Supporting Information for

Palladium Catalyzed Enantioselective [5+4] Annulation of *ortho*-Quinone Methides and Vinylethylene Carbonates

Chao Xia,^a Dong-Chao Wang,^b Gui-Rong Qu^b and Hai-Ming Guo*^{ab}

^aSchool of Environment, Henan Normal University, Xinxiang, Henan Province 453007, China

^bHenan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: ghm@htu.edu.cn

Table of Contents

1. General information	1
2. General Procedure for the Synthesis of Substrates	2
2.1 Synthesis of ortho-Quinone Methides (o-QMs) 1 ¹	2
2.2 Synthesis of Substituted Vinylethylene Carbonates (VECs) 2 ²	2
3. The Optimization of Reaction Conditions	4
3.1 The Screening of Palladium ^a	4
4. General procedure for the asymmetric [5+4] Annulations Reactions	5
5. Characterization Data of Products 3	5
6. Scale-up synthesis of product 3a	17
7. Derivatization of product 3a	18
8. The X-ray data of 3a and 4a	19
8.1 The X-ray data of 3a	19
8.2 The X-ray data of 4a	20
9. Determination of the absolute configuration of compound 3g	22
10. References	23
11. Copies of ¹ H and ¹³ C NMR spectra	24
12. Copies of HPLC spectra for racemic and chiral products	50

1. General information

¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane with the solvent resonance as the internal standard. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (*J*) are in Hertz (Hz), and integration. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IA/AS-H/ID/OD-H/IE in comparison with the authentic racemates. Chiral HPLC analysis was recorded on Thermo Scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were recorded on Autopol Automatic Polarimeter, and were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in CH₂Cl₂). High resolution mass spectra (HRMS) was recorded on Supernova Atlas S2 CCD detector. Melting point (m.p.) data were obtained on X-5 micro melting point apparatus. For column chromatography, silica gel (200-300 mesh) was used as the stationary phase. Unless stated otherwise, all the solvent and reagents were purchased from commercial suppliers and used without further purification.

2. General Procedure for the Synthesis of Substrates

2.1 Synthesis of ortho-Quinone Methides (o-QMs) 1¹

A solution of 2-(4-methoxybenzyl)-4,5-methylenedioxyphe-nol (3.88 g, 15 mmol) in ether (300 mL) was heated under reflux with silver oxide (11.6 g, 50 mmol) for 3.5 h and filtered. The orange crystals were separated by filtration. The solution was concentrated to 150 mL, cooled, and the colored product was collected. The ether filtrate was diluted to 200 mL and treated once again with silver oxide (5.8 g, 25 mmol) for 2 h to give an additional quantity of the orange product (1.56 g, 41% yield). ¹H NMR (600 MHz, CDCl₃): δ 7.89 (s, 1H), 7.49 (d, *J* = 8.4 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 6.71 (s, 1H), 5.97 (s, 1H), 5.89 (s, 2H), 3.86 (s, 3H). Other substrates 1 were synthesized according to the similar procedure.

2.2 Synthesis of Substituted Vinylethylene Carbonates (VECs) 2²

Bromine (5.0 mmol, 1eq) was added to a solution of the respective ketone (5.0 mmol, 1.0 equiv) in Et_2O (6 mL) at 0 °C. And then 15 minutes later, the solution was stirred for 6-12 h (until the color of the solution changed from red to light-yellow) at r.t.. The reaction progress was monitored by TLC. When the starting material disappeared, the reaction was quenched with ice water (6 mL), and extracted with Et_2O (3 × 5 mL). The combined organic phases were washed with saturated aqueous NaHCO₃ solution (10 mL), brine (10 mL), and dried over Na₂SO₄. After being filtered and

concentrated, the residue was used for the next step without further purification (the crude S2).

To a solution of resultant crude **S2** (1.0equiv) in methanol (3 mL/mmol) was added sodium formate (3.0 equiv) at r.t.. The reaction mixture was refluxed until TLC shows the end, and then was filtered. The filtrate was concentrated under reduced pressure. The residue was dissolved with ethyl acetate, washed with water and brine solution, dried over Na_2SO_4 and evaporated. The crude material was purified by column chromatography to get **S3**.

To a solution of the S3 (1.0 equiv) in THF (4 mL/mmol) was added vinylmagnesium bromide (1.0 M in THF, 2.5 equiv) at 0 °C. The reaction was stirred under an N₂ atmosphere at room temperature for 2-3 h. The reaction mixture was then quenched with saturated aqueous NH₄Cl, and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. Then the crude product was purified by column chromatography to get the S4. To a solution of S4 in DCM (1.5 mL/mmol) added pyridine (4.0 equiv) and triphosgene (0.5 equiv) at 0 °C. The reaction was stirred under an N₂ atmosphere at room temperature for 1-2 h. The reaction mixture was then quenched with saturated aqueous NH₄Cl, washed with H₂O, and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate =10:1) on silica to afford the corresponding carbonate (S5).

3. The Optimization of Reaction Conditions

	$\begin{array}{c} \begin{array}{c} O \\ Ia \end{array} + \begin{array}{c} O \\ O $	$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	
entry	[Pd]	yield (%)	ee (%)
1 ^b	Pd(PPh ₃) ₄	86	95
2	Pd(dppe) ₂	22	93
3	$Pd(P(4-Me-Ph)_3)_2$	50	97
4	Pd(PCy ₃) ₂	NR	
5	$Pd(P^{t}Bu_{3})_{2}$	37	95

3.1 The Screening of Palladium^a

^aReaction conditions: **1a** (0.1mmol), **2a** (0.15mmo), [Pd] (10 mol%) and **C3** (10 mol%) in dioxane (1 mL) at rt under N₂ for 6h. Yields refer to isolated products. The ee values were determined by chiral HPLC analysis. ^bReaction time was 0.5h.

