Supporting Information

HKOCI-4: A Rhodol-based Yellow Fluorescent Probe for Detection of Hypochlorous Acid in Living Cells and Tissues

Xiaoyu Bai,^a Bowei Yang, ^a Hansen Chen,^b Jiangang Shen^b and Dan Yang^{*a}

^{*a*} Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.

^b School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, P. R. China

Table of Contents

1. General methods	S2									
2. Preparation of HKOCI-4, HKOCI-4r and HKOCI-4m										
3. Absorption spectra of HKOCI-4 before and after treatment with HOCl										
4. Detection of products for the reaction of HKOCl-4 with HOCl										
5. Stability of HKOCl-4 toward pH changes	S14									
6. Characterization of HKOCl-4r and HKOCl-4m in chemical system										
7. Cytotoxicity assay of HKOCl-4										
8. Monitoring HOCl in PMA or LPS/IFN- γ stimulated RAW264.7 cells with HKOCl-4r in										
lower magnification	S17									
9. Rapid time lapse monitoring of HKOCl-4r in PMA stimulated RAW264.7 cells	S18									
10. Colocalization of HKOCI-4m and Mito Tracker Green FM										
11. NMR spectra	S20									
12. References	S36									

1. General methods

Compound characterization

Xanthine, xanthine oxidase, SNP (sodium nitroferricyanide(III) dihydrate), 2,2'-azobis(2amidinopropane) dihydrochloride, *tert*-butyl hydroperoxide solution, hydrogen peroxide solution and *N*-acetylcysteine (NAC) were purchased from Sigma-Aldrich. Peroxynitrite was synthesized as reported.¹ Peroxynitrite solution was split into small aliquots and frozen at below –18 °C. All other chemicals used were of analytical grade and were purchased from Acros or Sigma-Aldrich. NMR spectra were recorded in deuteriochloroform unless otherwise stated, with tetramethylsilane (TMS) as internal reference at ambient temperature, mainly on a Bruker Avance DPX 300 Fourier Transform Spectrometer operating at 300 MHz for ¹H and at 75 MHz for ¹³C and Bruker Avance DPX 400 Fourier Transform Spectrometer operating at 400 MHz for ¹H and100 MHz for ¹³C. Mass spectra were recorded with a Thermo Scientific DFS High Resolution Magnetic Sector mass spectrometer for both low resolution and high resolution mass analysis.

Fluorometric analysis

All fluorescence measurements were carried out at room temperature on a Hitachi F-7000 fluorescence spectrophotometer. The testing solutions of the probe were excited at 530 nm with the excitation and emission slit widths set at 2.5 nm. The emission spectrum was scanned from 540 to 600 nm at 1200 nm/min and the photomultiplier voltage was set at 800 V. The probe was dissolved in DMF to make a 5 mM stock solution, which was diluted to the required concentration of testing solution for measurement. Aliquots of analyte solutions were slowly added to probe testing solution (5 mL) with vigorous stirring at room temperature in the dark. The volume changes after addition of analyte solutions were less than 1%. The fluorescence intensities of the testing solutions were recorded after 30 min.

Preparation of analyte solutions

HOCI: NaOCI solution (5 mM) was added directly. ***OH**: Hydroxyl radical was generated by Fenton reaction or TCBQ/H₂O₂. To generate *****OH, ferrous solution was added to H₂O₂ solution. The concentration of *****OH was equal to the Fe (II) concentration (5 mM). **ROO***: Alkylperoxyl radical was generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (5 mM), which was added into the testing solutions directly. *****O₂: Singlet oxygen was generated from 3,3'-(naphthalene-1,4-diyl) dipropionic acid (5 mM). **H₂O₂**: H₂O₂ solution (5 mM) was added directly. **TBHP**: *tert*-Butyl hydroperoxide solution (5 mM) was added into the testing solutions directly. *****NO: Nitric oxide was generated from SNP (sodium nitroferricyanide(III) dihydrate) (5 mM). O₂^{•-}: Superoxide was generated from xanthine/xanthine oxidase system. Xanthine oxidase (0.01 U/mL) was added before addition of xanthine (30 mM). **ONOO**⁻: Peroxynitrite solution was synthesized according to literature report.¹ Briefly, a mixture of sodium nitrite (0.6 M) and hydrogen peroxide (0.7 M) was acidified with hydrochloric acid (0.6 M), and sodium hydroxide (1.5 M) was added within 1–2 s to make the solution alkaline. The excess hydrogen peroxide was removed by passing the solution through a short column of manganese dioxide. The resulting solution was split into small aliquots and stored at below –18 °C. The aliquots were thawed immediately before use, and

the concentration of peroxynitrite was determined by measuring the absorption of the solution at 302 nm. The extinction coefficient of peroxynitrite solution in 0.1 M NaOH is 1670 M^{-1} cm⁻¹ at 302 nm.

Cell culture

RAW264.7 cells, a mouse monocytic macrophage cell line, were obtained from ATCC (American Type Culture Collection), and maintained in DMEM (Dulbecco's Modified Eagle Medium) supplemented with 0.5 mM sodium pyruvate, 10% heat-inactivated FBS (fetal bovine serum) and 1% penicillin/streptomycin. For regular confocal imaging, RAW264.7 cells at 80% confluence were harvested by trypsinization for cell counting.

