Supporting Information for

Synthesis of Polysubstituted 5-Trifluoromethyl Isoxazoles via

Denitrogenative Cyclization of Vinyl Azides with Trifluoroacetic

Anhydride

Wei Wu, Qiaoling Chen, Yishi Tian, Yihui Xu, Yangjie Huang,* Yi You,*

and Zhiqiang Weng*

State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecule Synthesis and Function Discovery,

College of Chemistry, Fuzhou University, Fuzhou 350108, China.

Corresponding authors: <u>373564427@qq.com</u> (YH); <u>youyi@fzu.edu.cn</u> (YY);

zweng@fzu.edu.cn (ZW)

Table of Contents

General information	S2
General procedure of synthesis of vinyl azide substrates	S 3
General procedure of the synthesis of 5-trifluoromethyl isoxazole	S15
Procedure for gram scale reaction	S16
General procedure of the synthesis of 5-perfluoroalkyl isoxazole	S17
Synthetic utility of trifluoromethylated isoxazoles	S18
Radical inhibition experiments	S21
Data for compounds	S22
Crystal structure analyses	S 50
References	S53
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	S54

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (*J*) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ δ 7.26), ¹³C NMR (CDCl₃ δ 77.0), ¹H NMR (DMSO-*d*₆ δ 2.50) and ¹³C NMR (DMSO-*d*₆ δ 39.50). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using Merck silica gel 60.

Caution: One should keep in mind the inherent toxicity, instability, shock sensitivity, and explosive nature of azides. All users should exercise appropriate caution. We have never experienced a safety problem with these materials.

General procedure of synthesis of vinyl azide substrates 2

Vinyl azides 2a–2i, 2k–2p, 2-4l, 2-4q, 2-4r, 2-5a–2-5e, 2-6a, 2-6b were known compounds and prepared according to the reported procedures.¹

Typical synthetic procedure A^{1a} (with **2a** as an example):

$$R \longrightarrow R^{-1} \xrightarrow{\text{TMS-N}_3 (2.0 \text{ equiv})}_{\text{Mg}_2 \text{CO}_3 (10\% \text{ mol})} R \xrightarrow{\text{H}_2 \text{O} (2.0 \text{ equiv})}_{\text{DMSO, 80 °C, 1-2 h}} R \xrightarrow{\text{H}_1 \text{N}_3}_{\text{N}_3}$$

To a solution of Ag_2CO_3 (138 mg, 0.10 equiv), phenylacetylene (0.51g, 5 mmol), TMS-N₃ (1.15g, 10 mmol) and H₂O (1800 µL) in DMSO (6 mL) was stirred for 1-2 h at 80 °C. The resulting mixture was washed with Et₂O and brine (4 × 20 mL), dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with petroleum ether to give (1-azidovinyl)benzene.

Typical synthetic procedure B^{1b} (with **2a** as an example):

$$R^{1} \xrightarrow{R^{2}} R^{2} \xrightarrow{\text{NaN}_{3} (2.4 \text{ equiv})} CH_{3}CN/CH_{2}Cl_{2}, -20^{\circ}C} \xrightarrow{R^{1}} R^{1} \xrightarrow{I} \frac{t-BuOK (1.1 \text{ equiv})}{Et_{2}O, 0^{\circ}C} \xrightarrow{N_{3}} R^{1} \xrightarrow{I} R^{2}$$

To a suspension of NaN₃ (1.56 g, 24 mmol) in CH₃CN (5 mL) was added dropwise a solution of iodine monochloride (1.95 g, 12 mmol) in CH₃CN (5 mL) at -20 °C, and the mixture was kept stirring at -20 °C for 30 min. A solution of styrene (1.04 g, 10 mmol) in CH₂Cl₂ (5 mL) was added slowly dropwise, and the mixture was stirred at -20 °C–RT for overnight. The reaction was quenched with saturated aqueous Na₂S₂O₃, and the resulting mixture were extracted with Et₂O (3 × 15 mL) and the organic layer were washed with brine and dried over MgSO₄. The solvent was removed by rotary

evaporation and the resulting crude materials were used immediately for the next step without any further purification.

To a solution of the obtained crude materials above in Et_2O (10 mL) was added *t*-BuOK (1.23 g, 11 mmol) at 0 °C, and the mixture was stirred for 1.5 h at the same temperature. The reaction was quenched by adding Saturated NaHCO₃, and the mixture was extracted with Et_2O , washed with brine, and dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with petroleum ether to give (1-azidovinyl)benzene.

Typical synthetic procedure C^{1c}

In a dried 100 mL round bottom flask equipped with a stir bar were added ethyl 4-methylcinnamate (0.95 g, 5.0 mmol) and NaN₃ (0.49 g, 7.5 mmol) in dry CH₃CN (5 mL) under N₂ atmosphere, a solution of CAN (6.85 g, 12.5 mmol) in the same solvent (15 mL) was added dropwise at 0 $^{\circ}$ C and was kept stirring at 0 $^{\circ}$ C-RT for overnight. The resulting mixture were extracted with CH₂Cl₂ (3 × 10 mL) and the organic layer were washed with brine and dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting crude materials were used immediately for the next step without any further purification.

To a solution of the obtained crude materials above in dry acetone (5 mL) was added anhydrous sodium acetate (0.62 g, 7.5 mmol) at RT for 3 h. The mixture was extracted with CH_2Cl_2 , washed with brine, and dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with PE/EA to give ethyl 2-azido-3-(*p*-tolyl)acrylate.

The following new compounds were synthesized by Procedure A:

1-(1-Azidovinyl)-4-(pentyloxy)benzene (2j)

Prepared on a 5.0 mmol scale. Obtained as a yellow solid in 58% yield (670 mg). Mp: 38.0-38.5 °C. R_f (*n*-pentane:dichloromethane 10:1) = 0.78. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.2 Hz, 2H), 6.87 (d, J = 8.2 Hz, 2H), 5.31 (s, 1H), 4.85 (s, 1H), 3.97 (t, J = 6.4 Hz, 2H), 1.84 – 1.75 (m, 2H), 1.50 – 1.35 (m, 4H), 0.95 (t, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9 (s), 144.7 (s), 126.8 (s), 126.6 (s), 114.3 (s), 96.0 (s), 68.0 (s), 28.9 (s), 28.1 (s), 22.4 (s), 14.0 (s). IR (ATR): v 2955, 2932, 2870, 2136, 2101, 1606, 1509, 1469, 1295, 1249, 1175, 1022, 829 cm⁻¹. GC-MS (EI) m/z (%): 203 [M-N₂]⁺ (100).

1-((2-Azidoallyl)oxy)-2-nitrobenzene (2-4a)

Prepared on a 7.3 mmol scale. Obtained as a yellow solid in 80% yield (1285 mg). Mp: 36.6-37.9 °C. $R_{\rm f}$ (*n*-pentane:ethyl acetate 10:1) = 0.58. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.14 – 7.00 (m, 2H), 5.18 (s, 1H), 4.93 (s, 1H), 4.52 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.1 (s), 140.9 (s), 140.1 (s), 134.1 (s), 125.6 (s), 121.2 (s), 115.1 (s), 101.0 (s), 68.5 (s). IR (ATR): v 2952, 2873, 2110, 1638, 1605, 1521, 1486, 1348, 1272, 1255, 1235, 1165, 1091, 1045, 1002, 858, 772, 694 cm⁻¹. GC-MS (EI) m/z: 192 [M-N₂]⁺ (3.93), 139 (100).

1-((2-Azidoallyl)oxy)-3-nitrobenzene (2-4b)

Prepared on a 7.0 mmol scale. Obtained as a yellow oily liquid in 85% yield (1309 mg). $R_{\rm f}$ (*n*-pentane:ethyl acetate 10:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 1H), 7.73 (s, 1H), 7.43 (t, J = 8.1 Hz, 1H), 7.25 (d, J = 8.1 Hz, 1H), 5.08 (s, 1H), 4.94 (s, 1H), 4.50 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (s), 149.1 (s), 141.2 (s), 130.1 (s), 121.8 (s), 116.5 (s), 109.3 (s), 101.6 (s), 68.1 (s). IR (ATR): v 3099, 2934, 2872, 2110, 1637, 1524, 1480, 1349, 1281, 1237, 1028, 859, 716, 798, 670 cm⁻¹. GC-MS (EI) m/z (%): 192 [M-N₂]⁺ (0.57), 139 (100).

1-((2-Azidoallyl)oxy)-2-bromobenzene (2-4c)

Prepared on a 6.0 mmol scale. Obtained as a yellow oily liquid in 83% yield (1260 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.8 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 6.96 – 6.84 (m, 2H), 5.17 (s, 1H), 4.94 (s, 1H), 4.49 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.3 (s), 141.5 (s), 133.5 (s), 128.4 (s), 122.7 (s), 113.9 (s), 112.5 (s), 100.8 (s), 68.2 (s). IR (ATR): v 3065, 2931, 2868, 2107, 1637, 1585, 1476, 1442, 1271, 1231, 1052, 1030, 859, 745, 655, 437 cm⁻¹. GC-MS (EI) m/z (%): 225 [M-N₂]⁺ (10.85), 54 (100).

1-((2-Azidoallyl)oxy)-4-iodobenzene (2-4d)

Prepared on a 5.4 mmol scale. Obtained as a yellow oily liquid in 75% yield (1219 mg). R_f (*n*-pentane:dichloromethane 10:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.6 Hz, 2H), 6.71 (d, J = 8.6 Hz, 2H), 5.03 (s, 1H), 4.91 (s, 1H), 4.41 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (s), 141.6 (s), 138.3 (s), 117.2 (s), 101.1 (s), 83.8 (s), 67.6 (s). IR (ATR): v 3065, 2938, 2868, 2108, 1637, 1584, 1483, 1277, 1223, 1173, 1050, 1027, 1000, 859, 817, 684, 503 cm⁻¹. GC-MS (EI) m/z: 259 [M-N₃]⁺ (%) (48.74), 219 (100).

1-((2-Azidoallyl)oxy)-3,5-dimethylbenzene (2-4e)

Prepared on a 4.3 mmol scale. Obtained as a light yellow liquid in 91% yield (794 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 6.66 (s, 1H), 6.59 (s, 2H), 5.05 (s, 1H), 4.91 (s, 1H), 4.44 (s, 2H), 2.32 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (s), 142.2 (s), 139.2 (s), 123.3 (s), 112.6 (s), 100.8 (s), 67.5 (s), 21.4 (s). IR (ATR): v 3018, 2920, 2865, 2107, 1637, 1594, 1455, 1320, 1288, 1273, 1151, 1064, 847, 828, 686 cm⁻¹. GC-MS (EI) m/z: 175 [M-N₂]⁺ (%) (61.82), 105 (100).

2-((2-Azidoallyl)oxy)-1,3-dimethylbenzene (2-4f)

Prepared on a 5.6 mmol scale. Obtained as a light yellow liquid in 90% yield (1023 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.90 (m, 3H), 5.12 (s, 1H), 4.93 (s, 1H), 4.21 (s, 2H), 2.31 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (s), 143.0 (s), 130.9 (s), 128.9 (s), 124.2 (s), 100.8 (s), 71.3 (s), 16.3 (s). IR (ATR): v 3022, 2924, 2862, 2113, 1634, 1475, 1264, 1198, 1013, 997, 860, 769 cm⁻¹. GC-MS (EI) m/z (%): 175 [M-N₂]⁺ (21.48), 54 (100).

1-((2-Azidoallyl)oxy)-2-bromo-4-chlorobenzene (2-4g)

Prepared on a 5.0 mmol scale. Obtained as a yellow oily liquid in 78% yield (1119 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.58. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.22 (d, J = 8.7 Hz, 1H), 6.81 (d, J = 8.7 Hz, 1H), 5.14 (s, 1H), 4.93 (s, 1H), 4.45 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.2 (s), 141.3 (s), 133.1 (s), 128.2 (s), 127.1 (s), 114.6 (s), 113.1 (s), 101.0 (s), 68.6 (s). IR (ATR): v 3071, 2928, 2868, 2106, 1638, 1473, 1386, 1278, 1261, 1246, 1047, 1011, 863, 801 cm⁻¹. GC-MS (EI) m/z: 247 [M-N₃]⁺ (%) (7.53), 43 (100).

(2-Azidoallyl)(2-methoxyphenyl)sulfane (2-4h)

Prepared on a 4.6 mmol scale. Obtained as a yellow oily liquid in 82% yield (834 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.5 Hz, 1H), 7.26 (t, J = 7.7 Hz, 1H), 6.95 – 6.84 (m, 2H), 4.64 (s, 1H), 4.63 (s, 1H), 3.90 (s, 3H), 3.49 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (s), 142.4 (s), 132.9 (s), 128.9 (s), 121.9 (s), 120.9 (s), 110.6 (s), 100.7 (s), 55.7 (s), 36.0 (s). IR (ATR): v 3065, 3006, 2938, 2837, 2136, 2098, 1625, 1580, 1476, 1433, 1294, 1273, 1244, 1069, 1023, 852, 727, 647 cm⁻¹. GC-MS (EI) m/z (%): 193 [M-N₂]⁺ (18.86), 138 (100).

(2-azidoallyl)(4-methoxyphenyl)sulfane (2-4i)

Prepared on a 5.0 mmol scale. Obtained as a yellow oily liquid in 88% yield (972 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 4.62 (s, 1H), 4.52 (s, 1H), 3.80 (s, 3H), 3.36 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7 (s), 142.4 (s), 135.0 (s), 124.6 (s), 114.5 (s), 101.0 (s), 55.3 (s), 39.9 (s). IR (ATR): v 3004, 2960, 2939, 2836, 2135, 2097, 1624, 1591, 1493, 1461, 1285, 1244, 1174, 1030, 826, 647, 524 cm⁻¹. GC-MS (EI) m/z (%): 193 [M-N₂]⁺ (36.98), 139 (100).