4. General procedure for the asymmetric [5+4] Annulations Reactions

A dried Schlenck flask was charged with all solid substances like **1** (0.1 mmol), Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 10 mol %) and **C3** (6.2 mg, 0.01 mmol, 10 mol %). The reaction tube was placed under vacuum and backfilled with argon three times. Dioxane (1.0 mL) followed by **2** (0.15 mmol, 1.5 equiv) were added via syringe under argon. The resulting mixture was stirred at rt for 0.5 h, and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (PE:EA:Et₃N = 150:10:1–100:10:1 as eluent) to give the corresponding annulation products **3** (the products **3** were acid-sensitive).

5.Characterization Data of Products 3

(R)-11-(4-methoxyphenyl)-8-phenyl-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2-

b][1,5]dioxonine (3a)

White solid; m.p. 125.3-128.2 °C; 34.6 mg, 86% yield, 95% ee; $[\alpha]_D^{20} = -122.65$ (c = 1.07, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 16.410 min, 17.243 min; ¹**H NMR** (600 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.33-7.31 (m, 4H), 7.29-7.27 (m, 1H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.64 (s, 1H), 6.43 (t, *J* = 7.8 Hz, 1H), 6.35 (s, 1H), 5.91 (s, 1H), 5.90 (s, 2H), 4.90-4.87 (m, 1H), 4.55-4.51 (m, 2H), 4.29 (d, *J* = 13.8 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 158.7, 155.1, 148.3, 144.3, 143.0, 141.0, 133.5, 128.5, 128.0, 127.9, 127.8, 126.7, 126.6, 113.7, 108.4, 102.9, 101.6, 73.2, 70.4, 66.0, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₃O₅ (M+H)⁺ requires m/z 403.1540, found m/z 403.1541.

(R)-11-(4-methoxyphenyl)-8-(p-tolyl)-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2-

b][1,5]dioxonine (3b)

White solid; m.p. 51.3-54.6 °C; 36.6 mg, 88% yield, 91% ee; $[\alpha]_D^{20} = -89.33$ (c = 1.22, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 13.973 min, 15.002 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.64 (s, 1H), 6.41 (t, *J* = 7.6 Hz, 1H), 6.34 (s, 1H), 5.90 (d, *J* = 3.2 Hz, 2H), 5.88 (s, 1H), 4.87 (q, *J* = 7.6 Hz, 1H), 4.54-4.51 (m, 1H), 4.49 (s, 1H), 4.27 (d, *J* = 13.6 Hz, 1H), 3.81 (s, 3H), 2.33 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 158.7, 155.2, 148.3, 144.3, 142.7, 138.0, 137.8, 133.6, 129.2, 127.9, 127.8, 126.5, 125.8, 113.7, 108.5, 102.9, 101.6, 73.1, 70.5, 66.0, 55.4, 21.2; **HRMS** (ESI-TOF): exact mass calcd for C₂₆H₂₅O₅ (M+H)⁺ requires m/z 417.1697, found m/z 417.1693.

(R)-8,11-bis(4-methoxyphenyl)-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2-

b][1,5]dioxonine (3c)

White solid; m.p. 54.6-57.9 °C; 29.0 mg, 67% yield, 96% ee; $[\alpha]_D^{20} = -73.70$ (c = 0.72, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 20.250 min, 22.823 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 2H), 6.89-6.84 (m, 4H), 6.63 (s, 1H), 6.37 (t, *J* = 7.6 Hz, 1H), 6.34 (s, 1H), 5.90 (d, *J* = 4.4 Hz, 2H), 5.87 (s, 1H), 4.87 (q, *J* = 7.2 Hz, 1H), 4.51-4.46 (m, 2H), 4.23 (d, *J* = 13.6 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.6, 158.7, 155.2, 148.3, 144.3, 142.3, 133.7, 133.4, 127.9, 127.8, 127.7, 125.2, 113.9, 113.7, 108.4, 102.9, 101.6, 72.9, 70.6, 65.8, 55.4, 55.3; **HRMS** (ESI-TOF): exact mass calcd for C₂₆H₂₅O₆ (M+H)⁺ requires m/z 433.1646, found m/z 433.1642.

(R)-8-(4-(benzyloxy)phenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3d)

White solid; m.p. 129.1-131.2 °C; 42.7 mg, 84% yield, 94% ee; $[\alpha]_D^{20} = -47.07$ (c = 0.99, CH₂Cl₂); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 22.827 min, 34.500 min; ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, *J* = 9.0 Hz, 2H), 7.43-7.42 (m, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.34-7.30 (m, 3H), 6.90 (dd, *J* = 26.4, 9.0 Hz, 4H), 6.63 (s, 1H), 6.38 (t, *J* = 8.4 Hz, 1H), 6.34 (s, 1H), 5.91-5.89 (m, 2H), 5.87 (s, 1H), 5.06 (s, 2H), 4.87 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.51-4.47 (m, 2H), 4.24 (d, *J* = 13.2 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.8, 158.7, 155.2, 148.3, 144.3, 142.2, 137.0, 133.7, 133.6, 128.7, 128.1, 127.9, 127.8, 127.7, 127.6, 125.2, 114.8, 113.7, 108.4, 102.9, 101.6, 72.9, 70.6, 70.1, 65.8, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₃₂H₂₈O₆Na (M+Na)⁺ requires m/z 531.1778, found m/z 531.1783.