Imaging of endogenous HOCl in RAW264.7 macrophages

RAW264.7 cells were then seeded into a 35-mm confocal culture dish (Mat-Tek) at a density of about 2×10^5 cells/mL in 2-mL seeding volume and cultured overnight. For untreated group, cells were incubated with **HKOCI-4r** (5 µM) or **HKOCI-4m** (5 µM) for 30 min. For PMA (500 ng/mL) treated group, PMA was co-incubated with probes for 30 min. For LPS (500 ng/mL)/IFN- γ (50 ng/mL) stimulated group, LPS/IFN- γ were added and incubated for 16 h and then stained with **HKOCI-4r** or **HKOCI-4m** for 30 min. For the scavenger group, NAC (1 mM) was preloaded for 20 min before probe staining. For the MPO inhibitor treatment group, ABAH (50 µM) was added in medium for 1 h before stimulants were introduced. Cells were then subjected to fluorescence imaging by Zeiss LSM780 Inverted Confocal Microscope. For confocal imaging of the distribution of **HKOCI-4m**, cells were stained with **HKOCI-4m** (10 µM) together with the Mito Tracker Green FM (100 nM) for 30 min.

Rat Middle cerebral artery occlusion (MCAO) model

Male Sprague-Dawley (SD) rats weighing from 270-290 g were obtained from the Laboratory Animal Unit, The University of Hong Kong. Animals were housed in temperature and humidity controlled environment under 12-hour light/dark cycle, with free access to food and water. Animal experiment protocol was approved and regulated by the Committee on the Use of Live Animals in Teaching and Research (CULATR), The University of Hong Kong.

To mimic ischemic stroke, we adopted middle cerebral artery occlusion (MCAO) 5 hours plus reperfusion 19 hours model. Briefly, rats were anesthetized with 4% isofluorane and maintained at 2% isofluorane via inhalation. Silicon coated suture (Doccol, Redlands, CA, USA) was inserted from the external carotid artery (ECA) to the internal carotid artery (ICA) to occlude the middle cerebral artery (MCA). Sham control rats underwent the same anesthesia and surgical procedure but without MCA occlusion.

Probe staining in rat brain tissue

At 24 hours after ischemic onset or sham operation, rats were sacrificed after deep anesthesia. Brain samples were collected and immediately subjected to the frozen section. Brain slices at 6 mm away from the frontal tip were then stained with the HKOCl-4r probe at a concentration of 10 uM for 30 min at room temperature. The brain slices were then fixed with 4% PFA. Fluorescence was observed in a confocal microscope Carl Zeiss LSM 780.

2. Preparation of HKOCl-4

Scheme S1. Synthesis of HKOCI-4. Reagents and conditions: (a) CuI, *N*,*N*-dimethylglycine hydrochloride, Cs₂CO₃, 1,4-dioxane, 100 °C, 24 h, 95%; (b) HBr, acetic acid, reflux, 12 h, 91%; (c) *p*-TsOH, acetone, rt, 12 h, 87%; (d) Pd/C, H₂, EtOH, rt, 12 h; 97%; (e) HBr, HOAc, reflux, 12 h, 87%; (f) ethyl 4-bromobutyrate, proton sponge, NaI, MeCN, reflux, 12 h, 30%; (g) phthalic anhydride, toluene, reflux, 24 h, 50 %; (h) **3**, TFA, 100 °C, 3 h, 55 %; (i) NaOH, MeOH/H₂O, rt, 4 h, 83%; (j) HN(CH₂COOMe)₂, HOAt, EDC•HCl, DMF, rt, 24 h, 64%; (k) Boc₂O, CH₂Cl₂, rt, 12 h, then (4-carboxybutyl)triphenylphosphonium bromide, EEDQ, CH₂Cl₂, rt, 24 h, 90%; (l) TFA, CH₂Cl₂, rt, 3 h, Amberlite IRA-400 (Cl), rt, 30 min, then sat. K₂CO₃ (aq), 10 min, 85%; (m) **9**, HOAt, EDC•HCl, DMF, rt, 12 h, 34%.

Compound **1** was synthesized according to the reported method.² The mixture of 3-methoxyphenol (2.09 mL, 19.8 mmol), compound **1** (3.000 g, 9.9 mmol), CuI (188 mg, 0.99 mmol), glycine (415 mg, 2.97 mmol) and Cs₂CO₃ (6.450 g, 19.8 mmol) were dissolved in anhydrous 1,4-dioxane in a sealed flask. The reaction mixture was heated to 90 °C and stirred for 24 h under Ar. After cooled to room temperature, the reaction mixture was diluted with EtOAc, and washed sequentially with 1N HCl, water and brine. The organic layer was then dried over anhydrous magnesium sulfate and concentrated *in vacuo*. The target compound **2** as isolated as a pale yellow solid (2.800 g, 95%) after flash column chromatography on silica gel by using EtOAc:Hexane (1:9) as an eluent. ¹H NMR (300 MHz, CDCl₃) δ 7.28–7.22 (m, 1H), 6.97 (s, 2H), 6.76–6.63 (m, 1H), 6.62–6.54 (m, 2H), 3.88 (s, 3H), 3.79 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 157.0, 153.1, 147.8, 130.1, 129.4, 118.7, 111.0, 109.5, 105.1, 60.4, 55.0; LRMS (EI, 20 eV) *m/z* (%) 298 (M⁺; 100), 283 (92); HRMS (EI): calcd for C₁₄H₁₂O₃Cl₂ (M⁺): 298.0163, found: 298.0159.

Compound **2** (2.8 g, 9.3 mmol) was dissolved in a mixture of HBr (48% wt in water) and HOAc (40 mL, 1:1). The reaction mixture was refluxed overnight. After cooled to room temperature, the resulting mixture was treated with H₂O, extracted with EtOAc, washed sequentially with H₂O and brine. The organic layer was then dried over anhydrous magnesium sulfate and concentrated *in vacuo*. The target compound **3** was isolated as a pale yellow solid (2.0 g, 79%) after flash column chromatography on silica gel by using EtOAc:Hexane (3:7) as an eluent. ¹H NMR (400 MHz, CD₃OD) δ 7.06 (t, *J* = 8.1 Hz, 1H), 6.88 (s, 2H), 6.54 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.44–6.35 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 158.6, 158.5, 149.8, 145.6, 130.7, 122.8, 119.8, 111.1, 109.9, 106.0; LRMS (EI, 20 eV) *m/z* (%) 270 (M⁺; 100), 272 (66); HRMS (EI): calcd for C₁₂H₈O₃Cl₂ (M⁺): 269.9850, found: 269.9845.