(2-Azidoallyl)(4-fluorophenyl)sulfane (2-4j)

Prepared on a 8.2 mmol scale. Obtained as a colorless liquid in 94% yield (1611 mg). $R_{\rm f}$ (*n*-pentane) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 2H), 7.17 – 6.92 (m, 2H), 4.63 (s, 1H), 4.56 (s, 1H), 3.39 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.5 – -113.7 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 247.8 Hz), 142.0 (s), 134.3 (d, J = 8.2 Hz), 129.3 (d, J = 3.3 Hz), 115.8 (d, J = 21.9 Hz), 100.8 (s), 39.0 (s). IR (ATR): v 2134, 2096, 1624, 1589, 1488, 1397, 1290, 1222, 1156, 1090, 852, 824, 629, 513, 450 cm⁻¹. GC-MS (EI) m/z (%): 181 [M-N₂]⁺ (30.89), 141 (100).

1-((2-Azidoallyl)sulfonyl)-2-methoxybenzene (2-4k)

Prepared on a 5.6 mmol scale. Obtained as a yellow oily liquid in 74% yield (1048 mg). $R_{\rm f}$ (*n*-pentane:ethyl acetate 5:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.15 – 6.97 (m, 2H), 4.90 (s, 2H), 4.01 (s, 2H), 3.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (s), 135.9 (s), 135.4 (s), 130.9 (s), 126.0 (s), 120.7 (s), 112.3 (s), 106.2 (s), 58.1 (s), 56.3 (s). IR (ATR): v 2944, 2844, 2142, 2107, 1724, 1627, 1591, 1479, 1435, 1314, 1279, 1241, 1148, 1064, 1014, 867, 802, 755, 595, 525, 485 cm⁻¹. GC-MS (EI) m/z (%): 253 [M]⁺ (2.98), 191 (100).

N-(2-Azidoallyl)-[1,1'-biphenyl]-4-carboxamide (2-4m)

Prepared on a 7.0 mmol scale. Obtained as a white solid in 35% yield (681 mg). Mp: 120.0-120.9 °C. $R_{\rm f}$ (*n*-pentane:ethyl acetate 5:2) = 0.77. ¹H NMR (400 MHz, CDCl₃)

δ 7.88 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.39 (d, J = 6.8 Hz, 1H), 6.78 (s, 1H), 5.00 (s, 1H), 4.81 (s, 1H), 4.05 (d, J = 5.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2 (s), 144.5 (s), 143.3 (s), 139.8 (s), 132.6 (s), 128.9 (s), 128.0 (s), 127.5 (s), 127.2 (s), 127.1 (s), 99.3 (s), 42.0 (s). IR (ATR): v 3317, 3060, 2922, 2852, 2106, 1637, 1609, 1531, 1483, 1290, 1250, 1186, 851, 744, 689, 601, 462 cm⁻¹. GC-MS (EI) m/z (%): 278 [M]⁺ (1.46), 205 (100).

N-(2-Azidoallyl)-2-naphthamide (2-4n)

Prepared on a 5.0 mmol scale. Obtained as a white solid in 40% yield (504 mg). Mp: 87.6-88.5 °C. R_f (*n*-pentane:ethyl acetate 5:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.00 – 7.78 (m, 4H), 7.64 – 7.46 (m, 2H), 7.00 – 6.51 (br m, 1H), 5.02 (d, J = 14.2 Hz, 1H), 4.82 (d, J = 12.6 Hz, 1H), 4.14 – 4.03 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 167.5 (d, J = 19.3 Hz), 143.3 (s), 134.8 (s), 132.6 (s), 131.2 (s), 128.9 (s), 128.5 (d, J = 5.8 Hz), 127.8 (d, J = 0.9 Hz), 127.6 (d, J = 7.2 Hz), 126.8 (d, J = 4.0Hz), 123.5 (d, J = 6.5 Hz), 99.5 (d, J = 15.4 Hz), 42.2 (d, J = 4.1 Hz). IR (ATR): v 3311, 3060, 2927, 2247, 2108, 1643, 1535, 1505, 1423, 1270, 1203, 863, 777, 648, 477 cm⁻¹. GC-MS (EI) m/z (%): 253 [M]⁺ (5.39), 155 (100).

N-(2-Azidoallyl)furan-2-carboxamide (2-40)

Prepared on a 4.3 mmol scale. Obtained as a colorless oily liquid in 44% yield (363 mg). $R_{\rm f}$ (*n*-pentane:ethyl acetate 5:2) = 0.53. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.14 (s, 1H), 6.58 (br s, 1H), 6.51 (s, 1H), 4.99 (s, 1H), 4.80 (s, 1H), 3.99 (d, J = 5.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1 (s), 147.5 (s), 144.1 (s), 143.2 (s), 114.7 (s), 112.2 (s), 99.4 (s), 41.1 (s). IR (ATR): v 3438, 3319, 2926, 2855, 2251,

2110, 1658, 1594, 1521, 1475, 1272, 1179, 1015, 859, 725, 649, 594 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_8H_7N_4O_2$ [M-H]⁻: 191.0564; found: 191.0572.

N-(2-Azidoallyl)decanamide (2-4p)

Prepared on a 8.0 mmol scale. Obtained as a yellow oily liquid in 54% yield (1089 mg). R_f (*n*-pentane:ethyl acetate 10:1) = 0.38. ¹H NMR (400 MHz, CDCl₃) δ 5.86 (s, 1H), 4.89 (s, 1H), 4.74 (s, 1H), 3.82 (d, J = 5.4 Hz, 2H), 2.19 (t, J = 7.4 Hz, 2H), 1.62 (s, 2H), 1.40 – 1.13 (m, 12H), 0.86 (t, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (s), 143.4 (s), 99.1 (s), 41.5 (s), 36.6 (s), 31.8 (s), 29.4 (s), 29.3 (s), 29.2 (s), 29.1 (s), 25.6 (s), 22.6 (s), 14.0 (s). IR (ATR): v 3287, 3073, 2924, 2104, 1649, 1543, 1463, 1422, 1377, 1265, 846, 466 cm⁻¹. GC-MS (EI) m/z (%): 223 [M-N₂]⁺ (9.49), 112 (100).

Ethyl 1-(2-azidoallyl)-2-oxocyclohexane-1-carboxylate (2-4s)

Prepared on a 4.0 mmol scale. Obtained as a yellow oily liquid in 64% yield (642 mg). R_f (*n*-pentane:ethyl acetate 10:1) = 0.83. ¹H NMR (400 MHz, CDCl₃) δ 4.75 (d, J = 6.6 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.73 (d, J = 14.4 Hz, 1H), 2.61 (d, J = 13.8 Hz, 1H), 2.49 – 2.32 (m, 2H), 2.26 (d, J = 14.4 Hz, 1H), 2.06 – 1.98 (m, 1H), 1.83 – 1.71 (m, 2H), 1.66 – 1.56 (m, 1H), 1.45 – 1.32 (m, 1H), 1.25 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.4 (s), 170.3 (s), 142.8 (s), 101.9 (s), 61.4 (s), 60.0 (s), 40.9 (s), 38.7 (s), 35.4 (s), 27.5 (s), 22.3 (s), 14.0 (s). IR (ATR): v 2941, 2868, 2115, 1713, 1626, 1437, 1297, 1262, 1204, 1181, 1087, 1020, 855, 800 cm⁻¹. GC-MS (EI) m/z (%): 223 [M-N₂]⁺ (6.79), 150 (100).

2-(2-Azidoallyl)-2-methylcyclopentane-1,3-dione (2-4t)

Prepared on a 4.1 mmol scale. Obtained as a colorless liquid in 52% yield (411 mg). $R_{\rm f}$ (*n*-pentane:ethyl acetate 10:2) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 1H), 4.67 (s, 1H), 2.79 (s, 4H), 2.54 (s, 2H), 1.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.4 (s), 141.9 (s), 100.7 (s), 39.1 (s), 35.8 (s), 35.0 (s), 21.1 (s). IR (ATR): v 3305, 2973, 2255, 2121, 1723, 1629, 1453, 1418, 1288, 1259, 1068, 648 cm⁻¹. HRMS (ESI) m/z: calcd. for C₉H₁₂N₃O₂ [M+H]⁺: 194.0924; found: 194.0932.

2-(2-Azidoallyl)-2-methylcyclohexane-1,3-dione (2-4u)

Prepared on a 3.6 mmol scale. Obtained as a yellow oily liquid in 67% yield (500 mg). $R_{\rm f}$ (*n*-pentane:ethyl acetate 5:1) = 0.83. ¹H NMR (400 MHz, CDCl₃) δ 4.76 (s, 1H), 4.68 (s, 1H), 2.75 – 2.61 (m, 6H), 2.09 – 1.90 (m, 2H), 1.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.6 (s), 142.5 (s), 100.6 (s), 62.6 (s), 39.6 (s), 38.1 (s), 22.6 (s), 17.4 (s). IR (ATR): v 2969, 2254, 2125, 1727, 1697, 1627, 1270, 1093, 1024, 723, 649 cm⁻¹. GC-MS (EI) m/z (%): 207 [M]⁺ (1.36), 95 (100).

3-((2-Azidoallyl)oxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclope nta[*a*]phenanthren-17-one (2-7a)

Prepared on a 8.5 mmol scale. Obtained as a white solid in 87% yield (2596 mg). Mp: 113.0-114.5 °C. $R_{\rm f}$ (*n*-pentane:ethyl acetate 10:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.5 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 6.68 (s, 1H), 5.03 (s, 1H), 4.89 (s, size

1H), 4.43 (s, 2H), 2.89 (d, J = 5.3 Hz, 2H), 2.52 (dd, J = 18.8, 8.6 Hz, 1H), 2.39 (d, J = 9.7 Hz, 1H), 2.25 (t, J = 9.1 Hz, 1H), 2.20 – 1.92 (m, 4H), 1.68 – 1.37 (m, 6H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0 (s), 142.1 (s), 137.9 (s), 133.0 (s), 126.4 (s), 115.0 (s), 112.4 (s), 100.9 (s), 67.7 (s), 50.4 (s), 48.0 (s), 44.0 (s), 38.3 (s), 35.8 (s), 31.6 (s), 29.6 (s), 26.5 (s), 25.9 (s), 21.6 (s), 13.8 (s). IR (ATR): v 2928, 2861, 2107, 1736, 1638, 1608, 1497, 1454, 1277, 1233, 1158, 1056, 1007, 870, 817 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₂₆N₃O₂ [M+H]⁺: 352.2020; found: 352.2032.

3-((2-Azidoallyl)oxy)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclope -nta[*a*]phenanthren-17-ol (2-7b)

Prepared on a 8.2 mmol scale. Obtained as a white solid in 84% yield (1743 mg). Mp: 92.5-93.0 °C. R_f (*n*-pentane:ethyl acetate 10:1) = 0.25. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.67 (s, 1H), 5.03 (s, 1H), 4.89 (s, 1H), 4.43 (s, 2H), 3.73 (t, J = 8.3 Hz, 1H), 2.90 – 2.81 (m, 2H), 2.31 (d, J = 13.4 Hz, 1H), 2.24 – 2.07 (m, 2H), 2.00 – 1.84 (m, 2H), 1.76 – 1.61 (m, 2H), 1.54 – 1.16 (m, 7H), 0.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.8 (s), 142.1 (s), 138.1 (s), 133.5 (s), 126.3 (s), 114.9 (s), 112.2 (s), 100.8 (s), 81.8 (s), 67.6 (s), 50.0 (s), 43.9 (s), 43.2 (s), 38.7 (s), 36.6 (s), 30.5 (s), 29.7 (s), 27.1 (s), 26.2 (s), 23.1 (s), 11.0 (s). IR (ATR): v 3410, 2924, 2868, 2246, 2108, 1638, 1608, 1497, 1275, 1250, 1232, 1054, 1022, 863, 728, 648, 447 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₂₆N₃O₂ [M-H]⁻: 352.2020; found: 352.2032.

6-((2-Azidoallyl)oxy)-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)chromane

(2-7c)

Prepared on a 9.0 mmol scale. Obtained as a yellow oily liquid in 86% yield (3955 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 10:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 5.14 (s, 1H), 4.91 (s, 1H), 4.09 (s, 2H), 2.59 (t, J = 6.3 Hz, 2H), 2.20 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H), 1.91 – 1.71 (m, 3H), 1.65 – 1.51 (m, 3H), 1.49 – 0.99 (m, 20H), 0.94 – 0.82 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1 (s), 147.7 (s), 143.2 (s), 127.8 (s), 125.8 (s), 123.0 (s), 117.6 (s), 100.5 (s), 74.9 (s), 72.0 (s), 40.0 (d, J = 3.9 Hz), 39.4 (s), 37.6 – 37.2 (m), 32.8 (d, J = 1.8 Hz), 32.7 (d, J = 1.9 Hz), 31.2 (d, J = 4.9 Hz), 28.0 (s), 24.8 (s), 24.4 (s), 23.9 (s), 22.7 (d, J = 9.3 Hz), 21.0 (s), 20.6 (s), 19.9 – 19.1 (m), 12.7 (s), 11.9 (s), 11.8 (s). IR (ATR): v 2926, 2867, 2249, 2154, 2109, 1635, 1459, 1414, 1378, 1292, 1274, 1255, 1158, 1089, 1063, 1014, 857, 650 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₂H₅₂N₃O₂ [M-H]⁻: 510.4054; found: 510.4031.