(R)-8-(4-fluorophenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3e)

Colorless oil; 26.9 mg, 64% yield, 92% ee; $[\alpha]_D^{20} = -29.89$ (c = 0.60, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 14.518 min, 16.385 min; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 7.32-7.29 (m, 2H), 7.02-6.97 (m, 2H), 6.89-6.87 (m, 2H), 6.63 (s, 1H), 6.37 (t, *J* = 7.6 Hz, 1H), 6.34 (s, 1H), 5.91-5.89 (m, 2H), 5.86 (s, 1H), 4.87 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.50-4.45 (m, 2H), 4.23 (d, *J* = 13.2 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 161.5, 158.7, 155.1, 148.4, 144.4, 142.0, 137.1 (*J*_{C-F} = 4.0 Hz), 133.6, 128.4 (*J*_{C-F} = 8.0 Hz), 127.8, 127.6, 126.8, 115.5, 115.3, 113.7, 108.4, 102.8, 101.6, 73.0, 70.3, 65.8, 55.4; ¹⁹F NMR (564 MHz, CDCl₃) δ -112.3 (s); HRMS (ESI-TOF): exact mass calcd for C₂₅H₂₂FO₅ (M+H)⁺ requires m/z 421.1446, found m/z 421.1445.

(R)-8-(4-chlorophenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3f)

White solid; m.p. 58.2-62.3 °C; 31.4 mg, 72% yield, 89% ee; $[\alpha]_D^{20} = -63.37$ (c = 1.03, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 14.428 min, 16.697 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.31-7.26 (m, 4H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.63 (s, 1H), 6.41 (t, *J* = 8.0 Hz, 1H), 6.34 (s, 1H), 5.92 (d, *J* = 5.6 Hz, 2H), 5.85 (s, 1H), 4.88 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.50-4.45 (m, 2H), 4.23 (d, *J* = 13.6 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 155.0, 148.4, 144.4, 141.9, 139.3, 133.9, 133.5, 128.7, 128.0, 127.8, 127.5, 127.2, 113.7, 108.4, 102.7, 101.6, 73.0, 70.3, 65.6, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₁ClO₅Na (M+Na)⁺ requires m/z 459.0971, found m/z 459.0970.

(R)-8-(4-bromophenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3g)

White solid; m.p. 55.6-58.9 °C; 38.9 mg, 81% yield, 92% ee; $[\alpha]_D^{20} = -37.13$ (c = 1.16, CH₂Cl₂), $[\alpha]_D^{17} = -83.32$ (c = 0.55, CHCl₃); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, $\lambda = 250$ nm, retention time: 14.550 min, 16.913 min; ¹H NMR (600 MHz, CDCl₃) δ 7.45-7.41(m, 4H), 7.30 (d, J = 8.4 Hz, 2H), 6.90-6.87 (m, 2H), 6.62 (s, 1H), 6.41 (t, J = 7.8 Hz, 1H), 6.34 (s, 1H), 5.90 (dd, J = 8.4, 1.2 Hz, 2H), 5.85 (s, 1H), 4.88 (dd, J = 12.0, 7.2 Hz, 1H), 4.47 (dd, J = 12.0, 9.0 Hz, 2H), 4.22 (d, J = 13.8 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.7, 155.0, 148.4, 144.4, 141.9, 139.8, 133.5, 131.6, 128.3, 127.8, 127.5, 127.3, 122.1, 113.7, 108.4, 102.7, 101.6, 73.0, 70.2, 65.6, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₂BrO₅ (M+H)⁺ requires m/z 481.0645, found m/z 481.0642.

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3h)

White solid; m.p. 55.5-59.3 °C; 24.4 mg, 52% yield, 72% ee; $[\alpha]_D^{20} = -42.87$ (c = 0.72, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 10.183 min, 11.792 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 32.4, 8.4 Hz, 4H), 7.32-7.30 (m, 2H), 6.91-6.87 (m, 2H), 6.64 (s, 1H), 6.48 (t, *J* = 8.0 Hz, 1H), 6.35 (s, 1H), 5.92-5.90 (m, 2H), 5.87 (s, 1H), 4.91 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.53-4.51 (m, 1H), 4.50-4.48 (m, 1H), 4.26 (d, *J* = 13.6 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.8, 154.9, 148.5, 144.5, 141.9, 133.4, 128.7, 127.8, 127.4, 127.0, 125.6 (*J*_{C-F} = 3.0 Hz), 125.4 (*J*_{C-F} = 4.0 Hz), 113.7, 108.4, 102.7, 101.6, 73.1, 70.1, 65.6, 55.4; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -62.6 (s); **HRMS** (ESI-TOF): exact mass calcd for C₂₆H₂₂F₃O₅ (M+H)⁺ requires m/z 471.1414, found m/z 471.1415.

(R) - 11 - (4 - methoxyphenyl) - 8 - (m - tolyl) - 6, 9 - dihydro - 11 H - [1,3] dioxolo [4',5':4,5] benzo [1,2 - 1,2] dioxolo [4',5':4,5] dioxolo [4',5':4,5] benzo [1,2 - 1,2] dioxolo [4',5':4,5] dioxolo [4',5':4] dioxolo [4',5':4

b][1,5]dioxonine (3i)

White solid; m.p. 112.5-115.3 °C; 22.9 mg, 55% yield, 98% ee; $[\alpha]_D^{20} = -65.92$ (c = 1.43, CH₂Cl₂); **HPLC** CHIRALCEL IE, *n*-hexane/2-propanol = 90/10, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 14.375 min, 15.567 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.31 (m, 4H), 7.21 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 2H), 6.64 (s, 1H), 6.40 (t, J = 8.0 Hz, 1H), 6.34 (s, 1H), 5.90 (t, J = 3.6 Hz, 1H), 4.87 (dd, J = 12.0, 7.2 Hz, 1H), 4.56-4.49 (m, 2H), 4.30 (d, J = 13.6 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 155.2, 148.3,144.3, 143.1, 140.9, 138.0, 133.5, 128.7, 128.4, 128.0, 127.8, 127.4, 126.4, 123.7, 113.7, 108.5, 102.9, 101.6, 73.3, 70.5, 66.2, 55.4, 21.7; **HRMS** (ESI-TOF): exact mass calcd for C₂₆H₂₅O₅ (M+H)⁺ requires m/z 417.1697, found m/z 417.1696.

