Nidulaxanthone A, a Xanthone Dimer with Heptacyclic 6/6/6/6/6/6/6

Ring System from *Aspergillus* **sp-F029**

Fuqian Wang,^{a,‡} Jie Jiang,^{a,‡} Song Hu,^{a,‡} Xincai Hao,^{d,} You-sheng Cai,^c Ying Ye,^b Haoran Ma,^a Weiguang Sun,^b Lu Cheng,^a Chuanqi Huang,^a Hucheng Zhu,^b Hong Zhang,^a Geng Zhang,^{a,*} Yonghui Zhang^{*,b}

^{a.} Department of Pharmacy, Wuhan No.1 Hospital, Wuhan 430022, Hubei, People's Republic of China

^b·*Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.*

^{c.} Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, People's Republic of China

^{d.} College of Pharmacy Hubei University of Medicine, Shiyan 442000, China

^{*}Corresponding author Tel.: (86) 27-83692892

E-mail: zhangyh@mails.tjmu.edu.cn; zhanggen888@126.com

Contents of Supporting Information

Contents	Pages
1D and 2D NMR data (COSY, NOESY, HMBC) for compounds 1-2	3–4
1D and 2D NMR spectra of compounds 1–6	5–24
HR-MS, MS-MS, IR, UV, and CD spectra of compounds 1 and 2	25–29
X-ray crystallographic structure of compounds 1 and 2	30

no	$\delta_{ extsf{H}^a}$	$\delta_{ m c}$	COSY	HMBC	NOESY
1		163.0			
1-OH	12.05 s			1	
2	6.38 s	111.2		1, 3, 6, 17	
3		151.1			
4	6.31 s	108.0		2, 5, 6, 7, 17	
5		158.4			
6		104.8			
7		181.3			
8		129.3			
9		82.8			
11	7.30 d (1.6)	140.7	12	7, 8, 9, 13, 8', 9'	11'
12	3.03 dd (10.0,1.6)	39.4	11, 13	8, 9, 11, 13, 8', 11'	13
13	3.41 m	33.9	12, 13', 14	11, 13', 14'	12, 14
14	4.51 d (5.6)	70.9	13	7, 8, 9, 12, 15	13
15	2.66	168.5		15	
16	3.66 s	53.4		15	
17	2.30 s	22.5		2, 3, 4	
18		1.00 5			
I'	11.60 a	162.5		1 ?	
I'-OH	11.00 s	1126		I 1' 4' 6' 17'	
2	0.50 \$	112.0		1,4,0,17	
3	6.42 a	108.6		2' 5' 6' 7' 17'	
4 5'	0.43 \$	108.0		2, 5, 0, 7 17	
5		101.6			
7'		104.0			
8'		52.0			
9,		84.2			
11'	6 63 d (8 4)	125.9	12'	7', 8', 9', 13'	11
12'	6.32 m	133.0	11', 13'	8', 13'	14'
13'	3.26 m	40.7	12', 13, 14'	9,	
14'	3.99 d (3.2)	70.4	13'	12', 13, 15'	12'
15'		170.3			
16'	3.64 s	53.3		15'	
17'	2.33 s	22.6		2', 3', 4'	

Table S1. ¹H (400 MHz), ¹³C (100 MHz) and 2D NMR data (COSY, NOESY, HMBC) for compound 1 in CDCl₃, (δ in ppm, J in Hz)

no	$\delta_{ extsf{H}^{a}}$	δ_{c}	COSY	HMBC
1		163.0		
1-OH	12.08 s			1, 2, 3, 6, 7
2	6.39 s	111.8		1, 4, 6, 17
3		150.4		
4	6.31 s	108.7		2, 5, 6, 7, 17
5		157.7		
6		105.8		
7		185.0		
8		128.5		
9		81.5		
11	7.20 t (3.2)	138.5	12	7, 9, 12, 13
12	2.79 m	28.4	11, 13	8, 11
	2.52 ddd (20.4,4.4,1.6))	11, 13	8, 11, 13, 14
13	3.77 m	75.7	12, 14	9, 11, 14, 18
14	4.70 d (4.4)	68.6	13	7, 8, 9, 12, 13, 14, 15
14-OH	2.77 s			7, 8, 9, 11, 13, 14, 15
15		169.6		
16	3.61 s	53.3		15
17	2.26 s	22.6		2, 3, 4
18	3.31 s	57.9		13

Table S2. ¹H (400 MHz), ¹³C (100 MHz) and 2D NMR data (COSY, NOESY, HMBC) for compound 2 in CDCl₃, (δ in ppm, J in Hz)

Figure S2. ¹³C NMR and DEPT spectra of nidulaxanthone A (1) in CDCl₃.

Figure S3. HSQC spectrum of nidulaxanthone A (1) in CDCl₃

Figure S4. HMBC spectrum of nidulaxanthone A (1) in CDCl₃.

Figure S5. ¹H–¹H COSY spectrum of nidulaxanthone A (1) in CDCl₃.

Figure S6. NOESY spectrum of spectrum of nidulaxanthone A (1) in CDCl₃.

T.

Figure S8. ¹³C NMR spectrum of nidulalin D (2) in CDCl₃.

Figure S9. DEPT NMR spectrum of nidulalin D (2) in CDCl₃.

Figure S10. HSQC spectrum of nidulalin D (2) in CDCl₃.

Figure S11. HMBC spectrum of nidulalin D (2) in CDCl₃.

Figure S12. ¹H–¹H COSY spectrum of nidulalin D (2) in CDCl₃

Figure S13. ¹H NMR spectrum of nidulalin A (**3**) in CD₃OD.

Figure S14. ¹³C NMR spectrum of nidulalin A (3) in CD₃OD.

Figure S15. ¹H NMR spectrum of (4*R*,4a*S*,9a*R*)-1,9a-dihydronidulalin A (**4**) in CDCl₃.

Figure S16. ¹³C NMR and DEPT spectra of (4*R*,4a*S*,9a*R*)-1,9a-dihydronidulalin A (4) in CDCl₃

Figure S17. ¹H NMR spectrum of (4S,4aR,9aR)-4a-carbomethoxy-1,4,4a,9a-tetrahydro-4,8 dihydroxy-6-methylxanthone (5) in CDCl₃.

Figure S19. ¹³C NMR spectrum of nidulalin B (6) in CDCl₃.

Figure S20. HMBC spectrum of nidulalin B (6) in CDCl₃..

Figure S21. HRESIMS spectrum of nidulaxanthone A (1).

Figure S22. MS-MS spectrum of nidulaxanth one A (1). (de-hydroxy, de-methoxylation and de- acetylation fragments at m/z: 545, 573 and 587)

Figure S23. IR spectrum of nidulaxanthone A (1)

Figure S24. UV spectrum of nidulaxanthone A (1).

Figure S25. CD spectra of nidulaxanthone A (1)

Figure S26. HRESIMS spectrum of nidulalin D (2).

Figure S28. UV spectrum of nidulalin D (2).

Figure S29. CD spectra of nidulalin D (2).

Figure S22. X-ray crystallographic structure of nidulaxanthone A (1).

Figure S23. X-ray crystallographic structure of nidulalin D (2)