The following new compounds were synthesized by Procedure B:

2-(1-Azidovinyl)-4-bromothiophene (2q)

Prepared on a 2.0 mmol scale. Obtained as a yellow oily liquid in 88% yield (403 mg). $R_{\rm f}$ (*n*-pentane) = 0.96. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (s, 2H), 5.37 (s, 1H), 4.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3 (s), 138.9 (s), 127.3 (s), 123.2 (s), 110.3 (s), 97.1 (s). IR (ATR): v 3110, 2924, 2855, 2140, 2107, 1460, 1175, 1158, 1020 cm⁻¹. GC-MS (EI) m/z (%): 203 [M]⁺ (81.52), 95 (100). General procedure of the synthesis of 5-trifluoromethyl isoxazole

In a glove box filled with nitrogen, to an oven-dried 5 mL pressure tube equipped with a stir bar were added vinyl azides 2 (0.30 mmol, 1.0 equiv), trifluoroacetic anhydride 1 (3.00 mmol, 10.0 equiv or 1.50 mmol, 5.0 equiv), NEt₃ (0.15 mmol, 0.5 equiv) and 1,4-dioxane (0.5 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 70 °C for 48 h. After cool to room temperature, the crude mixture was diluted with water (5 mL \times 3) and CH₂Cl₂ (15 mL). The organic phase was extracted and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting isoxazole products **3–7** was purified by column chromatography on silica gel with *n*-pentane/CH₂Cl₂ or *n*-pentane/ethyl acetate.

Procedure for gram scale reaction for synthesis of methyl 4-(5-(trifluoromethyl)isoxazol-3-yl)benzoate (3c)

In a glove box filled with nitrogen, to an oven-dried 25 mL pressure tube equipped with a stir bar were added vinyl azide 2c (1.02 g, 5.0 mmol, 1.0 equiv), trifluoroacetic anhydride 1 (10.50 g, 50.0 mmol, 10.0 equiv), NEt₃ (0.25 g, 2.5 mmol, 0.5 equiv) and 1,4-dioxane (2.5 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 70°C for 48 h. After cool to room temperature, the crude mixture was diluted with water (20 mL × 3) and CH₂Cl₂ (50 mL). The organic phase was extracted and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with *n*-pentane/CH₂Cl₂ (4:1) to give 1.04 g of product 3c (77% yield).

General procedure of the synthesis of 5-perfluoroalkyl isoxazole

In a glove box filled with nitrogen, to an oven-dried 5 mL pressure tube equipped with a stir bar were added vinyl azides 2 (0.30 mmol, 1.0 equiv), perfluorocarboxylic anhydride (3.00 mmol, 10.0 equiv), NEt₃ (0.15 mmol, 0.5 equiv) and 1,4-dioxane (0.5 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 70 °C for 48 h. After cool to room temperature, the crude mixture was diluted with water (5 mL × 3) and CH₂Cl₂ (15 mL). The organic phase was extracted and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting 5-perfluoroalkyl isoxazole products **8–9** was purified by column chromatography on silica gel with *n*-pentane/CH₂Cl₂.

Synthetic utility of trifluoromethylated isoxazoles

An oven-dried vial equipped with a stir bar was charged with methyl 4-(5-(trifluoromethyl)isoxazol-3-yl)benzoate **3c** (54.2 mg, 0.20 mmol, 1.0 equiv), 2-aminopyridine (37.6 mg, 0.40 mmol, 2.0 equiv) or *p*-toluidine (42.9 mg, 0.40 mmol, 2.0 equiv). The vial was placed under a positive pressure of N₂, and subjected to three evacuation/backfilling cycles. Toluene (1 mL) and LiHMDS (1.0 M in THF, 400 μ L, 2.0 equiv) were sequentially added with vigorous stirring at room temperature for 20 h. The reaction mixture was quenched with saturated NH₄Cl, diluted with EtOAc (20 mL). The organic layer was washed with water (10 mL), brine (10 mL) and dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting residue was purified by column chromatography on silica gel with petro ether/EtOAc to give **11a** (77%) and **11b** (82%), respectively.

Procedure for the transformation of 3c to 12

The methyl 4-(5-(trifluoromethyl)isoxazol-3-yl)benzoate **3c** (54.2 mg, 0.20 mmol) was stirred with a 1.2 N aqueous sodium hydroxide (0.5 mL) and dimethylformamide (0.5 mL) at ambient temperature for 1 h. The reaction mixture was acidified with 6 N HCl. The solid carboxylic acid was collected and the aqueous portion was extracted with Et_2O (2 × 10 mL), brine (2 × 10 mL) and dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product was purified by recrystallization with Et_2O /petro ether to give **12** (55% yield).

Procedure for the transformation of 3d to 13

A solution of 3-(4-nitrophenyl)-5-(trifluoromethyl)isoxazole **3d** (129.0 mg, 0.50 mmol) and AcOH (86 μ L, 3.0 equiv) in EtOH (2 mL) was heated to reflux with stirring for 10 min before iron powder (19.5 g, 3.5 mmol, 7 equiv) and FeCl₃ 6H₂O (13.5 mg, 0.48 mmol, 0.1 equiv) were added. The resulting mixture was heated to reflux with stirring for 4 h before it was cooled to room temperature, diluted with EtOAc (30 mL). The organic layer was washed with water (2 × 10 mL), brine (2 × 10 mL) and dried over MgSO₄. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with petro ether/EtOAc to give **13** (62% yield).

Radical inhibition experiments

In a dry-box, **2c** (20.3 mg, 0.10 mmol), trifluoroacetic anhydride **1** (140 μ L, 1.0 mmol, 10.0 equiv), NEt₃ (7 μ L, 0.05 mmol, 0.5 equiv), TEMPO (1.0 equiv) or BHT (1.0 equiv), and 1,4-dioxane (0.5 mL) were added to a oven-dried 5 mL test tube with Teflon screw cap. The tube was sealed and the solution was stirred at 70 °C for 48 h. After cool to room temperature, the 10 μ L (trifluoromethoxy)benzene was added as an internal standard. The reaction mixture was then filtered through a layer of celite. The filtrate was analyzed by ¹⁹F NMR and GC-MS. The yield of **3c** was calculated to be 89% and 90% yield, respectively.

3-Phenyl-5-(trifluoromethyl)isoxazole (3a)

Obtained as a white solid in 57% yield (37 mg). Mp: 62.9–63.8 °C. R_f (*n*-pentane) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.79 (m, 2H), 7.57 – 7.43 (m, 3H), 7.01 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (s), 159.1 (q, J = 42.4 Hz), 130.8 (s), 129.1 (s), 127.2 (s), 126.8 (s), 117.9 (q, J = 270.1 Hz), 103.4 (q, J = 2.0 Hz). IR (ATR): v 3118, 2956, 2923, 1470, 1445, 1244, 1178, 1143, 1119, 968, 950, 909, 849, 770, 692 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₇F₃NO [M+H]⁺: 214.0474; found: 214.0475.

4-(5-(Trifluoromethyl)isoxazol-3-yl)benzonitrile (3b)

Obtained as a white solid in 98% yield (70 mg). Mp: 84.2–85.9 °C. R_f (*n*-pentane) = 0.36. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.9 Hz, 2H), 7.79 (d, J = 7.9 Hz, 2H), 7.09 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (s), 159.9 (q, J = 42.9 Hz), 132.9 (s), 131.5 (s), 127.5 (s), 117.9 (s), 117.6 (q, J = 270.5 Hz), 114.5 (s), 103.4 (q, J = 2.0 Hz). IR (ATR): v 3135, 2958, 2923, 2232, 1462, 1430, 1316, 1304, 1264, 1239, 1186, 1156, 1114, 968, 824, 735, 704, 554 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₆F₃N₂O [M+H]⁺: 239.0432; found: 239.0437.

Methyl 4-(5-(trifluoromethyl)isoxazol-3-yl)benzoate (3c)

Obtained as a white solid in 98% yield (80 mg). Mp: 99.2–100.8 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.60. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 3.94 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (s), 161.7 (s), 159.6 (q, J = 42.7 Hz), 132.2 (s), 131.3 (s), 130.3 (s), 126.9 (s), 117.7 (q, J = 270.4 Hz), 103.5 (q, J = 2.0 Hz), 52.3 (s). IR (ATR): v 3136, 2959, 2923, 2852, 1724, 1432, 1315, 1284, 1240, 1182, 1161, 1107, 1020, 972, 834, 776, 702 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₉F₃NO₃ [M+H]⁺: 272.0529; found: 272.0527.

3-(4-Nitrophenyl)-5-(trifluoromethyl)isoxazole (3d)

Obtained as a light yellow crystalline solid in 92% yield (71 mg). Mp: 107.2–108.5 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.5 Hz, 2H), 8.02 (d, J = 8.3 Hz, 2H), 7.14 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.9 (s), 160.1 (q, J = 43.0 Hz), 149.2 (s), 133.2 (s), 127.9 (s), 124.4 (s), 117.6 (q, J = 270.6 Hz), 103.6 (q, J = 1.9 Hz). IR (ATR): v 3141, 2924, 2854, 1605, 1521, 1345, 1310, 1239, 1188, 1150, 1116, 968, 852, 737, 698 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₆F₃N₂O₃ [M+H]⁺: 259.0331; found: 259.0325.

4-(5-(Trifluoromethyl)isoxazol-3-yl)benzaldehyde (3e)

Obtained as a yellow solid in 43% yield (31 mg). Mp: 71.3–72.1 °C. R_f (*n*-pentane:dichloromethane 1:1) = 0.58. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.05 – 7.96 (m, 4H), 7.09 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 191.3 (s), 161.6 (s), 159.9 (q, J = 42.7 Hz), 137.8 (s), 132.7 (s), 130.4 (s), 127.6 (s), 117.7 (q, J = 270.5 Hz), 103.6 (q, J = 1.9 Hz). IR (ATR): v 3143, 2957, 2924, 2852, 1692, 1611, 1431, 1316, 1177, 1161, 1114, 969, 923, 827, 748, 693 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₇F₃NO₂ [M+H]⁺: 242.0423; found: 242.0427.

3-(p-Tolyl)-5-(trifluoromethyl)isoxazole (3f)

Obtained as a white solid in 55% yield (38 mg). Mp: 80.7–81.5 °C. R_f (*n*-pentane) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.4 Hz, 2H), 7.29 (d, J = 7.4 Hz, 2H), 6.97 (s, 1H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (s), 159.0 (q, J = 42.7 Hz), 141.2 (s), 129.8 (s), 126.8 (s), 124.5 (s), 117.9 (q, J = 270.4 Hz), 103.3 (q, J = 2.0 Hz), 21.4 (s). IR (ATR): v 3120, 2924, 2854, 1619, 1461, 1319, 1242, 1180, 1142, 1117, 968, 908, 850, 820, 749 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₉F₃NO [M+H]⁺: 228.0631; found: 228.0632.

3-(4-Ethylphenyl)-5-(trifluoromethyl)isoxazole (3g)

Obtained as a white solid in 57% yield (41 mg). Mp: 46.3–47.1 °C. R_f (*n*-pentane) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.2 Hz, 2H), 7.33 (d, J = 7.2 Hz, 2H), 6.98 (s, 1H), 2.72 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (s), 159.0 (q, J = 42.3 Hz), 147.5 (s), 128.7 (s), 126.9 (s), 124.7 (s), 117.9 (q, J = 270.3 Hz), 103.3 (q, J = 1.9 Hz), 28.8 (s), 15.2 (s). IR (ATR): v 3129, 2962, 2925, 1739, 1614, 1463, 1433, 1318, 1244, 1186, 1165, 1144, 1117, 968, 830 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₁₁F₃NO [M+H]⁺: 242.0793; found: 242.0787.

3-(4-(*tert*-Butyl)phenyl)-5-(trifluoromethyl)isoxazole (3h)

Obtained as a colorless liquid in 57% yield (46 mg). R_f (*n*-pentane) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.9 Hz, 2H), 7.52 (d, J = 7.9 Hz, 2H), 6.99 (s, 1H), 1.37 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (s), 159.0 (q, J = 42.6 Hz), 154.4 (s), 126.7 (s), 126.1 (s), 124.5 (s), 117.9 (q, J = 270.3 Hz), 103.4 (q, J = 1.9 Hz), 34.9 (s), 31.1 (s). IR (ATR): v 3141, 2965, 2871, 1616, 1462, 1430, 1319, 1306, 1238, 1184, 1154, 1101, 967, 912, 821, 732, 559 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₁₅F₃NO [M+H]⁺: 270.1100; found: 270.1103.

3-(2-Methoxyphenyl)-5-(trifluoromethyl)isoxazole (3i)

Obtained as a colorless oily liquid in 55% yield (40 mg). $R_{\rm f}$

(*n*-pentane:dichloromethane 4:1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.23 (s, 1H), 7.12 – 6.99 (m, 2H), 3.93 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (s), 157.9 (q, J = 42.2 Hz), 157.2 (s), 132.1 (s), 129.5 (s), 121.1 (s), 118.1 (q, J = 270.4 Hz), 116.2 (s), 111.5 (s), 106.9 (q, J = 2.1 Hz), 55.6 (s). IR (ATR): v 2955, 2923, 2852, 1740, 1463, 1438, 1377, 1317, 1253, 1185, 1159, 1083, 1026 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₉F₃NO₂ [M+H]⁺: 244.0580; found: 244.0581.