(R)-8-(3-chlorophenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3j)

White solid; m.p. 125.6-130.0 °C; 38.4 mg, 88% yield, 93% ee; $[\alpha]_D^{20} = -71.86$ (c = 1.22, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 13.498 min, 14.978 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.43-7.41 (m, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.25-7.24 (m, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.63 (s, 1H), 6.42 (t, *J* = 7.6 Hz,1H), 6.33 (s, 1H), 5.90 (d, *J* = 4.4 Hz, 2H), 5.86 (s, 1H), 4.88 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.52-4.45 (m, 2H), 4.24 (d, *J* = 13.6 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.8, 155.0, 148.4, 144.4, 142.8, 141.9, 134.4, 133.4, 129.8, 128.0, 127.9, 127.8, 127.6, 126.8, 124.8, 113.7, 108.4, 102.7, 101.6, 73.2, 70.2, 65.8, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₂ClO₅ (M+H)⁺ requires m/z 437.1150, found m/z 437.1146.

(R)-8-(2-chlorophenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3k)

White solid; m.p. 125.5-130.2 °C; 35.8 mg, 82% yield, 89% ee; $[\alpha]_D^{20} = -34.64$ (c = 0.97, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 13.730 min, 18.912 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.34-7.30 (m, 3H), 7.23-7.16 (m, 2H), 7.12-7.10 (m, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.66 (s, 1H), 6.30 (s, 1H), 6.07-6.03 (m, 2H), 5.90 (s, 2H), 4.83-4.71 (m, 2H), 4.34 (s, 2H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.9, 155.2, 148.1, 144.1, 143.4, 140.2, 132.8, 132.3, 130.9, 129.6, 129.0, 128.6, 128.2, 128.1, 126.9, 113.8, 108.6, 103.3, 101.5, 74.6, 70.2, 67.6, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₂ClO₅ (M+H)⁺ requires m/z 437.1150, found m/z 437.1153.

(R)-8-(3,4-dimethoxyphenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3l)

Colorless oil; 24.0 mg, 52% yield, 92% ee; $[\alpha]_D^{20} = -77.25$ (c = 0.88, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 46.305 min, 51.677 min; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.30 (m, 2H), 7.16 (d, *J* = 2.0 Hz, 1H), 7.11 (dd, *J* = 8.0, 4.0 Hz, 1H), 6.89-6.85 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.63 (s, 1H), 6.40 (t, *J* = 8.0 Hz, 1H), 6.35 (s, 1H), 5.90 (dd, *J* = 5.2, 1.6 Hz, 2H), 5.88 (s, 1H), 4.88 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.51-4.44 (m, 2H), 4.23 (d, *J* = 13.6 Hz, 1H), 3.87 (s, 6H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 155.2, 149.0, 148.8, 148.4, 144.4, 142.4, 133.9, 133.7, 127.8, 127.6, 125.7, 119.0, 113.6, 111.1, 110.0, 108.4, 102.9, 101.6, 72.7, 70.5, 65.7, 56.0, 55.9, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₇H₂₇O₇ (M+H)⁺ requires m/z 463.1751, found m/z 463.1757.

(R)-8-(3-bromo-4-fluorophenyl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3m)

White solid; m.p. 57.7-60.3 °C; 27.9 mg, 56% yield, 74% ee; $[\alpha]_D^{20} = -32.08$ (c = 1.01, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 13.655 min, 16.295 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 6.8, 2.4 Hz, 1H), 7.49-7.45 (m, 1H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.06 (t, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.62 (s, 1H), 6.37 (t, *J* = 8.0 Hz, 1H), 6.33 (s, 1H), 5.91 (dd, *J* = 5.6, 1.2 Hz, 2H), 5.84 (s, 1H), 4.88 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.49-4.43 (m, 2H), 4.20 (d, *J* = 13.2 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.1, 158.8, 157.6, 154.9, 148.5, 144.4, 141.0, 138.6 (*J*_{C-F} = 3.0 Hz), 133.4, 131.8, 127.8, 127.4, 127.3 (*J*_{C-F} = 7.0 Hz), 116.5 (*J*_{C-F} = 22.0 Hz), 113.7, 109.2 (*J*_{C-F} = 21.0 Hz), 108.4, 102.7, 101.6, 73.1, 70.1, 65.6, 55.4; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -108.7 (s); **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₁BrFO₅ (M+H)⁺ requires m/z 499.0551, found m/z 499.0544.

(R)-11-(4-methoxyphenyl)-8-(3,4,5-trifluorophenyl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3n)

Yellow oil; 21.9 mg, 48% yield, 46% ee; $[\alpha]_D^{20} = -25.21$ (c = 0.78, CH₂Cl₂); **HPLC** CHIRALCEL xx, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 11.523 min, 13.055 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.22-7.18 (m, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.61 (s, 1H), 6.40 (t, *J* = 7.6 Hz, 1H), 6.33 (s, 1H), 5.91 (dd, *J* = 6.4, 1.2 Hz, 2H), 5.81 (s, 1H), 4.90 (dd, *J* = 12.8, 7.2 Hz, 1H), 4.46-4.40 (m, 2H), 4.16 (d, *J* = 13.2 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.8, 154.7, 148.6, 144.5, 140.4, 133.4, 128.7, 127.7, 127.4, 127.2, 113.8, 110.1 (*J*_{C-F} = 6.0 Hz), 110.8 (*J*_{C-F} = 6.0 Hz), 108.4, 102.5, 101.7, 73.0, 69.8, 65.2, 55.4; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -134.3 (d, *J* = 31.0 Hz), -161.4 (t, *J* = 30.5 Hz); **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₀F₃O₅ (M+H)⁺ requires m/z 457.1257, found m/z 457.1252.