To a solution 3-methoxyaniline (5.00 g, 40.6 mmol) in acetone (150 mL) was added *p*-TsOH (1.55 g, 8.1 mmol). The solution was stirred at room temperature overnight under Ar, then concentrated *in vacuo*. The target compound **4** was isolated as a brown sticky solid (6.7 g, 81% yield) after flash column chromatography on silica gel by using Et₂O:Hexane (2:8) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, *J* = 8.3 Hz, 1H), 6.33 (d, *J* = 7.8 Hz, 1H), 6.15 (s, 1H), 5.29 (s, 1H), 3.88 (br, 1H), 3.82 (s, 3H), 2.08 (s, 3H), 1.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 144.5, 127.7, 125.7, 124.2, 114.9, 101.9, 98.2, 54.5, 51.4, 30.6, 18.2; LRMS (EI, 20 eV) *m/z* (%) 203 (M⁺; 8), 188 (100); HRMS (EI): calcd for C₁₃H₁₇NO (M⁺): 203.1310, found: 203.1306.

To a solution of compound 4 (2.30 g, 10.5 mmol) in degassed EtOH (80 mL) was added Pd/C (10% on carbon, 1.11 g, 1.05 mmol) slowly. The mixture was hydrogenated with a H₂ balloon at room temperature for 12 h. The mixture was then filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The target compound **5** was isolated as a brown oil (2.25 g, 97% yield) after flash column chromatography on silica gel by using EtOAc:Hexane (1:9) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.4 Hz, 1H), 6.33 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.09 (d, *J* = 2.2 Hz, 1H), 3.80 (s, 3H), 3.62 (br, 1H), 3.01–2.87 (m, 1H), 1.79 (dd, *J* = 12.8, 5.5 Hz, 1H), 1.49 (t, *J* = 12.5 Hz, 1H), 1.39 (d, *J* = 6.7 Hz, 3H), 1.30 (s, 3H), 1.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 144.6, 127.6, 117.9, 102.6, 99.1, 54.8, 49.2, 44.5, 31.3, 27.6, 26.9, 20.4; LRMS (EI, 20 eV) *m/z* (%) 205 (M⁺; 41), 190 (100); HRMS (EI): calcd for C₁₃H₁₉NO (M⁺): 205.1467, found: 205.1465.

Compound **5** (500 mg, 2.27 mmol) was dissolved in a mixture of HBr (48% wt in water) and HOAc (8 mL, 1:1). The reaction mixture was heated under reflux overnight. After the reaction was cooled to room temperature, the mixture was treated with saturated NaHCO₃ to pH 5~7 and then extracted with EtOAc. The combined organic layers were washed with H₂O and brine. The organic layer was then dried over anhydrous magnesium sulfate and concentrated *in vacuo*. The target compound **6** was isolated as a brown oil (380 mg, 89%) after flash column chromatography on silica gel by using EtOAc:Hexane (2:8) as an eluent. ¹H NMR (300 MHz, CDCl₃) δ 7.01 (d, *J* = 8.3 Hz, 1H), 6.21 (dd, *J* = 8.3, 2.0 Hz, 1H), 5.95 (d, *J* = 2.1 Hz, 1H), 5.04 (br, 2H), 2.95–2.73 (m, 1H), 1.71 (dd, *J* = 13.0, 5.6 Hz, 1H), 1.41 (t, *J* = 12.6 Hz, 1H), 1.28 (d, *J* = 6.6 Hz, 3H), 1.22 (s, 3H), 1.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.6, 144.2, 128.0, 118.5, 105.2, 101.5, 49.6, 44.4, 31.1, 27.3, 27.0, 20.5; LRMS (EI, 20 eV) *m/z* (%) 191 (M⁺; 29), 176 (100); HRMS (EI): calcd for C₁₂H₁₇NO (M⁺): 191.1310, found: 191.1304.

To a solution of compound **6** (1.34 g, 7.0 mmol) in dry MeCN (50 mL) were added NaI (210 mg, 1.40 mmol), proton sponge (3.0 g, 14 mmol) and ethyl-4-bromobutylate (1.52 mL, 10.5 mmol). The reaction mixture was heated under reflux for 48 h. After cooling down to room temperature, the reaction mixture was filtered through a pad of celite, then diluted with EtOAc, and washed with H₂O and brine. The organic layer was then dried over anhydrous magnesium sulfate and

concentrated *in vacuo*. The target compound 7 was isolated as a brown oil (320 mg, 30%) after flash column chromatography on silica gel by using EtOAc:Hexane (2:8) as an eluent. ¹H NMR (300 MHz, CDCl₃) δ 6.96 (d, J = 7.5 Hz, 1H), 6.26–5.98 (m, 2H), 5.45 (br, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.38–3.23 (m, 1H), 3.11–2.98 (m, 1H), 2.89–2.72 (m, 1H), 2.37 (t, J = 6.7 Hz, 2H), 2.05–1.79 (m, 2H), 1.69 (dd, J = 12.9, 4.7 Hz, 1H), 1.50 (t, J = 12.8 Hz, 1H), 1.35–1.23 (m, 9H), 1.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 155.1, 146.0, 126.6, 120.4, 102.1, 98.6, 60.6, 54.5, 47.2, 44.5, 31.6, 29.6, 26.7, 24.9, 24.1, 20.2, 14.2; LRMS (EI, 20 eV) *m/z* (%) 305 (M⁺; 52), 290 (100); HRMS (EI): calcd for C₁₈H₂₇O₃N (M⁺): 305.1991, found: 305.1983.