3-(4-(Pentyloxy)phenyl)-5-(trifluoromethyl)isoxazole (3j)

Obtained as a light yellow solid in 25% yield (23 mg). Mp: 54.6–55.6 °C. R_f (*n*-pentane) = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.5 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 6.94 (s, 1H), 4.01 (t, J = 6.5 Hz, 2H), 1.87 – 1.77 (m, 2H), 1.51 – 1.33 (m, 4H), 0.94 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (s), 161.3 (s), 158.8 (q, J = 42.3 Hz), 128.3 (s), 119.4 (s), 117.9 (q, J = 270.3 Hz), 115.0 (s), 103.2 (q, J = 2.0 Hz), 68.2 (s), 28.8 (s), 28.1 (s), 22.4 (s), 14.0 (s). IR (ATR): v 3119, 2960, 2935, 2871, 1612, 1461, 1436, 1318, 1258, 1177, 1148, 1116, 1014, 968, 795, 738 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₇F₃NO₂ [M+H]⁺: 300.1206; found: 300.1208.

3-(3-Fluorophenyl)-5-(trifluoromethyl)isoxazole (3k)

Obtained as a white crystalline solid in 97% yield (67 mg). Mp: 53.6–54.4 °C. $R_{\rm f}$ (*n*-pentane) = 0.44. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 9.4 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.19 (t, J = 8.3 Hz, 1H), 6.99 (s, 1H). ¹⁹F NMR

(376 MHz, CDCl₃) δ -64.4 (s, 3F), -111.4 (dd, *J* = 14.9, 7.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, *J* = 247.6 Hz), 161.6 (d, *J* = 2.6 Hz), 159.5 (q, *J* = 42.7 Hz), 130.9 (d, *J* = 8.3 Hz), 129.3 (d, *J* = 8.3 Hz), 122.7 (d, *J* = 3.1 Hz), 117.9 (d, *J* = 21.2 Hz), 117.8 (q, *J* = 270.3 Hz), 113.9 (d, *J* = 23.5 Hz), 103.4 (q, *J* = 2.0 Hz). IR (ATR): v 3145, 2956, 2924, 2854, 1591, 1450, 1314, 1255, 1198, 1186, 1159, 1112, 967, 855, 789 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₆F₄NO [M+H]⁺: 232.0380; found: 232.0382.

3-(4-Fluorophenyl)-5-(trifluoromethyl)isoxazole (31)

Obtained as a colorless oily liquid in 57% yield (40 mg). R_f (*n*-pentane) = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (t, J = 5.4 Hz, 2H), 7.19 (t, J = 8.1 Hz, 2H), 6.97 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F), -108.8 (dd, J = 7.7, 5.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 164.3 (d, J = 251.6 Hz), 161.6 (s), 159.4 (q, J = 42.3 Hz), 129.0 (d, J = 8.7 Hz), 123.6 (d, J = 3.3 Hz), 117.8 (q, J = 270.4 Hz), 116.4 (d, J = 22.1 Hz), 103.3 (q, J = 1.9 Hz). IR (ATR): v 3141, 2956, 2924, 2854, 1450, 1316, 1253, 1199, 1188, 1160, 1112, 967, 854 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₆F₄NO [M+H]⁺: 232.0380; found: 232.0381.

3-(3-Bromophenyl)-5-(trifluoromethyl)isoxazole (3m)

Obtained as a white crystalline solid in 99% yield (86 mg). Mp: 41.2–42.5 °C. $R_{\rm f}$ (*n*-pentane) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 6.99 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.3 (s), 159.5 (q, J =

42.7 Hz), 133.8 (s), 130.7 (s), 129.9 (s), 129.2 (s), 125.4 (s), 123.2 (s), 117.7 (q, J = 270.4 Hz), 103.3 (q, J = 2.0 Hz). IR (ATR): v 3140, 2960, 2925, 1568, 1468, 1312, 1236, 1186, 1155, 1121, 1047, 1019, 968, 788, 754, 693 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₆BrF₃NO [M+H]⁺: 291.9579; found: 291.9581.

3-(4-Bromophenyl)-5-(trifluoromethyl)isoxazole (3n)

Obtained as a white solid in 99% yield (86 mg). Mp: 70.6–71.3 °C. $R_{\rm f}$ (*n*-pentane:dichloromethane 8:1) = 0.70. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 6.98 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.6 (s), 159.4 (q, J = 42.6 Hz), 132.4 (s), 128.3 (s), 126.2 (s), 125.4 (s), 117.7 (q, J = 270.4 Hz), 103.2 (q, J = 2.0 Hz). IR (ATR): v 3127, 1619, 1597, 1321, 1250, 1179, 1162, 1118, 828 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₆BrF₃NO [M+H]⁺: 291.9579; found: 291.9580.

3-([1,1'-Biphenyl]-4-yl)-5-(trifluoromethyl)isoxazole (30)

Obtained as a white solid in 51% yield (44 mg). Mp: 160.9–161.8 °C. R_f (*n*-pentane:dichloromethane 8:1) = 0.88. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.3 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 6.8 Hz, 2H), 7.55 – 7.35 (m, 3H), 7.04 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.3 (s), 159.2 (q, J = 42.5 Hz), 143.7 (s), 139.9 (s), 131.0 (s), 129.0 (s), 128.0 (s), 127.8 (s), 127.4 (s), 127.1 (s), 117.9 (q, J = 270.4 Hz), 103.4 (q, J = 1.5 Hz). IR (ATR): v 3116, 2955, 2921, 2851, 1462, 1450, 1322, 1247, 1181, 1144, 1120, 968,

838, 766, 726, 689 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{16}H_{11}F_3NO [M+H]^+$: 290.0787; found: 290.0789.

3-(Naphthalen-2-yl)-5-(trifluoromethyl)isoxazole (3p)

Obtained as a yellow solid in 66% yield (52 mg). Mp: 93.6–94.3 °C. R_f (*n*-pentane) = 0.46. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.93 (s, 2H), 7.89 (t, J = 8.5 Hz, 2H), 7.48 – 7.62 (m, 2H), 7.11 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (s), 159.2 (q, J = 42.5 Hz), 134.3 (s), 133.0 (s), 129.1 (s), 128.5 (s), 127.9 (s), 127.5 (s), 127.0 (s), 126.9 (s), 124.6 (s), 123.5 (s), 117.9 (q, J = 270.3 Hz), 103.5 (q, J = 2.0 Hz). IR (ATR): v 3128, 2956, 2923, 2852, 1490, 1312, 1256, 1224, 1176, 1147, 1107, 968, 903, 828, 752, 487 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₉F₃NO [M+H]⁺: 264.0631; found: 264.0636.

3-(4-Bromothiophen-2-yl)-5-(trifluoromethyl)isoxazole (3q)

Obtained as a colorless oily liquid in 36% yield (32 mg). Mp: 35.0–36.2 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.83. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.38 (s, 1H), 6.91 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 159.6 (q, J = 42.9 Hz), 156.8 (s), 130.9 (s), 130.0 (s), 125.9 (s), 117.6 (q, J = 270.6 Hz), 110.9 (s), 103.2 (q, J = 2.0 Hz). IR (ATR): v 3114, 2921, 2851, 1554, 1461, 1310, 1229, 1188, 1159, 1098, 967, 929, 817, 747, 583 cm⁻¹. HRMS (ESI) m/z: calcd. for C₈H₄BrF₃NOS [M+H]⁺: 297.9149; found: 297.9151.

3-((2-Nitrophenoxy)methyl)-5-(trifluoromethyl)isoxazole (4a)

Obtained as a white solid in 49% yield (42 mg). Mp: 56.0–57.1 °C. R_f (*n*-pentane:dichloromethane 1:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.1 Hz, 1H), 7.58 (t, J = 7.9 Hz, 1H), 7.22 – 7.09 (m, 2H), 6.98 (s, 1H), 5.34 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.3 (s), 159.5 (q, J = 42.8 Hz), 150.7 (s), 140.2 (s), 134.4 (s), 125.9 (s), 122.0 (s), 117.6 (q, J= 270.3 Hz), 115.1 (s), 105.0 (q, J = 1.9 Hz), 62.6 (s). IR (ATR): v 3146, 2955, 2922, 1607, 1526, 1488, 1351, 1314, 1280, 1210, 1183, 1151, 966, 743 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₈F₃N₂O₄ [M+H]⁺: 289.0436; found: 289.0431.

3-((3-Nitrophenoxy)methyl)-5-(trifluoromethyl)isoxazole (4b)

Obtained as a white solid in 65% yield (56 mg). Mp: 68.5–69.1 °C. R_f (*n*-pentane:dichloromethane 1:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 1.3 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 6.88 (s, 1H), 5.29 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.1 (s), 159.7 (q, J = 42.9 Hz), 158.0 (s), 149.3 (s), 130.4 (s), 121.3 (s), 117.6 (q, J = 270.5 Hz), 117.0 (s), 109.4 (s), 104.7 (q, J = 2.0 Hz), 61.6 (s). IR (ATR): v 3145, 2955, 2921, 2852, 1619, 1530, 1352, 1315, 1211, 1183, 1153, 966, 823, 736 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₈F₃N₂O₄ [M+H]⁺: 289.0436; found: 289.0430.

3-((2-Bromophenoxy)methyl)-5-(trifluoromethyl)isoxazole (4c)

Obtained as a white solid in 53% yield (51 mg). Mp: 52.6–53.4 °C. $R_{\rm f}$ (*n*-pentane:dichloromethane 4:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.8 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.02 – 6.88 (m, 3H), 5.26 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (s), 159.3 (q, J = 42.8 Hz), 154.0 (s), 133.8 (s), 128.7 (s), 123.4 (s), 117.7 (q, J = 270.4 Hz), 113.9 (s), 112.5 (s), 105.0 (q, J = 2.0 Hz), 62.3 (s). IR (ATR): v 3146, 2956, 2925, 1586, 1478, 1445, 1317, 1278, 1210, 1182, 1154, 1058, 1031, 966, 827, 747 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₈BrF₃NO₂ [M+H]⁺: 321.9685; found: 321.9688.

3-((4-Iodophenoxy)methyl)-5-(trifluoromethyl)isoxazole (4d)

Obtained as a white solid in 75% yield (83 mg). Mp: 52.5–53.3 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 2H), 6.84 (s, 1H), 6.75 (d, J = 7.7 Hz, 2H), 5.16 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.7 (s), 159.3 (q, J = 42.9 Hz), 157.4 (s), 138.5 (s), 117.7 (q, J = 270.3 Hz), 117.0 (s), 104.8 (q, J = 1.8 Hz), 84.4 (s), 61.1 (s). IR (ATR): v 3141, 2957, 2924, 2854, 1584, 1485, 1460, 1317, 1240, 1212, 1179, 1158, 1078, 1046, 1020, 966, 818, 802 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₈F₃INO₂ [M+H]⁺: 369.9546; found: 369.9547.

3-((3,5-Dimethylphenoxy)methyl)-5-(trifluoromethyl)isoxazole (4e)

Obtained as a white solid in 78% yield (63 mg). Mp: 51.0–52.0 °C. R_f (*n*-pentane:dichloromethane 1:1) = 0.88. ¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 6.68 (s, 1H), 6.61 (s, 2H), 5.17 (s, 2H), 2.31 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (s), 159.1 (q, *J* = 42.8 Hz), 157.7 (s), 139.6 (s), 123.8 (s), 117.8 (q, *J* = 270.3 Hz), 112.4 (s), 104.9 (q, *J* = 1.8 Hz), 61.0 (s), 21.4 (s). IR (ATR): v 2955, 2922, 2853, 1740, 1596, 1460, 1315, 1294, 1211, 1156, 1073, 966, 829, 732, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₃H₁₃F₃NO₂ [M+H]⁺: 272.0898; found: 272.0893.

3-((2,6-Dimethylphenoxy)methyl)-5-(trifluoromethyl)isoxazole (4f)

Obtained as a yellow oily liquid in 68% yield (55 mg). R_f (*n*-pentane:dichloromethane 4:1) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 7.3 Hz, 2H), 7.03 – 6.95 (m, 2H), 4.96 (s, 2H), 2.31 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (s), 159.1 (q, J = 42.8 Hz), 155.0 (s), 130.6 (s), 129.1 (s), 124.8 (s), 117.8 (q, J = 270.4 Hz), 104.9 (q, J = 2.0 Hz), 64.5 (s), 16.2 (s). IR (ATR): v 3143, 2955, 2925, 1475, 1317, 1264, 1210, 1185, 1156, 1092, 1077, 1033, 966, 909, 825, 770, 736 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₃H₁₃F₃NO₂ [M+H]⁺: 272.0898; found: 272.0893.

3-((2-Bromo-4-chlorophenoxy)methyl)-5-(trifluoromethyl)isoxazole (4g) Obtained as a light red solid in 83% yield (88 mg). Mp: 63.8–65.2 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.63. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.25 (d, J = 8.5 Hz, 1H), 7.00 – 6.83 (m, 2H), 5.23 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.5 (s), 159.4 (q, J = 42.9Hz), 152.9 (s), 133.3 (s), 128.5 (s), 127.8 (s), 117.7 (q, J = 270.5 Hz), 114.5 (s), 113.0 (s), 104.9 (q, J = 2.0 Hz), 62.6 (s). IR (ATR): v 3163, 3093, 2955, 2923, 1585, 1477, 1316, 1283, 1210, 1151, 1075, 1060, 966, 920, 777, 693 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₇BrClF₃NO₂ [M+H]⁺: 357.9275; found: 357.9275.