(*R*)-8-(furan-2-yl)-11-(4-methoxyphenyl)-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2b][1,5]dioxonine (30)

Colorless oil; 19.6 mg, 50% yield, 51% ee; $[\alpha]_D^{20} = -115.66$ (c = 1.12, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 16.213 min, 20.438 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.29-7.27 (m, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.67 (t, *J* = 8.0 Hz, 1H), 6.63 (s, 1H), 6.52 (d, *J* = 3.6 Hz, 1H), 6.39 (s, 1H), 6.32 (s, 1H), 5.90 (d, *J* = 5.2 Hz, 2H), 5.80 (s, 1H), 4.90 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.52-4.47 (m, 2H), 4.14 (d, *J* = 13.6 Hz, 1H), 3.80 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 155.3, 153.5, 148.4, 144.3, 142.5, 133.5, 132.6, 127.9, 127.4, 122.7, 113.6, 111.7, 108.4, 108.3, 102.8, 101.6, 73.2, 70.3, 63.4, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₃H₂₁O₆ (M+H)⁺ requires m/z 393.1333, found m/z 393.1330.

(R)-11-(4-methoxyphenyl)-8-(thiophen-2-yl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3p)

White solid; m.p. 58.3-63.1 °C; 18.4 mg, 45% yield, 34% ee; $[\alpha]_D^{20} = -64.98$ (c = 0.75, CH₂Cl₂); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = x.x mL/min, λ = 250 nm, retention time: 17.447 min, 19.548 min; ¹**H NMR** (600 MHz, CDCl₃) δ 7.31-7.29 (m, 2H), 7.26-7.25 (m, 1H), 7.18 (d, *J* = 5.4 Hz, 1H), 6.99-6.98 (m, 1H), 6.88-6.87 (m, 2H), 6.63 (s, 1H), 6.54 (t, *J* = 7.8 Hz, 1H), 6.34 (s, 1H), 5.90 (dd, *J* = 7.2, 1.8 Hz, 2H), 5.84 (s, 1H), 4.86 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.56 (d, *J* = 13.8 Hz, 1H), 4.47 (dd, *J* = 12.6, 8.4 Hz, 1H), 4.21 (d, *J* = 13.2 Hz, 1H), 3.80 (s, 3H); ¹³C **NMR** (150 MHz, CDCl₃) δ 158.7, 155.3, 148.4, 144.4, 144.0, 137.0, 133.5, 127.9, 127.8, 127.4, 125.2, 125.1, 124.9, 113.6, 108.5, 102.8, 101.6, 73.1, 70.5, 65.2, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₃H₂₁O₅S (M+H)⁺ requires m/z 409.1104, found m/z 409.1101.

(R)-11-(4-methoxyphenyl)-8-(naphthalen-1-yl)-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3q)

White solid; m.p. 126.6-130.2 °C; 38.4 mg, 85% yield, 95% ee; $[\alpha]_D^{20} = -65.17$ (c = 1.20, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 16.818 min, 18.850 min; ¹**H NMR** (600 MHz, CDCl₃) δ 8.03 (s, 1H), 7.84-7.78 (m, 3H), 7.66 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.48-7.44 (m, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 6.67 (s, 1H), 6.58 (t, *J* = 7.8 Hz, 1H), 6.38 (s, 1H), 5.95 (s, 1H), 5.91 (dd, *J* = 7.2, 1.2 Hz, 2H), 4.94 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.66, (d, 13.8 Hz, 1H), 4.58 (dd, *J* = 12.0, 8.4 Hz, 1H), 4.38 (d, *J* = 13.8 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 158.7, 155.2, 148.4, 144.3, 142.9, 138.1, 133.5, 133.4, 133.0, 128.5, 128.1, 127.9, 127.8, 127.7, 127.1, 126.3, 126.2, 125.8, 124.6, 113.7, 108.5, 102.9, 101.6, 73.2, 70.5, 66.0, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₉H₂₅O₅ (M+H)⁺ requires m/z 453.1697, found m/z 453.1692.

(R)-11-(4-ethoxyphenyl)-8-phenyl-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2-

b][1,5]dioxonine (3r)

White solid; m.p. 45.5-48.9 °C; 25.0 mg, 60% yield, 90% ee; $[\alpha]_D^{20} = -72.81$ (c = 0.89, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 16.292 min, 20.288 min; ¹**H NMR** (600 MHz, CDCl₃) δ 7.53 (d, *J* = 7.8 Hz, 2H), 7.33-7.27 (m, 5H), 6.87 (d, *J* = 7.8 Hz, 2H), 6.63 (s, 1H), 6.42 (t, *J* = 7.8 Hz, 1H), 6.34 (s, 1H), 5.91 (s, 1H), 5.89 (d, *J* = 7.2 Hz, 2H), 4.88 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.55-4.50 (m, 2H), 4.29 (d, *J* = 13.2 Hz, 1H), 4.03 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 158.1, 155.1, 148.3, 144.3, 143.0, 141.0, 133.4, 128.5, 128.0, 127.9, 127.8, 126.7, 126.6, 114.3, 108.5, 102.9, 101.6, 73.2, 70.5, 66.1, 63.6, 15.0; **HRMS** (ESI-TOF): exact mass calcd for C₂₆H₂₅O₅ (M+H)⁺ requires m/z 417.1697, found m/z 417.1692.