Compound 7 (150 mg, 0.49 mmol) and phthalic anhydride (87 mg, 0.58 mmol) were dissolved in dry toluene (5 mL). The suspension was heated under reflux for 48 h. After cooled down to room temperature, the solvent was removed *in vacuo*. The target compound **8** was isolated as an orange sticky solid (120 mg, 53%) after flash column chromatography on silica gel by using EtOAc:Hexane (2:8) + 1% acetic acid as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 12.46 (s, 1H), 8.94 (br, 1H), 8.09 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 6.73 (s, 1H), 6.08 (s, 1H), 4.18 (q, *J* = 7.0 Hz, 2H), 3.50–3.35 (m, 1H), 3.27–3.15 (m, 1H), 2.60–2.55 (m, 1H), 2.38 (t, *J* = 6.4 Hz, 2H), 2.05–1.85 (m, 2H), 1.72–1.60 (m, 1H), 1.72–1.60 (m, 1H), 1.34 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.19 (s, 3H), 0.99 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 198.1, 173.0, 170.5, 164.0, 151.9, 141.1, 132.4, 130.9, 129.8, 129.1, 128.0, 119.9, 109.4, 97.4, 60.6, 55.7, 46.0, 44.6, 31.5, 29.4, 26.0, 25.6, 23.4, 19.4, 14.2; LRMS (EI, 20 eV) *m/z* (%) 453 (M⁺; 9), 71 (100); HRMS (EI): calcd for C₂₆H₃₁O₆N (M⁺): 453.2151, found: 453.2142.

Compound **8** (230 mg, 0.51 mmol) and compound **3** (137 mg, 0.51mmol) were dissolved in TFA in a sealed tube. The reaction mixture was heated to 100 °C and stirred for 3 h. After cooled to room temperature, the solvent was removed *in vacuo*. **HKOCl-4** (193 mg, 55%) was isolated as red sticky solid after flash column chromatography on silica gel by using MeOH:CH₂Cl₂ (1:99) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.4 Hz, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.22 (dd, *J* = 7.6 Hz, 1H), 7.03 (s, 2H), 6.76 (s, 1H), 6.71 (d, *J* = 8.7 Hz, 1H), 6.61 (d, *J* = 8.7 Hz, 1H), 6.39 (s, 1H), 6.37 (s, 1H), 5.97 (br, 1H), 4.19 (q, *J* = 6.9 Hz, 2H), 3.45–3.34 (m, 1H), 3.22–3.06 (m, 1H), 2.75–2.58 (m, 1H), 2.41 (t, *J* = 6.8 Hz, 2H), 2.04–1.87 (m, 2H), 1.70–1.60 (m, 1H), 1.50–1.39 (m, 1H), 1.38–1.21 (m, 6H), 1.16 (s, 3H), 1.05 (d, *J* = 6.5 Hz, 2H), 0.95

(d, J = 6.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃; values are given for one isomer with those of the second isomer in brackets) δ 173.19 (173.16), 169.61, 158.83 (158.78), 152.94 (152.87), 152.77, 151.04 (150.95), 148.54, 147.13, 146.91, 145.07, 134.81 (134.75), 129.57 (129.51), 127.21, 127.03, 125.66, 125.21, 124.89, 124.75, 124.04, 121.58, 120.22, 114.61 (114.55), 113.21, 105.28, 104.57, 97.68 (97.65), 60.58, 54.97 (54.83), 46.42 (46.34), 44.58 (44.36), 31.63 (31.61), 29.42 (29.28), 26.78 (26.60), 25.59, 25.09, 23.52 (23.34), 19.66 (19.47), 14.23; LRMS (EI, 20 eV) *m/z* (%) 687 (M⁺; 0.7), 85 (100); HRMS (EI): calcd for C₃₈H₃₅O₇N³⁵Cl₂ (M⁺): 687.1791, found: 687.1773.

HKOCI-4 (24 mg, 0.035 mmol) was dissolved in MeOH (3 mL) and then a solution of NaOH (8 mg, 0.21 mmol) in H₂O (3 mL) was added. The resulting mixture was stirred at room temperature for 4 h. Then the reaction mixture was diluted with EtOAc and washed sequentially with 1 N HCl, water and brine. The organic layer was dried over magnesium sulfate and concentrated in vacuo. HKOCI-4 (19 mg, 83%) was isolated as red sticky solid after flash column chromatography on silica gel by using MeOH:CH₂Cl₂ (1:50) as an eluent. Yield: 19 mg (83%). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.6 Hz, 1H), 7.68 (td, J = 7.4, 1.2 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.24– 7.18 (m, 1H), 7.04 (s, 2H), 6.79 (dd, J = 1.4 Hz, 1H), 6.72 (dd, J = 8.8, 4.2 Hz, 1H), 6.62 (dt, J =8.8, 2.4 Hz, 1H), 6.43 (s, 1H), 6.40 (d, J = 5.0 Hz, 1H), 3.45–3.37 (m, 1H), 3.15 (t, J = 11.2 Hz, 1H), 2.76–2.58 (m, 1H), 2.47 (td, J = 7.0, 2.5 Hz, 2H), 2.04–1.87 (m, 2H), 1.70–1.64 (m, 2H), 1.50-1.40 (m, 2H), 1.30 (d, J = 4.8 Hz, 3H), 1.16 (s, 3H), 1.06 (d, J = 6.6 Hz, 1.5H), 0.95 (d, J = 6.6 Hz, 1.5H), 0.956.6 Hz, 1.5H). ¹³C NMR (100 MHz, CDCl₃; values are given for one isomer with those of the second isomer in brackets) & 178.78 (178.73), 169.76, 159.15 (159.10), 153.23 (153.17), 152.35, 151.49 (151.40), 148.74, 147.60, 147.37, 147.16, 145.17 (144.99), 134.91 (134.85), 129.81 (129.77), 129.72, 125.33, 124.99, 124.41, 124.27, 121.72, 120.36, 114.90 (114.85), 113.59, 105.53, 105.29 (105.26), 98.00 (97.94), 55.32 (55.17), 46.52 (46.44), 44.80 (44.56), 31.73 (31.27), 29.63 (29.45), 26.98 (26.79), 25.81 (25.29), 19.81 (19.61), 14.28; LRMS (ESI) 660.06 (M+H)⁺; HRMS (ESI): calcd for $C_{36}H_{32}NO_7^{35}Cl_2$ (M+H)⁺: 660.1478, found: 660.1543.