3-(((2-Methoxyphenyl)thio)methyl)-5-(trifluoromethyl)isoxazole (4h)

Obtained as a yellow oily liquid in 98% yield (86 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 1:1) = 0.75. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.3 Hz, 1H), 7.26 (d, J = 7.3 Hz, 1H), 6.89 (t, J = 7.7 Hz, 2H), 6.65 (s, 1H), 4.11 (s, 2H), 3.87 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 162.0 (s), 158.5 (q, J = 42.4 Hz), 158.4 (s), 132.5 (s), 129.5 (s), 121.1 (s), 120.9 (s), 117.7 (q, J = 270.1 Hz), 110.9 (s), 105.3 (q, J = 2.0 Hz), 55.7 (s), 27.4 (s). IR (ATR): v 2925, 2841, 1581, 1478, 1433, 1315, 1274, 1246, 1211, 1182, 1152, 1072, 1024, 964, 753 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₁₁F₃NO₂S [M+H]⁺: 290.0463; found: 290.0457.

3-(((4-Methoxyphenyl)thio)methyl)-5-(trifluoromethyl)isoxazole (4i)

Obtained as a yellow oily liquid in 98% yield (85 mg). R_f (*n*-pentane:dichloromethane 1:1) = 0.83. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 7.2 Hz, 2H), 6.83 (d, J = 7.2 Hz, 2H), 6.61 (s, 1H), 4.00 (s, 2H), 3.78 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.9 (s), 159.9 (s), 158.7 (q, J = 42.4 Hz), 134.5 (s), 123.4 (s), 117.7 (q, J = 270.2 Hz), 114.8 (s), 105.1 (q, J = 2.0 Hz), 55.2 (s), 30.8 (s). IR (ATR): v 3136, 2925, 2841, 1744, 1592, 1493, 1463, 1314, 1287, 1246, 1211, 1174, 1149, 1074, 1030, 964, 825 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₁₁F₃NO₂S [M+H]⁺: 290.0463; found: 290.0457.

3-(((4-Fluorophenyl)thio)methyl)-5-(trifluoromethyl)isoxazole (4j)

Obtained as a yellow oily liquid in 64% yield (53 mg). R_f (*n*-pentane:dichloromethane 4:1) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, J = 5.8 Hz, 2H), 7.00 (t, J = 7.9 Hz, 2H), 6.65 (s, 1H), 4.06 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F), -112.91 – -113.01 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (d, J = 248.7 Hz), 161.6 (s), 159.0 (q, J = 42.8 Hz), 133.9 (d, J = 8.3 Hz), 128.3 (d, J = 3.4 Hz), 117.7 (q, J = 270.4 Hz), 116.5 (d, J = 22.1 Hz), 105.0 (q, J = 2.0 Hz), 30.1 (s). IR (ATR): v 3143, 2957, 2926, 2855, 1591, 1492, 1316, 1213, 1185, 1158, 1075, 965, 828 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₈F₄NOS [M+H]⁺: 278.0257; found: 278.0259.

3-(((2-Methoxyphenyl)sulfonyl)methyl)-5-(trifluoromethyl)isoxazole (4k) Obtained as a light yellow solid in 60% yield (58 mg). Mp: 104.4–104.6 °C. $R_{\rm f}$ (dichloromethane) = 0.85. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.12 – 6.99 (m, 2H), 6.91 (s, 1H), 4.77 (s, 2H), 4.01 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 159.3 (q, J = 42.9 Hz), 157.4 (s), 154.4 (s), 136.6 (s), 130.6 (s), 125.0 (s), 120.9 (s), 117.5 (q, J = 270.6 Hz), 112.5 (s), 106.3 (q, J = 2.0 Hz), 56.4 (s), 51.1 (s). IR (ATR): v 3139, 2952, 2923, 2850, 1593, 1481, 1436, 1314, 1281, 1211, 1185, 1153, 1066, 1016, 966, 760, 520 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₁₁F₃NO₄S [M+H]⁺: 322.0361; found: 322.0355.

3-Hexyl-5-(trifluoromethyl)isoxazole (4l)

Obtained colorless oily liquid in 79% vield (52 as а mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 4:1) = 0.89. ¹H NMR (400 MHz, CDCl₃) δ 6.54 (s, 1H), 2.71 (t, J = 7.3 Hz, 2H), 1.66 (dt, J = 14.4, 7.1 Hz, 2H), 1.45 – 1.20 (m, 6H), 0.87 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.4 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 164.2 (s), 158.4 (q, J = 42.3 Hz), 118.0 (q, J = 270.0 Hz), 104.9 (q, J = 1.9 Hz), 31.3 (s), 28.7 (s), 28.0 (s), 25.8 (s), 22.4 (s), 13.9 (s). IR (ATR): v 2955, 2922, 2853, 1740, 1461, 1377, 1317, 1264, 1183, 1160, 1081, 965, 820, 732, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₁₅F₃NO [M+H]⁺: 222.1100; found: 222.1102.

N-((5-(Trifluoromethyl)isoxazol-3-yl)methyl)-[1,1'-biphenyl]-4-carboxamide (4m) Obtained as a white solid in 34% yield (35 mg). Mp: 202.6–203.2 °C. *R*_f (dichloromethane) = 0.75. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.20 (t, *J* = 5.1 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 7.9 Hz, 2H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.42 – 7.32 (m, 2H), 4.61 (d, *J* = 5.4 Hz, 2H). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -63.1 (s, 3F). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.3 (s), 163.4 (s), 156.7 (q, *J* = 41.6 Hz), 143.1 (s), 139.1 (s), 132.4 (s), 129.0 (s), 128.1 (s), 128.0 (s), 126.9 (s), 126.6 (s), 117.9 (q, *J* = 270.0 Hz), 106.7 (q, *J* = 2.1 Hz), 34.9 (s). IR (ATR): v 3380, 2954, 2925, 2855, 1640, 1537, 1310, 1208, 1152, 1046, 1024, 992, 825, 763, 628 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₁₄F₃N₂O₂ [M+H]⁺: 347.1002; found: 347.1005.

N-((5-(Trifluoromethyl)isoxazol-3-yl)methyl)-2-naphthamide (4n)

Obtained as a white solid in 57% yield (55 mg). Mp: 136.6–137.8 °C. R_f (dichloromethane) = 0.60. ¹H NMR (400 MHz, DMSO- d_6) δ 9.34 (t, J = 5.1 Hz, 1H), 8.51 (s, 1H), 8.07 – 7.93 (m, 4H), 7.67 – 7.57 (m, 2H), 7.41 (s, 1H), 4.68 (d, J = 5.4 Hz, 2H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -63.0 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.7 (s), 163.3 (s), 156.7 (q, J = 41.7 Hz), 134.3 (s), 132.1 (s), 131.0 (s), 128.9 (s), 128.0 (s), 127.8 (s), 127.7 (s), 127.6 (s), 126.8 (s), 124.1 (s), 117.9 (q, J = 269.9 Hz), 106.8 (q, J = 2.0 Hz), 34.9 (s). IR (ATR): v 3388, 3062, 2925, 1651, 1538, 1302, 1207, 1183, 1153, 1049, 1025, 1003, 965, 825, 762, 478 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₂F₃N₂O₂ [M+H]⁺: 321.0851; found: 321.0855.

N-((5-(Trifluoromethyl)isoxazol-3-yl)methyl)furan-2-carboxamide (4o) Obtained as a light brown solid in 35% yield (27 mg). Mp: 103.1–103.9 °C. *R*_f (dichloromethane) = 0.40. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.17 (s, 1H), 6.99 (br, 1H), 6.80 (s, 1H), 6.52 (d, *J* = 1.6 Hz, 1H), 4.73 (d, *J* = 6.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (s), 159.2 (q, *J* = 42.7 Hz), 158.6 (s), 147.0 (s), 144.5 (s), 117.7 (q, *J* = 270.3 Hz), 115.3 (s), 112.3 (s), 105.3 (q, *J* = 2.0 Hz), 34.5 (s). IR (ATR): v 3307, 3119, 2955, 2923, 1649, 1597, 1573, 1538, 1477, 1320, 1309, 1244, 1213, 1178, 1140, 1084, 966, 753 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₈F₃N₂O₃ [M+H]⁺: 261.0482; found: 261.0485.

N-((5-(Trifluoromethyl)isoxazol-3-yl)methyl)nonanamide (4p)

Obtained as a white solid in 32% yield (31 mg). Mp: 72.3–73.6 °C. R_f (dichloromethane) = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 6.73 (s, 1H), 6.09 (br, 1H), 4.55 (d, J = 5.7 Hz, 2H), 2.23 (t, J = 7.5 Hz, 2H), 1.67 – 1.59 (m, 2H), 1.38 – 1.13 (m, 12H), 0.87 (t, J = 6.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 173.6 (s), 161.7 (s), 159.1 (q, J = 42.8 Hz), 117.7 (q, J = 270.4 Hz), 105.2 (q, J = 2.0 Hz), 36.4 (s), 35.0 (s), 31.8 (s), 29.4 (s), 29.3 (s), 29.2 (s), 25.5 (s), 22.6 (s), 14.1 (s). IR (ATR): v 3312, 3131, 2956, 2921, 2851, 1717, 1648, 1542, 1468, 1322, 1220, 1179, 1159, 968 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₂₄F₃N₂O₂ [M+H]⁺: 321.1784; found: 321.1790.

1,3-Diphenyl-2-((5-(trifluoromethyl)isoxazol-3-yl)methyl)propane-1,3-dione (4q) Obtained as a white solid in 45% yield (50 mg). Mp: 112.3–113.3 °C. R_f (*n*-pentane:dichloromethane 1:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 4H), 7.59 (t, J = 7.3 Hz, 2H), 7.46 (t, J = 7.2 Hz, 4H), 6.68 (s, 1H), 5.84 (t, J = 6.2 Hz, 1H), 3.51 (d, J = 6.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 194.6 (s), 161.8 (s), 158.6 (q, J = 42.5 Hz), 135.2 (s), 134.0 (s), 129.0 (s), 128.6 (s), 117.7 (q, J = 270.3 Hz), 106.3 (q, J = 1.9 Hz), 54.8 (s), 25.4 (s). IR (ATR): v 3063, 2955, 2925, 1696, 1674, 1597, 1449, 1314, 1298, 1266, 1184, 1154, 966, 728, 692 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₀H₁₅F₃NO₃ [M+H]⁺: 374.0999; found: 374.0998.

Ethyl 3-oxo-3-phenyl-2-((5-(trifluoromethyl)isoxazol-3-yl)methyl)propanoate (4r) Obtained as a yellow oily liquid in 40% yield (41 mg). R_f (*n*-pentane:dichloromethane 1:1) = 0.42. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.3 Hz, 2H), 6.64 (s, 1H), 4.91 (t, J = 7.0 Hz, 1H), 4.14 (q, J = 6.8 Hz, 2H), 3.43 (d, J = 7.0 Hz, 2H), 1.14 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 193.5 (s), 168.3 (s), 161.4 (s), 158.7 (q, J = 42.8 Hz), 135.6 (s), 134.0 (s), 128.9 (s), 128.8 (s), 117.8 (q, J = 270.3 Hz), 105.9 (q, J = 2.0 Hz), 62.0 (s), 52.1 (s), 25.1 (s), 13.8 (s). IR (ATR): v 3138, 3065, 2927, 1738, 1688, 1449, 1313, 1235, 1186, 1155, 1081, 966, 689 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₅F₃NO₄ [M+H]⁺: 342.0953; found: 342.0948.

Ethyl

2-oxo-1-((5-(trifluoromethyl)isoxazol-3-yl)methyl)cyclohexane-1-carboxylate (4s) Obtained as a yellow oily liquid in 54% yield (52 mg). $R_{\rm f}$ (dichloromethane) = 0.90. ¹H NMR (400 MHz, CDCl₃) δ 6.70 (s, 1H), 4.21 – 4.10 (m, 2H), 3.14 (dd, J = 54.2, 14.3 Hz, 2H), 2.63 – 2.42 (m, 2H), 2.05 (dd, J = 10.9, 3.7 Hz, 1H), 1.85 – 1.46 (m, 5H), 1.19 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 206.9 (s), 170.6 (s), 160.5 (s), 158.2 (q, J = 42.4 Hz), 117.9 (q, J= 270.0 Hz), 107.2 (q, J = 2.0 Hz), 61.9 (s), 60.9 (s), 40.9 (s), 36.5 (s), 30.8 (s), 27.3 (s), 22.4 (s), 13.8 (s). IR (ATR): v 2929, 2869, 2109, 1714, 1451, 1314, 1189, 1150, 1091, 1021, 965, 908, 841, 733 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₁₇F₃NO₄ [M+H]⁺: 320.1104; found: 320.1105.

2-Methyl-2-((5-(trifluoromethyl)isoxazol-3-yl)methyl)cyclopentane-1,3-dione (4t) Obtained as a yellow solid in 32% yield (25 mg). Mp: 89.2–90.4 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 6.50 (s, 1H), 3.13 (s, 2H), 2.92 (s, 4H), 1.25 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 215.2 (s), 207.0 (s), 160.0 (s), 159.1 (q, *J* = 41.4 Hz), 117.6 (q, *J* = 272.7 Hz), 105.1 (q, *J* = 2.0 Hz), 54.3 (s), 34.7 (s), 30.9 (s), 30.0 (s), 22.0 (s). IR (ATR): v 2924, 1726, 1493, 1454, 1332, 1297, 1276, 1182, 1154, 1073, 967, 828 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₁₁F₃NO₃ [M+H]⁺: 262.0686; found: 262.0693.