(*R*)-11-(4-(benzyloxy)phenyl)-8-phenyl-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2b][1,5]dioxonine (3s)

White solid; m.p. 110.3-113.6 °C; 29.6 mg, 62% yield, 94% ee; $[\alpha]_D^{20} = -72.62$ (c = 1.13, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 22.567 min, 24.882 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.45-7.28 (m, 10H), 6.98-6.96 (m, 2H), 6.64 (s, 1H), 6.43 (t, *J* = 8.0 Hz, 1H), 6.35 (s, 1H), 5.91-5.89 (m, 3H), 5.07 (s, 2H), 4.88 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.55-4.50 (m, 2H), 4.28 (d, *J* = 14.0 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.0, 155.1, 148.3, 144.3, 143.0, 141.0, 137.3, 133.9, 128.7, 128.5 128.1, 128.0, 127.9, 127.7, 126.7, 126.6, 114.6, 108.5, 102.9, 101.6, 73.1, 70.5, 70.2, 66.0; **HRMS** (ESI-TOF): exact mass calcd for C₃₁H₂₇O₅ (M+H)⁺ requires m/z 479.1853, found m/z 479.1854. (*S*)-8-phenyl-11-(2,3,4-trimethoxyphenyl)-6,9-dihydro-11H-[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3t)

White solid; m.p. 52.6-55.9 °C; 30.5 mg, 66% yield, 86% ee; $[\alpha]_D^{20} = -62.04$ (c = 1.34, CH₂Cl₂); **HPLC** CHIRALCEL ID, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 15.883 min, 17.445 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53-7.50 (m, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.32-7.23 (m, 3H), 6.78 (d, J = 8.8 Hz, 1H), 6.65 (s, 1H), 6.44 (t, J = 8.0 Hz, 1H), 6.37 (s, 1H), 6.06 (s, 1H), 5.88 (dd, J = 5.6, 1.2 Hz, 2H), 4.90 (dd, J = 12.0, 7.2 Hz, 1H), 4.55-4.48 (m, 2H), 4.28 (d, J = 13.2 Hz, 1H), 3.88 (s, 3H), 3.79 (s, 3H), 3.41 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 154.7, 153.0, 150.8, 148.1, 144.1, 142.9, 142.3, 141.1, 128.5, 128.1, 128.0, 127.9, 127.0, 126.6, 121.0, 107.7, 106.9, 103.0, 101.5, 70.4, 69.2, 65.8, 60.8, 60.2, 56.1; **HRMS** (ESI-TOF): exact mass calcd for C₂₇H₂₇O₇ (M+H)⁺ requires m/z 463.1751, found m/z 463.1760.

(R)-11-(3-chloro-4-methoxyphenyl)-8-phenyl-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3u)

Colorless oil; 24.9 mg, 57% yield, 80% ee; $[\alpha]_D^{20} = -19.78$ (c = 1.05, CH₂Cl₂); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 12.222 min, 13.732 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.55-7.54 (m, 2H), 7.45-7.44 (m, 1H), 7.36-7.29 (m, 3H), 7.24-7.21 (m, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.64 (s, 1H), 6.44 (t, *J* = 8.0 Hz, 1H), 6.32 (s, 1H), 5.92 (d, *J* = 2.8 Hz, 2H), 5.85 (s, 1H), 4.89 (dd, *J* = 12.4, 7.2 Hz, 1H), 4.53-4.49 (m, 1H), 4.47-4.44 (m, 1H), 4.24 (d, *J* = 11.2 Hz, 1H), 3.89 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 155.1, 154.0, 148.6, 144.4, 142.7, 140.8, 134.9, 128.6, 128.5, 128.1, 127.0, 126.9, 126.6, 126.1, 122.3, 111.9, 108.3, 102.9, 101.7, 73.2, 70.4, 65.7, 56.3; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₂ClO₅ (M+H)⁺ requires m/z 437.1150, found m/z 437.1154.

(R)-11-(3-bromo-4-methoxyphenyl)-8-phenyl-6,9-dihydro-11H-

[1,3]dioxolo[4',5':4,5]benzo[1,2-b][1,5]dioxonine (3v)

Colorless oil; 33.6 mg, 70% yield, 90% ee; $[\alpha]_D^{20} = -66.17$ (c = 1.07, CH₂Cl₂); **HPLC** CHIRALCEL IA, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 13.638 min, 14.900 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.61-7.60 (m, 1H), 7.55-7.53 (m, 2H), 7.36-7.27 (m, 4H), 6.87 (d, *J* = 8.8 Hz, 1H), 6.63 (s, 1H), 6.44 (t, *J* = 8.0 Hz, 1H), 6.32 (s, 1H), 5.92 (dd, *J* = 4.0, 1.2 Hz, 2H), 5.85 (s, 1H), 4.89 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.53-4.40 (m, 2H), 4.24 (d, *J* = 13.4 Hz, 1H), 3.89 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 155.1, 154.9, 148.6, 144.4, 142.8, 140.8, 135.4, 131.6, 128.6, 128.1, 127.1, 127.0, 126.9, 126.6, 111.7, 111.6, 108.3, 102.9, 101.7, 76.9, 72.3, 70.4, 65.8, 56.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₂BrO₅ (M+H)⁺ requires m/z 481.0645, found m/z 481.0650.

(*R*)-9,10-dimethoxy-7-(4-methoxyphenyl)-4-phenyl-2,5-dihydro-7H-benzo[b][1,5]dioxonine (3w)

Colorless oil; 31.4 mg, 75% yield, 92% ee; $[\alpha]_D^{20} = -71.21$ (c = 0.72, CH₂Cl₂); **HPLC** CHIRALCEL IE, *n*-hexane/2-propanol = 80/20, flow rate = 0.6 mL/min, λ = 250 nm, retention time: 18.075 min, 21.323 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.35-7.28 (m, 5H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.68 (s, 1H), 6.48 (t, *J* = 8.0 Hz, 1H), 6.40 (s, 1H), 5.91 (s, 1H), 4.90 (dd, *J* = 12.0, 7.2 Hz, 1H), 4.55-4.50 (m, 2H), 4.26 (d, *J* = 13.6 Hz, 1H), 3.90 (s, 3H), 3.81 (s, H), 3.66 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 158.6, 154.5, 150.1, 146.0, 142.7, 141.0, 133.6, 128.5, 128.0, 127.9, 127.1, 126.6, 126.0, 113.6, 111.7, 105.2, 72.7, 70.4, 65.7, 56.2, 56.1, 55.4; **HRMS** (ESI-TOF): exact mass calcd for C₂₆H₂₇O₅ (M+H)⁺ requires m/z 419.1853, found m/z 419.1847.

