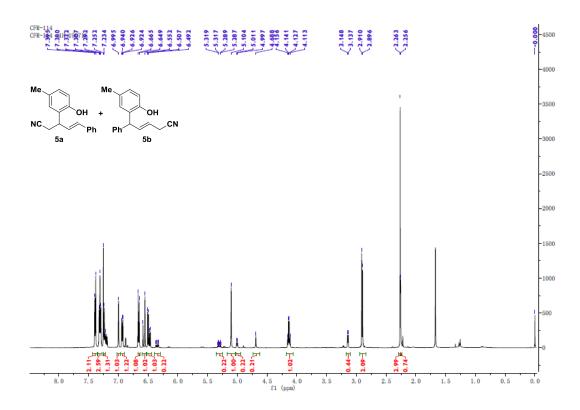


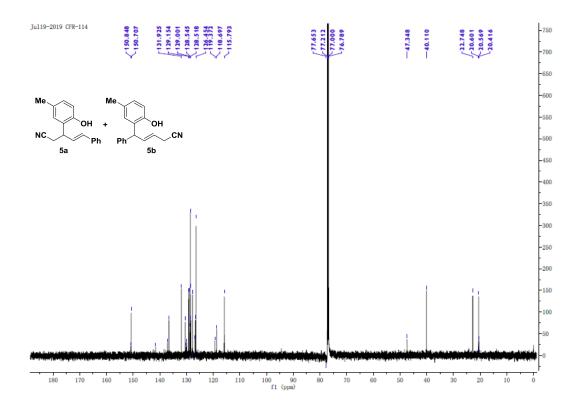


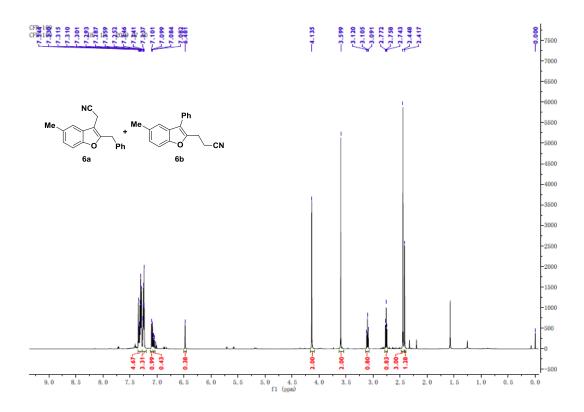


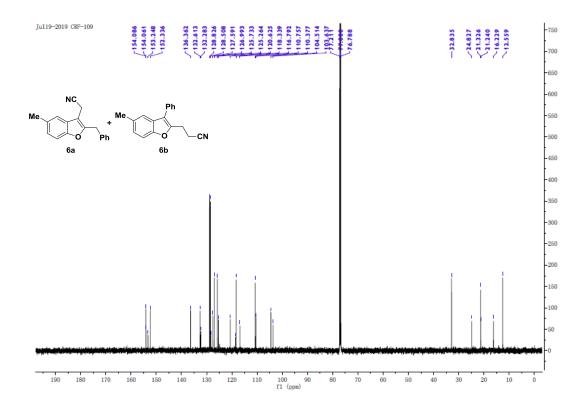

3-¹H NMR


3-13C NMR


4-¹H NMR


4-¹³C NMR


5a+5b ¹H NMR


5a+5b ¹³C NMR

6a+6b ¹H NMR

6a+6b ¹³C NMR

VII. References

- 1. Katritzky, A. R.; Pilarski, B.; Urogdi, L. Synthesis, 1989, 949-950.
- 2. Pamies, O.; Backvall, J.-E. Adv. Synth. Catal. 2002, 344, 947-952.
- 3. Rehan, M.; Nallagonda, R.; Das, B. G.; Meena, T.; Ghorai, P. *J. Org. Chem.* **2017**, 82, 3411–3424.