2-Methyl-2-((5-(trifluoromethyl)isoxazol-3-yl)methyl)cyclohexane-1,3-dione (4u) Obtained as a white solid in 70% yield (58 mg). Mp: 72.9–74.3 °C. $R_{\rm f}$ (*n*-pentane:dichloromethane 2:1) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 6.50 (s, 1H),

3.26 (s, 2H), 2.76 – 2.68 (m, 4H), 2.16 – 2.04 (m, 2H), 1.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 209.5 (s), 160.8 (s), 158.3 (q, J = 42.4 Hz), 117.8 (q, J = 270.2 Hz), 105.6 (q, J = 2.0 Hz), 62.3 (s), 37.6 (s), 30.3 (s), 25.3 (s), 17.1 (s). IR (ATR): v 3135, 2960, 2924, 1729, 1699, 1459, 1331, 1288, 1200, 1181, 1151, 1076, 1023, 966 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{12}H_{13}F_{3}NO_{3}[M+H]^{+}$: 276.0848; found: 276.0842.

3-(4-Chlorophenyl)-4-methyl-5-(trifluoromethyl)isoxazole (5a)

Obtained as a white solid in 56% yield (44 mg). Mp: 47.2–48.3 °C. $R_{\rm f}$ (*n*-pentane:dichloromethane 4:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 2.47 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 148.4 (g, J = 43.8 Hz), 147.2 (s), 135.1 (s), 133.0 (s), 129.3 (s), 127.1 (s), 125.9 (s), 116.5 (q, J = 270.4 Hz), 13.2 (s). IR (ATR): v 3054, 2927, 2853, 1581, 1492, 1409, 1376, 1264, 1203, 1153, 1095, 1011, 973, 831, 736, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{11}H_8CIF_3NO$ [M+H]⁺: 262.0247; found: 262.0249.

Ethyl 3-(p-tolyl)-5-(trifluoromethyl)isoxazole-4-carboxylate (5b)

Obtained as a colorless oily liquid in 99% yield (89 mg). Mp: 53.2-54.4 °C. R_f (*n*-pentane:dichloromethane 4:1) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.28 (d, J = 7.4 Hz, 2H), 4.43 (q, J = 6.5 Hz, 2H), 2.40 (s, 3H), 1.39 (t, J) = 6.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 160.9 (s), 157.6 (s), 148.1 (g, J = 45.0 Hz), 142.0 (s), 129.2 (s), 128.7 (s), 126.9 (s), 122.5 (s), 116.1 (q, J = 271.3 Hz), 61.8 (s), 21.4 (s), 14.1 (s). IR (ATR): v

2984, 2926, 1726, 1601, 1507, 1376, 1344, 1216, 1190, 1157, 1141, 1081, 1030, 823, 788 cm⁻¹. HRMS (ESI) m/z: calcd. for $C_{14}H_{13}F_3NO_3$ [M+H]⁺: 300.0848; found: 300.0849.

Methyl 3-phenyl-5-(trifluoromethyl)isoxazole-4-carboxylate (5c)

Obtained as a white solid in 60% yield (49 mg). Mp: 68.3–69.4 °C. R_f (*n*-pentane:dichloromethane 2:1) = 0.48. ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 7.95 (m, 2H), 7.63 – 7.41 (m, 3H), 3.97 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.3 (s), 157.5 (q, J = 0.7 Hz), 148.5 (q, J = 45.1 Hz), 131.6 (s), 128.7 (s), 128.6 (s), 127.1 (s), 125.2 (s), 116.1 (q, J = 271.4 Hz), 52.7 (s). IR (ATR): v 3063, 2956, 2926, 2853, 1731, 1603, 1567, 1494, 1376, 1355, 1223, 1139, 1087, 1037, 1012, 767, 735, 690 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₉F₃NO₃ [M+H]⁺: 272.0529; found: 272.0528.

3,4-Diphenyl-5-(trifluoromethyl)isoxazole (5d)

Obtained as a white solid in 44% yield (38 mg). Mp: 70.7–71.9 °C. R_f (*n*-pentane:dichloromethane 8:1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 4H), 7.45 – 7.39 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 149.1 (q, J = 44.0 Hz), 148.0 (s), 136.0 (s), 130.7 (s), 129.8 (s), 128.9 (s), 128.8 (s), 128.7 (s), 128.0 (s), 127.3 (s), 127.1 (s), 116.7 (q, J = 270.7 Hz). IR (ATR): v 2984, 2941, 2909, 1737, 1447, 1372, 1234, 1098, 1044, 938, 847, 634, 608, 461 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₁F₃NO [M+H]⁺: 290.0787; found: 290.0788.

3-(Trifluoromethyl)-4,5,6,7,8,9-hexahydrocycloocta[*c*]isoxazole (5e)

Obtained as a colorless oily liquid in 38% yield (25 mg). R_f (*n*-pentane:dichloromethane 4:1) = 0.44. ¹H NMR (400 MHz, CDCl₃) δ 2.81 (t, J = 6.3 Hz, 2H), 2.65 (t, J = 6.1 Hz, 2H), 1.83 – 1.63 (m, 4H), 1.56 – 1.37 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 165.2 (s), 152.5 (q, J = 40.4 Hz), 119.7 (q, J = 1.8 Hz), 118.9 (q, J = 270.4 Hz), 29.4 (s), 29.0 (s), 25.2 (s), 25.1 (s), 23.7 (s), 19.5 (s). IR (ATR): v 2927, 2855, 1695, 1414, 1329, 1310, 1202, 1152, 1108, 1080, 1024 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₁₃F₃NO [M+H]⁺: 220.0949; found: 220.0951.

4-(p-Tolyl)-5-(trifluoromethyl)isoxazole (6a)

Obtained as a brown oily liquid in 85% yield (58 mg). $R_{\rm f}$ (*n*-pentane:dichloromethane 4:1) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.38 (s, 1H), 7.26 (d, J = 7.6 Hz, 2H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 154.2 (s), 149.4 (q, J = 43.9 Hz), 140.2 (s), 129.8 (s), 124.8 (s), 123.5 (s), 121.7 (s), 116.6 (q, J = 270.2 Hz), 21.3 (s). IR (ATR): v 2959, 2927, 2165, 2148, 1501, 1376, 1205, 1148, 1103, 964, 815 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₁H₉F₃NO [M+H]⁺: 228.0636; found: 228.0637.

4-(4-Chlorophenyl)-5-(trifluoromethyl)isoxazole (6b)

Obtained as a white solid in 90% yield (67 mg). Mp: 53.5–54.4 ℃. R_f

(*n*-pentane:dichloromethane 4:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.8 Hz, 2H), 7.43 (s, 1H), 7.42 (d, J = 7.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.9 (s), 149.9 (q, J = 44.2 Hz), 135.9 (s), 129.4 (s), 126.1 (s), 124.7 (s), 122.7 (s), 116.4 (q, J = 270.4 Hz). IR (ATR): v 2924, 2853, 1590, 1482, 1410, 1374, 1282, 1208, 1139, 1092, 963, 937, 822, 734, 504 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₆ClF₃NO [M+H]⁺: 248.0090; found: 248.0091.

13-Methyl-3-((5-(trifluoromethyl)isoxazol-3-yl)methoxy)-6,7,8,9,11,12,13,14,15,16 -decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (7a)

Obtained as a light yellow solid in 79% yield (99 mg). Mp: 123.1–123.7 °C. R_f (*n*-pentane:dichloromethane 1:1) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.6 Hz, 1H), 6.85 (s, 1H), 6.77 (d, J = 8.6 Hz, 1H), 6.71 (s, 1H), 5.17 (s, 2H), 2.90 (d, J = 5.3 Hz, 2H), 2.51 (dd, J = 18.8, 8.6 Hz, 1H), 2.39 (d, J = 9.7 Hz, 1H), 2.27 (d, J = 9.2 Hz, 1H), 2.20 – 1.92 (m, 4H), 1.63 – 1.37 (m, 6H), 0.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (s), 159.1 (q, J = 42.7 Hz), 155.6 (s), 138.2 (s), 133.5 (s), 126.6 (s), 117.7 (q, J = 270.5 Hz), 114.7 (s), 112.2 (s), 104.9 (q, J = 2.0 Hz), 61.1 (s), 50.4 (s), 48.0 (s), 44.0 (s), 38.2 (s), 35.8 (s), 31.5 (s), 29.6 (s), 26.4 (s), 25.9 (s), 21.6 (s), 13.8 (s). IR (ATR): v 3129, 2925, 2859, 1737, 1609, 1450, 1457, 1315, 1211, 1183, 1154, 1080, 1058, 965, 914, 821 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₃H₂₅F₃NO₃ [M+H]⁺: 420.1781; found: 420.1787.

13-Methyl-3-((5-(trifluoromethyl)isoxazol-3-yl)methoxy)-7,8,9,11,12,13,14,15,16,1

7-decahydro-6*H***-cyclopenta[***a***]phenanthren-17-yl 2,2,2-trifluoroacetate (7b) Obtained as a yellow solid in 68% yield (105 mg). Mp: 105.0–106.5 °C. R_{\rm f} (***n***-pentane:dichloromethane 1:1) = 0.88. ¹H NMR (400 MHz, CDCl₃) \delta 7.24 (d, J = 8.5 Hz, 1H), 6.86 (s, 1H), 6.78 (d, J = 8.5 Hz, 1H), 6.72 (s, 1H), 5.18 (s, 2H), 4.91 (t, J = 8.3 Hz, 1H), 2.88 (d, J = 6.8 Hz, 2H), 2.38 – 2.18 (m, 3H), 1.99 – 1.64 (m, 4H), 1.57 – 1.26 (m, 6H), 0.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) \delta -64.1 (s, 3F), -75.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) \delta 161.4 (s), 159.1 (q, J = 42.7 Hz), 157.5 (q, J = 41.8 Hz), 155.6 (s), 138.2 (s), 133.5 (s), 126.6 (s), 117.8 (q, J = 270.4 Hz), 114.7 (s), 114.6 (q, J = 285.9 Hz), 112.1 (s), 104.9 (q, J = 2.0 Hz), 86.7 (s), 61.1 (s), 49.6 (s), 43.6 (s), 43.4 (s), 38.4 (s), 36.6 (s), 29.6 (s), 27.1 (s), 27.0 (s), 26.0 (s), 23.1 (s), 11.8 (s). IR (ATR): v 2925, 2870, 1781, 1610, 1500, 1460, 1382, 1352, 1316, 1215, 1159, 1078, 966 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₅H₂₆F₆NO₄ [M+H]⁺: 518.1766; found: 518.1771.**

3-(((2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl)oxy)methyl)-5-(trifluoromethyl)isoxazole (7c)

Obtained as a light oily liquid in 95% yield (165 mg). R_f (*n*-pentane:dichloromethane 4:1) = 0.75. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (s, 1H), 4.86 (s, 2H), 2.63 (t, J = 6.2 Hz, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 2.15 (s, 3H), 1.92 – 1.76 (m, 2H), 1.71 – 1.05 (m, 24H), 1.00 – 0.76 (m, 12H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.1 (s, 3F). ¹³C NMR

(101 MHz, CDCl₃) δ 161.5 (s), 159.0 (q, J = 42.6 Hz), 148.5 (s), 147.5 (s), 127.5 (s), 125.6 (s), 123.3 (s), 117.9 (q, J = 270.3 Hz), 117.8 (s), 105.0 (q, J = 1.9 Hz), 75.0 (s), 65.2 (s), 40.1 (s), 40.0 (s), 39.4 (s), 37.8 (s), 37.7 (s), 37.6 (s), 37.5 (s), 37.47 (s), 37.41 (s), 37.4 (s), 37.34 (s), 37.3 (s), 32.8 (s), 32.78 (s), 32.7 (s), 32.67 (s), 31.2 (s), 31.17 (s), 28.0 (s), 24.8 (s), 24.4 (s), 23.8 (s), 22.7 (s), 22.6 (s), 21.0 (s), 20.6 (s), 19.7 (s), 19.66 (s), 19.64 (s), 19.60 (s), 19.58 (s), 12.8 (s), 11.9 (s), 11.8 (s). IR (ATR): v 2925, 2868, 1459, 1413, 1378, 1361, 1315, 1255, 1210, 1182, 1158, 1090, 1010, 966, 909, 827 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₅₃F₃NO₃ [M+H]⁺: 580.3978; found: 580.3990.

3-(4-(tert-Butyl)phenyl)-5-(perfluoroethyl)isoxazole (8a)

Obtained as a white solid in 55% yield (53 mg). Mp: 41.5-42.1 °C. R_f (*n*-pentane) = 0.58. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.9 Hz, 2H), 7.07 (s, 1H), 1.38 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.1 (s, 3F), -115.1 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (s), 158.4 (t, J = 31.5 Hz), 154.5 (s), 126.7 (s), 126.2 (s), 124.4 (s), 118.1 (qt, J = 286.2, 36.1 Hz), 108.3 (tq, J = 254.7, 41.0 Hz), 105.2 (s), 34.9 (s), 31.1 (s). IR (ATR): v 2964, 2219, 2032, 1985, 1972, 1460, 1212, 1184, 1101, 922, 823, 735 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₁₅F₅NO [M+H]⁺: 320.1068; found: 320.1066.

3-(4-Chlorophenyl)-4-methyl-5-(perfluoroethyl)isoxazole (8b)

Obtained as a yellow oily liquid in 42% yield (39 mg). R_f (*n*-pentane:dichloromethane 5:1) = 0.73. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 8.3

Hz, 2H), 2.48 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.4 (s, 3F), -115.3 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 148.0 (s), 147.9 (t, J = 30.9 Hz), 135.2 (s), 133.6 (s), 129.3 (s), 127.2 (s), 125.8 (s), 118.0 (qt, J = 286.4, 35.8 Hz), 107.1 (tq, J = 255.2, 40.8 Hz), 13.2 (s). IR (ATR): v 2960, 2928, 2858, 2106, 1492, 1332, 1220, 1148, 1096, 1038 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₈ClF₅NO [M+H]⁺: 312.0209; found: 312.0212.