6. Scale-up synthesis of product 3a

In a 50 mL reaction tube, **1a** (768mg, 3.0 mmol), Pd(PPh₃)₄ (347mg, 0.3 mmol, 10 mol%) and **C3** (187 mg, 0.3 mmol, 10 mol%) were added. The reaction tube was placed under vacuum and backfilled with argon three times. **2a** (855 mg, 4.5 mmol) dissolved in dioxane (30 mL), and this solution was added via syringe under N₂. The resulting mixture was stirred at rt for 5 h, and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (PE:EA:Et₃N = 150:10:1–100:10:1 as eluent) to give the products **3a** (acid-sensitive) as white solid (905 mg, 75% yield, 95% ee).

7. Derivatization of product 3a

To a solution of the compound **3a** (19.5 mg, 0.049 mmol) in CHCl₃ (1.0 mL), silica gel (300 mg) (200-300 meshes) was added. After the reaction was stirred at room temperature for 5 h, and the solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (PE:EA = 15:1-10:1) to give the product **4a** as white solid (18.6 mg, 95% yield, 94% ee).

(6R,9R)-6-(4-methoxyphenyl)-9-phenyl-9-vinyl-8,9-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-d][1,3]dioxepine (4a)

White solid; m.p. 107.3-109.6 °C; $[\alpha]_D^{20} = -5.98$ (c = 1.02, CH₂Cl₂); **HPLC** CHIRALCEL IC, *n*-hexane/2-propanol = 95/5, flow rate = 0.8 mL/min, $\lambda = 250$ nm, retention time: 9.277 min, 10.710 min; ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.31-7.26 (m, 2H), 7.22-7.15 (m, 3H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.73 (s, 1H), 6.57 (s, 1H), 6.24 (dd, *J* = 17.2, 10.4 Hz, 1H), 5.96 (d, *J* = 3.6 Hz, 2H), 5.76 (s, 1H), 5.39 (d, *J* = 10.4 Hz, 1H), 4.79 (d, *J* = 17.2 Hz, 1H), 4.72 (d, *J* = 12.4 Hz, 1H), 4.03 (d, *J* = 12.4 Hz, 1H), 3.79 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 160.1, 152.3, 146.8, 144.0, 143.0, 142.6, 131.3, 129.7, 128.6, 128.1, 127.5, 126.5, 117.9, 113.7, 110.2, 104.6, 104.1, 101.7, 73.5, 56.6, 55.5; **HRMS** (ESI-TOF): exact mass calcd for C₂₅H₂₃O₅ (M+H)⁺ requires m/z 403.1540, found m/z 403.1536.

8. The X-ray data of 3a and 4a

8.1 The X-ray data of 3a

The product rac-**3a** was recrystallized by petroleum ether/diethyl ether (2/1). CCDC 1976904 (rac-**3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Identification code	3a		
Empirical formula	C ₂₅ H ₂₂ O ₅		
Formula weight	402.42		
Temperature/K	100.01(10)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	6.4099(4)		
b/Å	16.5738(9)		
c/Å	18.3583(11)		
α/°	90		
β/°	90.04(4)		
γ/°	90		
Volume/Å ³	1950.3(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.371		
µ/mm ⁻¹	0.095		
F(000)	848.0		
Crystal size/mm ³	$0.12 \times 0.11 \times 0.09$		
Radiation	MoKa ($\lambda = 0.71073$)		
20 range for data collection/° 4.438 to 49.986			
Index ranges	$-7 \le h \le 7, -18 \le k \le 19, -17 \le l \le 21$		

Table 1 Crystal data and structure refinement for rac-3a.

 Reflections collected
 12558

 Independent reflections
 3439 [$R_{int} = 0.0337$, $R_{sigma} = 0.0331$]

 Data/restraints/parameters
 3439/0/272

 Goodness-of-fit on F²
 1.049

 Final R indexes [I>=2 σ (I)]
 R₁ = 0.0377, wR₂ = 0.0862

 Final R indexes [all data]
 R₁ = 0.0456, wR₂ = 0.0910

 Largest diff. peak/hole / e Å⁻³ 0.19/-0.23

8.2 The X-ray data of 4a

The product rac-**4a** was recrystallized by petroleum ether/diethyl ether (2/1). CCDC 1976905 (rac-**4a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Table 1 Crystal data and structure refinement for rac-4a.

Identification code	4a
Empirical formula	$C_{25}H_{22}O_5$
Formula weight	402.42
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	14.7117(2)
b/Å	10.94480(10)
c/Å	13.1133(2)
α/°	90
β/°	112.597(2)
$\gamma/^{\circ}$	90
Volume/Å ³	1949.36(5)
Z	4
$\rho_{calc}g/cm^3$	1.371

0.776
848.0
$0.150 \times 0.120 \times 0.110$
$CuK\alpha \ (\lambda = 1.54184)$
10.38 to 142.398
$\text{-}17 \leq h \leq 17, \text{-}8 \leq k \leq 13, \text{-}15 \leq l \leq 15$
10459
$3702 \ [R_{int} = 0.0206, R_{sigma} = 0.0206]$
3702/0/280
1.045
$R_1 = 0.0357, wR_2 = 0.0891$
$R_1 = 0.0396, wR_2 = 0.0922$
0.21/-0.24

9. Determination of the absolute configuration of compound 3g

The absolute configuration of **3g** was assigned by comparison with literature data (Chem. Eur. J, 2019, DOI: 10.1002/chem.201904903).

By comparing the specific optical $[\alpha]$ values, the absolute configuration of 3g was determined to be

 (\mathbf{R}) by comparison with literature data.

- (1) This work: (**3g**) 92% ee. $[\alpha]_D^{17} = -83.32$ (c = 0.55 CHCl₃).
- (2) Ref: (**3ag**) 97% ee $[\alpha]_D^{17}$ = -92.0 (c = 0.55, CHCl₃).