To a solution of compound 9 (18 mg, 27 µmol) and the HN(CH₂COOMe)₂ (5 mg, 33 µmol) in anhydrous DMF (1 mL) was added HOAt (5 mg, 33 µmol), and the resulting mixture was stirred at room temperature for 30 min under argon atmosphere. Then the mixture was added EDC·HCl (7 mg, 35 µmol) and stirred at room temperature for 24 h. Then the reaction mixture was diluted with EtOAc and washed with 1 N HCl and brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The target compound HKOCl-4r was isolated as a red sticky solid by flash column chromatography on silica gel by using MeOH:CH₂Cl₂ (75:1) as an eluent. Yield: 14 mg (64%). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 1H), 7.68 (tdd, *J* = 7.5, 3.0, 1.1 Hz, 1H), 7.62 (tdd, *J* = 7.5, 2.5, 0.9 Hz, 1H), 7.24–7.18 (m, 1H), 7.05 (s, 2H), 6.77 (t, J = 2.9 Hz, 1H), 6.71 (dd, J = 8.7, 2.2 Hz, 1H), 6.61 (dt, J = 8.7, 2.1 Hz, 1H), 6.40–6.37 (m, 2H), 5.85 (br, 1H), 4.24 (s, 2H), 4.19 (s, 2H), 3.78 (d, J = 3.3 Hz, 3H), 3.74 (s, 3H), 3.46–3.37 (m, 1H), 3.19–3.10 (m, 1H), 2.73–2.58 (m, 1H), 2.41 (t, J = 6.7 Hz, 2H), 1.99–1.93 (m, 2H), 1.69– 1.66 (m, 1H), 1.45–1.40 (m, 1H), 1.31 (d, J = 4.1 Hz, 3H), 1.16 (s, 3H), 1.05 (d, J = 6.6 Hz, 2H), 0.95 (d, J = 6.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃; values are given for one isomer with those of the second isomer in brackets) δ 172.96 (172.92), 169.96 (169.95), 169.76 (169.74), 169.47, 158.98 (158.92), 153.23 (153.15), 153.07 (153.02), 151.21 (151.12), 148.85, 147.35, 147.12, 145.12 (145.11), 140.72, 134.95 (134.89), 129.80 (129.76), 129.69 (129.64), 127.43 (127.23), 125.03, 124.84, 124.24, 121.67, 120.44, 114.87 (114.82), 113.40, 105.51, 104.59, 97.97 (97.90), 55.20 (55.06), 52.75 (52.74), 52.38, 50.13, 48.06 (48.04), 46.72 (46.63), 30.10 (30.01), 29.84, 29.62 (29.45), 27.02 (26.82), 25.91 (25.35), 23.44 (23.27), 19.79 (19.63). LRMS (ESI) 803.18 $(M+H)^+$; HRMS (ESI): calcd for C₄₂H₄₁N₂O₁₀³⁵Cl₂ (M+H)⁺: 803.2060, found: 803.2115.

To a solution of 1,4-piperazine (3.40 g, 40 mmol) in CH₂Cl₂ (50 mL), was added a solution of Boc₂O (4.40 g, 20 mmol) in CH₂Cl₂ (100 mL) dropwise. The reaction mixture was stirred at room temperature for 12 h. Then resulting solution was washed with water for three times followed by brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The product (3.40 g, 90%) was obtained as a white solid. To a solution of (4-carboxybutyl)

triphenylphosphonium bromide (1.00 g, 2.26 mmol) in anhydrous CH₂Cl₂ (20 mL) was added EEDQ (837 mg, 3.39 mmol). The solution was stirred at room temperature for 30 min. Then the above piperazine compound (420 mg, 2.26 mmol) was added. The reaction mixture was stirred at room temperature for 24 h. When the reaction was completed, the resulting mixture was diluted with CH₂Cl₂ and washed with saturated NaHCO₃ to remove the unreacted carboxylic acid. The organic layer was dried over anhydrous magnesium sulfate and concentrated *in vacuo*. The desired product **10** was isolated as a white sticky solid (1.4 g, 100%) after flash column chromatography on silica gel, by using MeOH:CH₂Cl₂ (1:9) as an eluent. ¹H NMR (400 MHz, CDCl₃) δ 7.52–7.39 (m, 9H), 7.37–7.29 (m, 6H), 3.48–3.38 (m, 2H), 3.27–3.16 (m, 2H), 3.16–3.03 (m, 4H), 2.35–2.20 (m, 2H), 2.98–2.91 (m, 2H), 1.63–1.51 (m, 2H), 1.47–1.31 (m, 2H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 154.0, 134.5 (d, ⁴J_{C,P}= 2.0 Hz), 133.1 (d, ³J_{C,P}= 10.0 Hz), 129.9 (d, ²J_{C,P}= 12.0 Hz), 118.1 (d, ¹J_{C,P}= 85.0 Hz), 79.4, 44.8, 44.3, 42.7, 40.7, 31.6, 27.8, 25.0 (d, ²J_{C,P}= 17.0 Hz), 22.0, (d, ¹J_{C,P}= 51.0 Hz) 21.5 (d, ³J_{C,P}= 3.0 Hz); ³¹P NMR (162 MHz, CDCl₃) 24.1; LRMS (ESI): 531.28 (M⁺); HRMS (ESI): calcd for C₃₂H₄₀N₂O₃P⁺ (M⁺): 531.2771, found: 531.2779.