3-(((2-Methoxyphenyl)thio)methyl)-5-(perfluoroethyl)isoxazole (8c)

Obtained as a yellow oily liquid in 83% yield (84 mg). R_f (*n*-pentane:dichloromethane 5:1) = 0.44. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 2H), 6.92 – 6.85 (m, 2H), 6.69 (s, 1H), 4.12 (s, 2H), 3.88 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -84.2 (s, 3F), -115.1 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 162.1 (s), 158.6 (s), 157.8 (t, *J* = 31.5 Hz), 133.0 (s), 129.6 (s), 121.0 (s), 120.7 (s), 117.9 (qt, *J* = 286.3, 36.1 Hz), 110.9 (s), 108.1 (d, *J* = 254.7, 41.0 Hz), 107.1 (s), 55.6 (s), 27.5 (s). IR (ATR): v 2927, 2841, 1581, 1477, 1337, 1217, 1189, 1159, 1026, 923, 752 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₃H₁₁F₅NO₂S [M+H]⁺: 340.0425; found: 340.0423.

Methyl 4-(5-(perfluoropropyl)isoxazol-3-yl)benzoate (9a)

Obtained as a white solid in 96% yield (107 mg). Mp: 93.3-94.5 °C. R_f (*n*-pentane:dichloromethane 5:1) = 0.34. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.1 Hz, 2H), 7.87 (d, J = 8.1 Hz, 2H), 7.12 (s, 1H), 3.92 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.6 (t, J = 9.1 Hz, 3F), -112.9 (q, J = 9.1 Hz, 2F), -127.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (s), 161.9 (s), 159.0 (t, J = 32.1 Hz), 132.3 (s), 131.2 (s),

130.3 (s), 126.9 (s), 117.5 (qt, J = 287.3, 33.3 Hz), 110.2 (tt, J = 256.7, 32.6 Hz), 108.1 (tq, J = 266.7, 38.6 Hz), 105.5 (s), 52.2 (s). IR (ATR): v 2957, 2924, 2853, 2111, 1718, 1351, 1279, 1227, 1188, 1153, 1120, 991, 873, 776 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₉F₇NO₃ [M+H]⁺: 372.0465; found: 372.0464.

4-(4-Chlorophenyl)-5-(perfluoropropyl)isoxazole (9b)

Obtained as a yellow oily liquid in 69% yield (68 mg). R_f (*n*-pentane:dichloromethane 5:1) = 0.80. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.50 (s, 1H), 7.45 (d, J = 7.9 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.5 (t, J = 8.8 Hz, 3F), -113.5 (q, J = 8.4 Hz, 2F), -126.7 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 153.8 (s), 149.5 (t, J = 31.5 Hz), 136.1 (s), 129.5 (s), 126.2 (s), 124.7 (s), 123.3 (s), 117.5 (qt, J = 287.5, 33.4 Hz), 108.9 (tt, J = 258.0, 32.1 Hz), 108.3 (tq, J = 267.4, 38.6 Hz). IR (ATR): v 2927, 2113, 1613, 1484, 1410, 1368, 1216, 1192, 1124, 873, 826 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₂H₆ClF₇NO [M+H]⁺: 348.0021; found: 348.0024.

N-(Pyridin-2-yl)-4-(5-(trifluoromethyl)isoxazol-3-yl)benzamide (11a)

Obtained as a white solid in 77% yield (51 mg). Mp: 207.0–208.5 °C. R_f (*n*-pentane: ethyl acetate 1:1) = 0.55. ¹H NMR (400 MHz, DMSO- d_6) δ 10.96 (s, 1H), 8.40 (d, J = 4.0 Hz, 1H), 8.27 – 8.15 (m, 4H), 8.10 (d, J = 8.1 Hz, 2H), 7.86 (t, J = 7.8 Hz, 1H), 7.19 (t, J = 5.7 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -63.1 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.2 (s), 162.2 (s), 157.6 (q, J = 41.8 Hz), 152.0 (s), 147.9 (s), 138.1 (s), 136.3 (s), 129.6 (s), 128.9 (s), 126.9 (s), 120.0 (s), 117.8 (q, J = 270.0

Hz), 114.8 (s), 105.8 (q, J = 1.8 Hz). IR (ATR): v 3365, 3151, 2954, 2923, 2853, 1656, 1537, 1518, 1438, 1322, 1241, 1174, 1140, 969, 778, 737 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₁F₃N₃O₂ [M+H]⁺: 334.0798; found: 334.0799.

N-(p-Tolyl)-4-(5-(trifluoromethyl)isoxazol-3-yl)benzamide (11b)

Obtained as a white solid in 82% yield (57 mg). Mp: 239.3–241.0 °C. R_f (*n*-pentane: ethyl acetate 1:1) = 0.73. ¹H NMR (400 MHz, DMSO- d_6) δ 10.31 (s, 1H), 8.19 (s, 1H), 8.12 (s, 4H), 7.67 (d, J = 7.5 Hz, 2H), 7.17 (d, J = 7.7 Hz, 2H), 2.29 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -63.1 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.4 (s), 162.2 (s), 157.6 (q, J = 41.7 Hz), 137.2 (s), 136.4 (s), 132.9 (s), 129.3 (s), 129.0 (s), 128.5 (s), 127.0 (s), 120.4 (s), 117.8 (q, J = 269.9 Hz), 105.9 (q, J = 1.9 Hz), 20.5 (s). IR (ATR): v 3054, 2931, 2860, 1668, 1503, 1437, 1407, 1386, 1266, 1091, 730, 701, 659 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₁₄F₃N₂O₂ [M+H]⁺: 347.1002; found: 347.1005.

4-(5-(Trifluoromethyl)isoxazol-3-yl)benzoic acid (12)

Obtained as a white solid in 55% yield (28 mg). Mp: 189.1–190.1 °C. R_f (*n*-pentane: ethyl acetate 1:2) = 0.29. ¹H NMR (400 MHz, DMSO- d_6) δ 13.26 (br, 1H), 8.16 (s, 1H), 8.09 (s, 4H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -63.1 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.6 (s), 162.2 (s), 157.7 (q, J = 41.8 Hz), 133.0 (s), 130.5 (s), 130.1 (s), 127.2 (s), 117.8 (q, J = 270.0 Hz), 105.9 (q, J = 2.0 Hz). IR (ATR): v 3485, 3054, 2930, 2860, 1660, 1501, 1438, 1407, 1386, 1256, 1091, 1063, 731, 658 cm⁻¹.

HRMS (ESI) m/z: calcd. for C₁₁H₇F₃NO₃ [M-H]⁻: 256.0216; found: 256.0226.

4-Amino-4-(4-aminophenyl)-1,1,1-trifluorobut-3-en-2-one (13)

Obtained as a yellow solid in 62% yield (71 mg). Mp: 109.8-110.5 °C. R_f (*n*-pentane: ethyl acetate 4:3) = 0.50. ¹H NMR (400 MHz, DMSO- d_6) δ 10.25 (s, 1H), 8.83 (s, 1H), 7.55 (d, J = 7.9 Hz, 2H), 6.62 (d, J = 7.9 Hz, 2H), 6.03 (s, 2H), 5.68 (s, 1H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -75.1 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.1 (q, J = 30.9 Hz), 167.5 (s), 153.2 (s), 128.7 (s), 118.9 (s), 117.9 (q, J = 290.0 Hz), 113.2 (s), 83.5 (q, J = 1.0 Hz). IR (ATR): v 3353, 3229, 2954, 2924, 2854, 1665, 1597, 1549, 1508, 1445, 1374, 1260, 1188, 1130, 903, 837, 783, 702, 544 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₀H₁₀F₃N₂O [M+H]⁺: 231.0745; found: 231.0740.

Crystal structure analyses

The crystal samples of **3k** were prepared by slow volatilization in a $CH_2Cl_2/CDCl_3$ (3:1) solvent mixture. The suitable crystals of **3k** (CCDC 1972523) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.² Structure solution and refinement were carried out with the SHELXTL suite of programs.² The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

Compound	3k (CCDC 1972523)	
Empirical formula	C ₁₀ H ₅ F ₄ N O	
Formula weight	231.15	
Temperature/K	273(2)	
Wavelength/Å	0.71073	
Crystal system	Triclinic	
a/Å	5.337(10)	
b/Å	7.907(15)	
c/Å	11.41(2)	
α/°	90.42(3)	
β/°	99.00(3)	
γ/°	95.19(2)	
Volume/Å ³	473.6(15)	
Z	2	
Density (calc.)/cm ³	1.621	
Absorption coefficient /mm ⁻¹	0.159	
F(000)	232	
Crystal size/mm	$0.50 \times 0.40 \times 0.20$	
Theta range for data collection / $^{\circ}$	1.81~24.99	
Reflections collected	2443	
Independent reflections	1582 [R(int) = 0.0179]	
Data/restraints/parameters	1582 / 0 / 165	
Goodness-of-fit on F ²	1.065	
Final R indexes [I>=2 σ (I)]	0.0680	
Final R indexes [all data]	0.1763	
Largest diff. peak and hole / e Å ⁻³	0.292/-0.361	

Table S1. Crystal data and structure refinement for compounds

ORTEP diagrams

Figure S1. ORTEP diagram of compound 3k. Thermal ellipsoids are drawn at 40% probability

References:

- (1) (a) Z. Liu, P. Liao, X. Bi, General silver-catalyzed hydroazidation of terminal alkynes by combining TMS-N₃ and H₂O: synthesis of vinyl azides, *Org. Lett.* 2014, **16**, 3668; (b) Y.-F. Wang, G. H. Lonca, S. Chiba, PhI(OAc)₂-mediated radical trifluoromethylation of vinyl azides with Me₃SiCF₃, *Angew. Chem. Int. Ed.* 2014, **53**, 1067; (c) V. Nair, T. G. George, A novel synthesis of α-azidocinnamates, α-azido-α,β-unsaturated ketones and β-azidostyrenes mediated by cerium(IV) ammonium nitrate, *Tetrahedron Lett.* 2000, **41**, 3199.
- (2) SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra

¹H NMR spectra of **2j** in CDCl₃

¹H NMR spectra of **2q** in CDCl₃

¹³C NMR spectra of **2q** in CDCl₃

$^{26}_{92}$	88	29	21
38.	23.	10.	7.1
77	77	7	6

¹H NMR spectra of **2-4a** in CDCl₃

¹H NMR spectra of **2-4b** in CDCl₃

¹H NMR spectra of **2-4c** in CDCl₃

¹H NMR spectra of **2-4d** in CDCl₃

¹H NMR spectra of **2-4e** in CDCl₃

¹H NMR spectra of **2-4f** in CDCl₃

¹H NMR spectra of **2-4g** in CDCl₃

¹³C NMR spectra of **2-4g** in CDCl₃

8	$26 \\ 05 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07$	8 8	8	4
-153.	-141. $\int 133.$ $\int 128.$ $\int 127.$	∠11 4 . √113.	-101.	-68. 6

¹H NMR spectra of **2-4h** in CDCl₃

¹H NMR spectra of **2-4i** in CDCl₃

¹H NMR spectra of **2-4j** in CDCl₃

 ^{19}F NMR spectra of **2-4j** in CDCl₃

56	60	61
13.	Ë.	<u>ы</u> .
11	+-1	<u> </u>

10 0 -10 -20 -30 -40

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **2-4j** in CDCl₃

¹³C NMR spectra of **2-4k** in CDCl₃

¹H NMR spectra of **2-4m** in CDCl₃

¹³C NMR spectra of **2-4m** in CDCl₃

¹H NMR spectra of **2-4n** in CDCl₃

¹³C NMR spectra of **2-4n** in CDCl₃

¹³C NMR spectra of **2-40** in CDCl₃

¹³C NMR spectra of **2-7a** in CDCl₃

¹H NMR spectra of **2-7b** in CDCl₃

¹³C NMR spectra of **2-7b** in CDCl₃

¹³C NMR spectra of **2-7c** in CDCl₃

¹H NMR spectra of **3a** in CDCl₃

¹³C NMR spectra of **3a** in CDCl₃

¹H NMR spectra of **3b** in CDCl₃

¹⁹F NMR spectra of **3b** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **3b** in CDCl₃

¹H NMR spectra of **3c** in CDCl₃

 13 C NMR spectra of **3c** in CDCl₃

¹H NMR spectra of **3d** in CDCl₃

¹³C NMR spectra of **3d** in CDCl₃

¹H NMR spectra of **3e** in CDCl₃

¹³C NMR spectra of **3e** in CDCl₃

¹H NMR spectra of **3f** in CDCl₃

71 69 97 97	42
2.7.7.7 6.7.7.7	2

¹H NMR spectra of **3g** in CDCl₃

S87

¹³C NMR spectra of **3g** in CDCl₃

¹H NMR spectra of **3h** in CDCl₃

¹³C NMR spectra of **3h** in CDCl₃

¹H NMR spectra of **3i** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **3i** in CDCl₃

¹H NMR spectra of **3j** in CDCl₃

¹³C NMR spectra of **3j** in CDCl₃

$21 \\ 05 \\ 05 \\ 21 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 0$	10°	Q	0002
62. 59. 58.	228 03.15.119.	8. 1	∞.∞
		9	1221

¹H NMR spectra of **3k** in CDCl₃

¹³C NMR spectra of **3k** in CDCl₃

¹H NMR spectra of **3l** in CDCl₃

 $\begin{bmatrix} 7.83\\ 7.82\\ 7.21\\ 7.19\\ 6.97 \end{bmatrix}$

¹⁹F NMR spectra of **3l** in CDCl₃

¹³C NMR spectra of **3l** in CDCl₃

$\begin{array}{c} 56\\ 56\\ 64\\ 61\\ 19\\ 76\end{array}$	23 $\frac{1}{23}$ $\frac{1}$
65. 59. 59.	$ \begin{array}{c} 223.23\\ 0.3.23$

¹H NMR spectra of **3m** in CDCl₃

^{19}F NMR spectra of **3m** in CDCl₃

¹³C NMR spectra of **3m** in CDCl₃

¹H NMR spectra of **3n** in CDCl₃

¹⁹F NMR spectra of **3n** in CDCl₃

¹³C NMR spectra of **3n** in CDCl₃

40 22 22 80 22 80 80 80 80 80 80 80 80 80 80 80 80 80	4 0 33 33 33 36 13 30 1
161. 160. 159. 158.	132. 126. 126. 125. 119. 116. 113. 103.