10. References

1. L. Jurd, Quinones and quinone-methides-I: Cyclization and dimerisation of crystalline orthoquinone methides from phenol oxidation reactions, *Tetrahedron*, 1977, **33**, 163-168.

2. Y. Xu, L. Chen, Y.-w. Yang, Z. Zhang and W. Yang, Vinylethylene carbonates as α,β unsaturated aldehyde surrogates for regioselective [3+3] cycloaddition, *Org. Lett.*, 2019, **21**, 66746678.

11. Copies of ¹H and ¹³C NMR spectra

S33

S34

12. Copies of HPLC spectra for racemic and chiral products

枳汀≥	古 未				
Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	16.005	204.628	518.396	50.36	52.22
2	17.273	201.716	474.264	49.64	47.78
Total:		406.344	992.660	100.00	100.00

Total:		867.584	2067.884	100.00	100.00
2	15.002	38.637	120.936	4.45	5.85
1	13.973	828.947	1946.949	95.55	94.15
	min	mAU*min	mAU	%	%

积分结果									
Peak	Retention Time	Area	Height	Area	Height				
	min	mAU*min	mAU	%	%				
1	20.435	400.790	860.441	98.19	97.96				
2	23.147	7.392	17.916	1.81	2.04				
Total:		408.182	878.356	100.00	100.00				

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	22.827	769.259	788.218	97.19	98.18
2	34.500	22.275	14.571	2.81	1.82
Total:		791.534	802.790	100.00	100.00

松刀多	有术				
Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	14.518	765.823	2005.472	96.08	96.30
2	16.385	31.273	77.004	3.92	3.70
Total:		797.097	2082.476	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
1 2	14.428 16.697	1044.707	4164.707	94.56 5.44	96.14 3.86
Total:		1104.758	4331.761	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	14.550	284.546	850.755	96.07	96.37
2	16.913	11.651	32.013	3.93	3.63
Total:		296.197	882.768	100.00	100.00

Total:		1007.585	3635.701	100.00	100.00
2	15.567	12.311	41.092	1.22	1.13
1	14.375	995.274	3594.609	98.78	98.87
	min	mAU*min	mAU	%	%
Реак	Retention Time	Area	Height	Area	Height

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	13.498	840.390	3008.749	96.24	96.55
2	14.978	32.790	107.593	3.76	3.45
Total:		873.180	3116.342	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	13.730	154.974	478.644	94.66	96.03
2	18.912	8.746	19.798	5.34	3.97
Total:		163.720	498.442	100.00	100.00

1 45.035 945.478 608.014 51.34 51.06 2 49.583 896.138 582.701 48.66 48.94 Total: 1841.616 1190.715 100.00 100.00							_
1 45.035 945.478 608.014 51.34 51.06 2 49.583 896.138 582.701 48.66 48.94	Total:		1841.616	1190.715	100.00	100.00	
1 45.035 945.478 608.014 51.34 51.06	2	49.583	896,138	582,701	48.66	48.94	
	1	45.035	945.478	608.014	51.34	51.06	

积分结果									
Peak	Retention Time	Area	Height	Area	Height				
	min	mAU*min	mAU	%	%				
1	46.305	285.974	213.723	95.73	95.29				
2	51.677	12.761	10.565	4.27	4.71				
Total:		298.735	224.288	100.00	100.00				

	min	mAU*min	mAU	%	%
1	13.665	486.127	1632.714	87.02	88.98
2	16.295	72.514	202.222	12.98	11.02
Total:		558.641	1834.936	100.00	100.00

伏尔珀米						
Peak	Retention Time	Area	Height	Area	Height	
	min	mAU*min	mAU	%	%	
1	11.523	147.775	618.532	72.97	77.65	
2	13.055	54.733	177.985	27.03	22.35	
Total:		202.509	796.517	100.00	100.00	

Total:		2236.190	3791.852	100.00	100.00
2	20.438	1690.366	2259.707	75.59	59.59
1	16.213	545.824	1532.145	24.41	40.41
	min	mAU*min	mAU	%	%
Реак	Retention Lime	Area	Height	Area	Height

1883.778

843.518

Total:

100.00

100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	16.818	522.249	1409.789	97.49	97.59
2	18.850	13.465	34.864	2.51	2.41
Total:		535.714	1444.653	100.00	100.00

	min	mAU*min	mAU	%	%
1	16.292	21.595	53.342	5.02	7.50
2	20.288	408.976	657.663	94.98	92.50
Total:		430.570	711.005	100.00	100.00

你刀珀木						
Peak	Retention Time	Area	Height	Area	Height	
	min	mAU*min	mAU	%	%	
1	22.567	65.396	123.036	3.19	7.26	
2	24.882	1986.972	1570.858	96.81	92.74	
Total:		2052.367	1693.894	100.00	100.00	

你刀 坦木 ———————————————————————————————————						
Peak	Retention Time	Area	Height	Area	Height	
	min	mAU*min	mAU	%	%	
1	12.222	595.349	1795.024	90.24	90.99	
2	13.732	64.423	177.767	9.76	9.01	
Total:		659.772	1972.791	100.00	100.00	

Peak	Retention Time	Area	Height	Area	Height		
	min	mAU*min	mAU	%	%		
1	13.638	560.905	1832.550	94.91	95.05		
2	14.900	30.059	95.525	5.09	4.95		
Total:		590.964	1928.075	100.00	100.00		

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	18.075	38.558	101.979	3.99	5.46
2	21.323	928.870	1766.508	96.01	94.54
Total:		967.428	1868.487	100.00	100.00

1/// 31 // 1// 1// 1// 1// 1// 1// 1// 1								
Peak	Retention Time	Area	Height	Area	Height			
	min	mAU*min	mAU	%	%			
1	9.277	160.240	434.461	96.85	95.97			
2	10.710	5.205	18.260	3.15	4.03			
Total:		165.445	452.721	100.00	100.00			