Compound 10 (1.5 g, 2.4 mmol) was dissolved in a mixture of CH₂Cl₂ and TFA (2 mL:2 mL), and then the solution was stirred at room temperature for 3 h. After the reaction was complete, the solvent was evaporated off on a rotary evaporator. Amberlite IRA-400 (Cl) (2 g) was stirred in brine for 30 min, filtered and dried in air. To the crude product in MeOH (20 mL) at room temperature was added the pretreated Amberlite IRA-400 (Cl), and the mixture was stirred for 30 min, followed by filtration. The filtrate was concentrated *in vacuo* and resuspended in saturated K₂CO₃ solution for 10 min. It was then extracted with CH₂Cl₂ for three times and the combined organic layers were dried over anhydrous magnesium sulfate and concentrated in vacuo to obtain crude compound 11. The target compound 11 (900 mg; 85%) was obtained as a colorless oil and could be directly used in the next step. ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.42 (m, 9H), 7.42– 7.35 (m, 6H), 3.46 (s, 1 H), 3.33–3.22 (m, 2H), 3.22–3.14 (m, 4H), 2.56–2.40 (m, 2H), 2.49–2.41 (m, 2H), 2.20–2.11 (m, 2H), 1.66–1.51 (m, 2H), 1.50–1.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 136.0, 134.3 (d, ²J_{C,P} = 10.0 Hz), 131.4 (d, ³J_{C,P} = 13.0 Hz), 118.9 (d, ¹J_{C,P} = 86.0 Hz), 47.0, 46.7, 46.3, 42.9, 32.8, 26.5 (d, ${}^{2}J_{C,P}$ = 17.0 Hz), 22.9 (d, ${}^{3}J_{C,P}$ = 3.0 Hz), 22.8 (d, ${}^{1}J_{C,P}$ = 51.0 Hz); ³¹P NMR (162 MHz, CDCl₃) 23.3; LRMS (ESI): 431.29 (M⁺); HRMS (ESI): calcd for C₂₇H₃₂N₂OP⁺ (M⁺): 431.2247, found: 431.2226.

To a solution of compound 9 (40 mg, 61 μ mol) and compound 11 (37 mg, 73 μ mol) in anhydrous DMF (3 mL) was added EDC·HCl (15 mg, 79 µmol). The resulting mixture was stirred at room temperature under argon atmosphere for 12 h. Then the reaction mixture was diluted with ethyl acetate and washed with 1N HCl, water and brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The target compound HKOCl-4m was isolated as a red sticky solid by flash column chromatography on silica gel for by using MeOH: $CH_2Cl_2 = 1:20$ as an eluent. Yield: 23 mg (34%). ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.5 Hz, 1H), 7.87– 7.75 (m, 9H), 7.74–7.65 (m, 7H), 7.61 (t, J = 7.4 Hz, 1H), 7.21 (t, J = 8.3 Hz, 1H), 7.03 (s, 2H), 6.73–6.61 (m, 3H), 6.43–6.32 (m, 2H), 5.30 (s, 1H), 3.78–3.55 (m, 9H), 3.51–3.37 (m, 2H), 3.20– 3.09 (m, 1H), 2.88-2.58 (m, 2H), 2.53-2.38 (m, 2H), 2.33 (t, J = 8.0, 7.3 Hz, 1H), 1.95 (m, 4H),1.81 (m, 2H), 1.65 (dd, J = 8.9, 4.6 Hz, 1H), 1.51–1.42 (m, 1H), 1.35–1.30 (m, 3H), 1.17 (s, 3H), 1.05 (d, J = 6.5 Hz, 2H), 0.96 (d, J = 6.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 171.3, 169.8, 159.6, 153.14 (153.10), 153.0, 151.2, 148.0, 146.5, 135.2, 135.0, 134.3 (d, ${}^{3}J_{C,P} = 10.1 \text{ Hz}$), 133.6 (d, ${}^{3}J_{C,P} = 12.6$ Hz), 129.64 (129.61), 127.3, 125.0, 124.8, 124.3, 124.2, 123.1, 120.97 (120.93), 118.9 (d, ${}^{1}J_{C,P} = 86.0$ Hz), 114.3, 113.2, 104.6, 97.8, 68.4, 68.2, 55.0, 54.9, 46.6, 46.5, 45.8, 45.6, 41.8, 41.6, 41.50 (41.48), 32.0, 30.7, 29.82 (29.78), 29.7, 29.6, 29.5, 26.8 (d, ${}^{2}J_{C,P}$ = 17.0 Hz), 25.8, 25.6, 25.4, 23.7, 23.6, 22.2 (d, ${}^{1}J_{C,P}$ = 50.0 Hz), 22.0 (d, ${}^{3}J_{C,P}$ = 3.1 Hz), 19.8, 19.7, 19.0; ${}^{31}P$ NMR (162 MHz, CDCl₃) 24.5; LRMS (ESI): 1072.17 (M⁺); HRMS (ESI): calcd for C₆₃H₆₁O7³⁵Cl₂N₃P⁺ (M⁺): 1072.3619, found: 1072.3586.