¹H NMR spectra of **30** in CDCl₃

7. 91 7. 73 7. 73 7. 73 7. 73 7. 65 7. 45 7. 45 7. 45 7. 45 7. 45 7. 04 CF3 1. 98 2. 05 2. 17 2. 18 1. 10 1. 00 -3 -4 -1 -2 ¹⁹F NMR spectra of **30** in CDCl₃

¹³C NMR spectra of **30** in CDCl₃

¹H NMR spectra of **3p** in CDCl₃

8.22 7.7.93 7.7.55 7.7.55 7.7.55 7.7.55 7.11 7.11

 19 F NMR spectra of **3p** in CDCl₃

¹³C NMR spectra of **3p** in CDCl₃

the second second second second second second				
	-127.	-126.	163.	-103.

¹H NMR spectra of **3q** in CDCl₃

10 0 -10

-20 -30 -40

-50 -60

-70

-80

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **3q** in CDCl₃

¹H NMR spectra of **4a** in CDCl₃

-5. 34 -5. 34 -5. 34 -5. 35 -5. 35 -5. 38 -5. 38 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 34 -5. 35 -5. 34 -5. 35 -5

¹⁹F NMR spectra of **4a** in CDCl₃

¹³C NMR spectra of **4a** in CDCl₃

$ \begin{bmatrix} 160.27\\ 150.69\\ 159.26\\ 159.28\\ 159.28\\ 158.81\\ 150.73\\ 134.32\\ 134.32\\ 122.93\\ 1115.05\\ 1115.05\\ 1115.05\\ 105.02\\ 105.02 \end{bmatrix} $	-62. 63
---	---------

¹H NMR spectra of **4b** in CDCl₃

¹³C NMR spectra of **4b** in CDCl₃

¹H NMR spectra of 4c in CDCl₃

7.55 7.7.57

 19 F NMR spectra of **4c** in CDCl₃

¹³C NMR spectra of **4c** in CDCl₃

$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $	22
104. 113. 1159. 1160. 1159. 10	-62.3

¹H NMR spectra of **4d** in CDCl₃

¹³C NMR spectra of **4d** in CDCl₃

16

15

14 13

12 11

10

9

7 6

8

5

4

3 2

1 0

-1

-2

-3 -4

¹⁹F NMR spectra of **4e** in CDCl₃

¹³C NMR spectra of **4e** in CDCl₃

$\frac{50}{20}$	64	$^{+}_{}$	<u>o</u>	
161. 159. 158. 158. 158.	-139.	$ \begin{array}{c} 123. \\ 1121. \\ 1116. \\ 1116. \\ 1112. \\ 104. \\ 104. \end{array} $	-60. 9	-21.4

¹H NMR spectra of **4f** in CDCl₃

¹³C NMR spectra of **4f** in CDCl₃

¹H NMR spectra of 4g in CDCl₃

$^{20}_{80}$	53
$\sum_{n=1}^{7}$	-5-

¹⁹F NMR spectra of **4g** in CDCl₃

¹³C NMR spectra of **4g** in CDCl₃

$\begin{array}{c} 552\\ 552\\ 652\\ 652\\ 652\\ 652\\ 652\\ 857\\ 852\\ 852\\ 852\\ 852\\ 852\\ 852\\ 852\\ 852$	œ
004.3227.228.2000 044.3227.228.228.22	2
	i i i i i i i i i i i i i i i i i i i

¹H NMR spectra of **4h** in CDCl₃

¹³C NMR spectra of **4h** in CDCl₃

¹H NMR spectra of **4i** in CDCl₃

$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	88
6.6.6.	4.05

¹⁹F NMR spectra of **4i** in CDCl₃

¹³C NMR spectra of **4i** in CDCl₃

250, 50, 50, 50, 50, 50, 50, 50, 50, 50,	$\begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 $	4	Q
589. 589. 589.	34. 23. 11. 05. 05.	2	. ~
	1	- 2	ŝ

¹H NMR spectra of **4j** in CDCl₃

¹⁹F NMR spectra of **4j** in CDCl₃

¹³C NMR spectra of **4j** in CDCl₃

¹H NMR spectra of **4k** in CDCl₃

$\begin{array}{c} 77\\ 61\\ 63\\ 05\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03$	27	01
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-4.	-4.



¹⁹F NMR spectra of **4k** in CDCl₃



## ¹³C NMR spectra of **4k** in CDCl₃

33350444, $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $33230$ , $3320$ , $33230$ , $33230$ , $33230$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$ , $3320$	<u></u>
06.051118.02230.05599.0000000000000000000000000000000	1.1
	1 2



¹H NMR spectra of **4l** in CDCl₃





 13 C NMR spectra of **4l** in CDCl₃



#### ¹H NMR spectra of **4m** in DMSO- $d_6$

9. 21 9. 20	7. 97 77 77 77 77 77 77 77 77 77 77 77 77 7	$\begin{pmatrix} -7.834\\ 4.60 \end{pmatrix}$			
M M CF3					
M M					
8.0 7.9 7.8 7.7 7.6 7.5					
			1		
1.00	1.200	1.97			
16 15 14 13 12 11 10 9	8 7 6	5 4 3	2 :	 -1 -2	-3 -

¹⁹F NMR spectra of 4m in DMSO- $d_6$ 



# ¹³C NMR spectra of **4m** in DMSO- $d_6$

7 2 3 8 8 8 8 9 9 3 3 3 3 3 3 3 3 3 3 3 3 3	20
00011001100100000000000000000000000000	4
	Ŷ



¹H NMR spectra of **4n** in DMSO- $d_6$ 



¹⁹F NMR spectra of **4n** in DMSO- $d_6$ 

TI CF3

--63.04

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

# ¹³C NMR spectra of **4n** in DMSO- $d_6$



¹H NMR spectra of **40** in CDCl₃

22 8 8 4 4	74 72
7.7.7. 7.6. 6.	4,4,



¹⁹F NMR spectra of **40** in CDCl₃



## ¹³C NMR spectra of **40** in CDCl₃

$\begin{array}{c} 49\\ 49\\ 25\\ 59\\ 62\\ 53\\ 75\\ 96\\ 72\\ 96\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72$	264 $226$ $226$ $323$ $324$ $323$ $324$ $324$ $322$ $324$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$ $325$	54
161 159 144 144	$\begin{array}{c} 121\\115\\1115\\1112\\105\\105\end{array}$	34.



¹H NMR spectra of **4p** in CDCl₃







¹⁹F NMR spectra of **4p** in CDCl₃



10 0 -10

-20

-30 -40

-60 -70

-80

-50

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **4p** in CDCl₃



## ¹H NMR spectra of 4q in CDCl₃

$\begin{array}{c} 99\\ 99\\ 88\\ 88\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83\\ 83$	22 23
9.9.9.9.7.7.7.7.7.7.7.7	. તું તું







## ¹³C NMR spectra of **4q** in CDCl₃

61	28282	$\begin{array}{c} 19 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 2$	4	=
94.	58. 58. 58.	35. 28. 06. 06.	4.	5.4
ī			1	7



#### ¹H NMR spectra of **4r** in CDCl₃



## $^{19}\text{F}$ NMR spectra of 4r in CDCl₃



## ¹³C NMR spectra of **4r** in CDCl₃





-1

-2

-4

-3

¹⁹F NMR spectra of **4s** in CDCl₃



## ¹³C NMR spectra of **4s** in CDCl₃

91	22, 22, 23, 23, 23, 23, 23, 23, 23, 23,	532822333	b= ±	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i.	d d m m h h		00 OD	∞ <del>7</del> ∞ ∩ ∩ ∞
ð	2222202	01100		
C)			မှမှ	40000-
			$\sim$	- 111111



¹H NMR spectra of **4t** in CDCl₃





¹H NMR spectra of 4u in CDCl₃

TI-CF3





¹⁹F NMR spectra of **4u** in CDCl₃





# ¹H NMR spectra of **5a** in CDCl₃



¹³C NMR spectra of **5a** in CDCl₃



#### ¹H NMR spectra of **5b** in CDCl₃

97 95 27 27	42 45 45 45 45	40	$\frac{41}{38}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 4	-5.	


¹⁹F NMR spectra of **5b** in CDCl₃

¹³C NMR spectra of **5b** in CDCl₃

$ \begin{array}{c} 160. \ 91\\ 160. \ 91\\ 148. \ 77\\ 148. \ 77\\ 148. \ 77\\ 148. \ 77\\ 148. \ 77\\ 148. \ 77\\ 122. \ 52\\ 52\\ 128. \ 66\\ 112. \ 67\\ 112. \ 09\\ 112. \ 00\$	-61.75	-21. 42 -14. 08
---	--------	--------------------

¹H NMR spectra of **5c** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **5c** in CDCl₃

¹H NMR spectra of **5d** in CDCl₃

7.7.65 7.7.65 7.7.65 7.42 7.42 7.42 7.41 7.42 7.42 7.42 7.42

¹⁹F NMR spectra of **5d** in CDCl₃

¹³C NMR spectra of **5d** in CDCl₃

$ \begin{array}{c} 149.80\\ 1449.80\\ 1449.32\\ 1449.32\\ 1449.32\\ 1449.32\\ 1449.32\\ 1147.39\\ 1127.29\\ 1127.29\\ 1126.62\\ 1126.63\\ 1126.63\\ 1126.62\\ 1126.$				
CF3				
			1	
210 200 190 180 17	70 160 150 140 130	120 110 100 90	80 70 60 50 4	

¹H NMR spectra of **5e** in CDCl₃

 ^{19}F NMR spectra of 5e in CDCl_3

¹³C NMR spectra of **5e** in CDCl₃

¹⁹F NMR spectra of **6a** in CDCl₃

¹³C NMR spectra of **6a** in CDCl₃

	112.154 112.154 149.60 149.60 149.20 149.20 149.20 149.20 121.91 112.54 112.54	-21.33
0, N		

¹H NMR spectra of **6b** in CDCl₃

¹⁹F NMR spectra of **6b** in CDCl₃

¹³C NMR spectra of **6b** in CDCl₃

¹H NMR spectra of **7a** in CDCl₃

¹⁹F NMR spectra of **7a** in CDCl₃

¹³C NMR spectra of **7a** in CDCl₃

$ \begin{array}{c} 161. \\ 159. 77 \\ 158. 50 \\ 158. 50 \\ 158. 50 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 138. 21 \\ 104. 88 \\ 104. 86 \\ 1$	-61.07 -61.07 -61.07 -61.07 -61.038 -33.295 -33.824 -3
--	--

¹H NMR spectra of **7b** in CDCl₃

¹⁹F NMR spectra of **7b** in CDCl₃

¹³C NMR spectra of **7b** in CDCl₃

 ^{19}F NMR spectra of 7c in CDCl_3

¹³C NMR spectra of **7c** in CDCl₃

 151
 151
 151
 151
 151
 153
 153
 153
 153
 153
 153
 153
 153
 153
 153
 153
 153
 153
 153
 153
 154
 153
 154
 156
 156
 156
 156
 156
 156
 156
 156
 156
 156
 156
 156
 156
 156
 156
 157
 36
 32
 32
 32
 32
 32
 32
 32
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33</

¹H NMR spectra of **8a** in CDCl₃

¹³C NMR spectra of **8a** in CDCl₃

¹⁹F NMR spectra of **8b** in CDCl₃

¹³C NMR spectra of **8b** in CDCl₃

17 00 56	$^{+1}_{-10}$
48. 448. 47.	222.222.222.222.222.222.222.222.222.22

¹H NMR spectra of **8c** in CDCl₃

¹³C NMR spectra of **8c** in CDCl₃

¹⁹F NMR spectra of **9a** in CDCl₃

¹H NMR spectra of **9b** in CDCl₃

 ^{19}F NMR spectra of 9b in CDCl_3

ကယထ	84444
 444	50.13

¹³C NMR spectra of **9b** in CDCl₃

¹H NMR spectra of **11a** in DMSO- d_6

¹⁹F NMR spectra of **11a** in DMSO- d_6

¹³C NMR spectra of **11a** in DMSO- d_6

¹H NMR spectra of **11b** in DMSO- d_6

¹⁹F NMR spectra of **11b** in DMSO- d_6

10 0

-20

-30 -40

-10

-60

-50

-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectra of **11b** in DMSO- d_6

¹H NMR spectra of **12** in DMSO- d_6

¹⁹F NMR spectra of **12** in DMSO- d_6

¹³C NMR spectra of **12** in DMSO- d_6

¹H NMR spectra of **13** in DMSO- d_6

¹⁹F NMR spectra of **13** in DMSO- d_6

--75.05

¹³C NMR spectra of **13** in DMSO- d_6

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10