3. Absorption spectra of HKOCI-4 before and after treatment with HOCI

Figure S1. Absorption spectra of **HKOCI-4** (10 μ M) in 0.1 M potassium phosphate buffer (0.1% DMF, pH 7.4) before and after treatment with 1 equiv of HOCl.

4. Detection of products for the reaction of HKOCl-4 with HOCl

The probe **HKOCl-4** was dissolved in DMF and then diluted with 0.1 M potassium phosphate buffer (pH 7.4) to get a 10 μ M testing solution. Then 1 equiv of HOCl was added to the testing solution with vigorous stirring in the dark. The reaction mixture was extracted with ethyl acetate after 30 min. The combined organic layers were concentrated and analyzed by ESI-MS.

Figure S2. Detection of products obtained after reaction of HKOCl-4 with HOCl.

From the above LC-MS analysis, it is apparent that two reaction products were obtained, i.e., the rhodol compound and its mono-chlorinated product, after treatment with 1 equiv of HOCl.

5 equiv of HOCl was slowly added to the testing solution of **HKOCl-4** with vigorous stirring at room temperature in the dark. After 30 min, the reaction mixture was extracted with ethyl acetate. The mono-chlorinated product was purified by column (using CH₂Cl₂:CH₃OH=10:1 as an eluent; 61% yield), and it chemical structure was determined by NMR and MS analysis.

¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.18 (dd, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 8.6 Hz, 1H), 6.62 (d, *J* = 8.6 Hz, 1H), 6.54 (s, 1H),

6.47 (d, J = 6.2 Hz, 1H), 4.24 (qd, J = 7.1, 2.3 Hz, 2H), 3.49–3.42 (m, 1H), 3.25–3.19 (m, 1H), 2.74–2.62 (m, 1H), 2.45 (td, J = 7.0, 3.0 Hz, 2H), 2.05–1.92 (m, 2H), 1.69 (dd, J = 13.0, 4.4 Hz, 1H), 1.51–1.42 (m, 1H), 1.34–1.32 (m, 3H), 1.25 (s, 3H), 1.19 (s, 3H), 1.06 (d, J = 6.5 Hz, 2H), 0.97 (d, J = 6.5 Hz, 1H); LRMS (ESI): calcd for C₃₂H₃₂O₆N³⁵Cl (M⁺): 561.1918, found: 561.4639.

5. Stability of HKOCl-4 toward pH changes

Figure S3. Investigation of **HKOCI-4** response across pH 3–11 with (red) or without (black) adding HOCI. The fluorescent intensity of **HKOCI-4** (5 μ M) with 1 equiv of HOCl at pH 7.4 was normalized as 1. The fluorescence spectra of **HKOCI-4** were recorded at 30 min with an excitation at 530 nm.

6. Characterization of HKOCI-4r and HKOCI-4m in chemical system

Figure S4. Characterization of **HKOCI-4r** and **HKOCI-4m** in chemical system. The fluorescent probe was dissolved in 0.1 M potassium phosphate buffer at pH 7.4 to a final concentration of 5 μ M (containing 0.1% DMF). (a) Absorption spectra of **HKOCI-4r** before and after treatment with 1 equiv of HOCI. (b) Fluorescence emission spectra of **HKOCI-4r** upon addition of different amounts of HOCI. (c) Absorption spectra of **HKOCI-4m** before and after treatment with 1 equiv of HOCI. (d) Fluorescence emission spectra of **HKOCI-4m** upon treatment with different amounts of HOCI. (d) Fluorescence emission spectra of **HKOCI-4m** upon treatment with different amounts of HOCI.

7. Cytotoxicity assay of HKOCl-4

Figure S5. Cytotoxicity of **HKOCI-4** in RAW264.7 cells. RAW264.7 cells were allowed to incubate with increasing amounts of the probe for 24 h. The probe showed negligible or no cytotoxicity after 24 h incubation. Data represent mean \pm s.e.m for Cell-Titer Glo assays performed in triplicates.

8. Monitoring HOCl in PMA or LPS/IFNy stimulated RAW264.7 cells in lower magnification

Figure S6. Confocal fluorescence imaging of endogenous HOCl with **HKOCl-4r** in RAW264.7 mouse macrophages. Cell were stimulated with PMA (500 ng/mL) for 30 min or LPS (500 ng/mL)/IFN- γ (50 ng/mL) for 16 h before staining with **HKOCl-4r** (5 μ M) for 30 min. (a) For the scavenger groups, NAC (1 mM) was preloaded for 20 min before probe staining. (b) For the MPO inhibitor treatment group, ABAH (50 μ M) was added in culture medium for 1 h before the stimulant was introduced. Results are representative of at least three independent experiments. Scale bar: 20 μ m.

9. Time lapse monitoring of HKOCl-4r in PMA stimulated RAW264.7 cells

Figure S7. Time lapse monitoring of **HKOCl-4r** in PMA stimulated RAW264.7 cells. (a) Cells were incubated with **HKOCl-4r** (5 μ M) alone, then monitored for 5 min. (b) Cells were co-incubated with **HKOCl-4r** (5 μ M) and PMA (500 ng/mL), then monitored for 5 min. The images were recorded every 10 s per frame. Results are representative of at least three independent experiments. Scale bar: 10 μ m.

10. Colocalization of HKOCI-4m and Mito Tracker Green FM

Figure S8. Colocalization of **HKOCI-4m** and Mito Tracker Green FM. **HKOCI-4m** (10 μ M) was co-stained with MTG (100 nM) for 30 min. The confocal imaging was performed on LSM 710 with a higher laser intensity (Laser excitation at 453 nm: 20%, for normal use: 9 %). Results are representative of at least three independent experiments. Scale bar: 10 μ m.

11. NMR spectra

Current Data Parameters NAME 5-122-1 EXPNO 2 PROCNO 1		136.02 134.31 134.31 131.45 1131.25 1131.25	$- 8.05 \\ - 8.05 \\ - 46.93 \\ - 46.73 \\ - 42.89 \\ - 32.77 \\ - 32.77 \\ - 22.89 \\ - 22.89 \\ - 22.55 \\ - 22.5$
FIGLO0 1 F2 - Acquisition Parameters 928 Date_ 20160923 Time 19.28 INSTRUM 19.28 INSTRUM Spect PROBID 5 mm QNP lik/15 PROBID szdcs TD 32768 SOLYENT DMSO NS 4 SWH 25125.629 Hz FIDRES 0.766773 Hz AQ 0.6521332 see DE 15.00 use TE 296.8 K DI 2.50000000 see MCREST 0.00000000 see CHANNEL f1 100.6238364 MHz SF01 100.6238364 MHz			O NNH Ci [¯] Ph₃ ^p 11
CHANNEL 12 CPDPR62 waltz16 NUC2 1H PCPD2 80.00 use PL2 -4.00 dB PL12 12.90 dB SF02 400.1320007 MHz	== ;;		
++++++++++++++++++++++++++++++++++++++			**************************************
230 220 210 200	190 180 170 160 15	0 140 130 120 110 100 90 fl (ppm)	80 70 60 50 40 30 20 10 0 -10
Current Data Parameters NAME 5-122-1 31P EXPNO 1 PROCNO 1		23.84	
$\begin{array}{cccc} F2 & - \ Acquisition \ Parameters \\ Date_ & 20160923 \\ Time & 19.30 \\ INSTRUM & spect \\ PROBHD & 5 \ mm \ QNP \ 11/13 \\ PULPROG \ Zgdc \\ TD & 32768 \\ SOLVENT & CDC13 \\ \end{array}$			
NS 7 DS 0 SWH 64935.066 Hz FIDRES 1.981661 Hz AQ 0.2523636 sec RG 2298.8 DW 7.700 use	e re		0
DE 0.00 use TE 297.0 K D1 2.0000000 sec d11 0.0300000 sec MCREST 0.0000000 sec MCWRK 0.01500000 sec			Cī Ph₃ [⊅] 11
======= CHANNEL f1 =======	=		
NUC1 31P P1 11.00 use PL1 -5.00 dB SF01 161.9755730 MHz	ес :		
NUC1 31P P1 11.00 usc PL1 -5.00 dB SF01 161.9755730 MHz		Í	
NUC1 31P P1 11.00 uss SF01 161.9755730 MHz ======= CHANNEL f2 ===== CHANNEL f2 = PDPBRG2 Waltz16 NUC2 11 PCPD2 80.00 use PL2 -4.00 dB SF02 400.1317250 MHz	ic : : : :		

Current Da NAME EXPNO PROCNO	ta Parameters 31P-4m 1 1	
F2 - Acqui	sition Paramete	rs
Date	20181117	
Time	17.28 h	
INSTRUM	spect	
PROBHD 7	119470 0274 (
PULPROG	zgig	
TD	32768	
SOLVENT	CDC13	
NS	22	
DS	2	
SWH	81521.742 H	z
FIDRES	4.975692 H	Z
AQ	0.2009771 s	ec
RG	2050	
DW	6.133 us	зес
DE	6.50 u	зес
TE	297.6 K	
D1	3.00000000 s	ec
D11	0.03000000 s	ec
TDO	1	
SF01	202.4563350 M	Hz
NUC1	31P	
P1	14.00 u	sec
PLW1	49.34400177 W	
SF02	500.1325006 M	Hz
NUC2	1H	
CPDPRG [2	waltz64	
PCPD2	80.00 u	sec
PLW2	23.04999924 W	
PLW12	0.0000000000000000000000000000000000000	
	0.36/01301 W	
F2 - Proce	0.36/01301 W	~
F2 - Proce	U.36/UI3UI W ssing parameter 32768	5
F2 - Proce SI SF	0.36/01301 W ssing parameter 32768 202.4563350 M	s Hz
F2 - Proce SI SF WDW	0.36/01301 W ssing parameter 32768 202.4563350 MI EM	s Hz
F2 - Proce SI SF WDW SSB 0	0.36/01301 W ssing parameter 32768 202.4563350 M EM	s Hz
F2 - Proce SI SF WDW SSB 0 LB	0.36/01301 W ssing parameter 32768 202.4563350 M EM 5.00 H	s Hz
F2 - Proce SI SF WDW SSB 0 LB GB 0	0.36/01301 W ssing parameter 32768 202.4563350 M EM 5.00 H:	e Hz
F2 - Proce SI SF WDW SSB 0 LB GB 0 PC	0.36/01301 W seeing parameter 32768 202.4563350 M EM 5.00 H: 1.40	e Hz z

T. T. T.						· · ·			· · · ·		· · ·										· · ·	· · ·							
190	170	150	130	110	90	80	70	60	50	40	30	20	10	0 11 (ppr	-10 m)	-20	-30	-40	-50	-60	-70	-80	-90	-110	-13	30	-150	-170	-190

12. References:

- (1) J. W. Reed, H. H. Ho, W. L. Jolly, J. Am. Chem. Soc. 1974, 96, 1248-1249.
- (2) J. J. Hu, N.-K. Wong, M.-Y. Lu, X. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Yi-Tsun Kao, J. Shen, D. Yang, *Chem. Sci.* **2016**, *7*, 2094-2099.