SUPPORTING INFORMATION

Rh-catalyzed nitrene alkyne metathesis/formal C–N bond insertion cascade: synthesis of 3-iminoindolines

Kemiao Hong,^a Su Zhou,^a Wenhao Hu,^{*,a} and Xinfang Xu^{*,a,b}

^aGuangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China

^bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

E-mail: huwh9@mail.sysu.edu.cn

xinfangxu@suda.edu.cn

Table of Contents

1. General Information	S2
. General Procedure for the Synthesis of Sulfamate Esters 1 . General Procedure for the Cascade Reaction	\$3-\$16 \$17-\$29
5. General Procedure for Gram Scale Reaction and Derivatizations	S31-S38
5. References 7. NMR Spectra for 2, 3, 4, 5, 6 and 7	S38 S39-S74
9. Single-Crystal X-ray Diffraction of 2n, 6 and 7a	S77-S79

General Information

All reactions were carried out in oven-dried glassware. Solvents were purified by following the standard methods. Flash column chromatography was performed using silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃, DMSO-d₆ and C₆D₆ on 400 MHz and 500 MHz spectrometer; chemical shifts were reported in ppm with the solvent signal as reference, and coupling constants (*J*) were given in Hertz. The peak information was described as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. Enantioselectivity was determined on HPLC using Daicel Chiralpak AD-H column. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI Source) and (CI Source).

General Procedure for the Synthesis of Sulfamate Esters 1.¹

Synthesis of S3: To a 50-mL oven-dried flask containing a magnetic stirring bar, **S1** (5.0 mmol), Et₃N (10 mL), THF (10 mL), CuI (9.5 mg, 1.0 mol%), Pd(PPh₃)₂Cl₂ (52.7 mg, 1.5 mol%), and **S2** (5.5 mmol, 1.1 equiv.) were added in sequence under argon atmosphere. The reaction mixture was stirred at 50 °C for 12 h. Then the reaction mixture was filtered through a short pad of Celite and the solid was washed with ethyl acetate. The combined organic layer was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) to give **S3** in >75% yields.

<u>Synthesis of 1:</u> To a 50-mL oven-dried round bottom flask equipped with stirring bar, and CISO₂NCO (0.65 mL, 7.5 mmol, 1.5 equiv.), was added formic acid (0.29 mL, 7.5 mmol, 1.5 equiv.) drop wise under an argon atmosphere at 0 °C. The above resulting white solid was dissolved in CH_2Cl_2 (5.0 mL). The solution was warmed to 25 °C and allowed to stir overnight. Then a solution of **S3** (5.0 mmol) and pyridine (0.6 mL, 7.5 mmol, 1.5 equiv.) in CH_2Cl_2 (4.0 mL) was added drop wise at 0 °C. The reaction mixture was warmed to 25 °C and stirred until complete consumption of starting material (15 min~1 h, monitored by thin layer chromatography). Then the reaction was quenched by addition of H_2O (10 mL) and extracted with EtOAc (3 x 20 mL). The combined organic extract was washed with brine (50 mL), dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure after filtration. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 3:1 to 1:1) to afford pure sulfamate ester **1** in high yields.

4-[2-(*N***-Allylacetamido)phenyl]but-3-yn-1-yl sulfamate (1a).** Colorless oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.48 (dd, *J* = 7.4, 1.7 Hz, 1H), 7.37-7.29 (comp, 2H), 7.16 (dd, *J* = 7.7, 1.3 Hz, 1H), 6.09 (s, 2H), 5.91-5.81 (m, 1H), 5.10-5.04 (comp, 2H), 4.58 (dd, *J* = 14.8, 6.0 Hz, 1H), 4.30-4.25 (m, 2H), 4.01 (dd, *J* = 14.8, 7.0 Hz, 1H), 2.87 (t, *J* = 5.7 Hz, 2H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.0, 144.0, 133.1, 132.9, 129.4, 128.8, 128.4, 123.1, 118.4, 91.1, 78.5, 67.3, 51.9, 22.4, 20.5; HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₉N₂O₄S [M+H]⁺: 323.1060, found 323.1060.

4-[2-(*N*-**Cinnamylacetamido**)**phenyl**]**but-3-yn-1-yl sulfamate (1b).** Colorless oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.48 (d, *J* = 7.3 Hz, 1H), 7.35-7.26 (comp, 6H), 7.19 (dd, *J* = 18.8, 7.3 Hz, 2H), 6.36 (d, *J* = 15.9 Hz, 1H), 6.30-6.24 (comp, 3H), 4.62 (dd, *J* = 14.5, 6.0 Hz, 1H), 4.30-4.23 (comp, 3H), 2.86-2.75 (m, 2H), 1.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.0, 143.8, 136.8, 133.6, 133.1, 129.5, 128.7, 128.6, 128.4, 127.7, 125.5, 124.1, 123.2, 91.1, 78.5, 67.3, 51.4, 22.3, 20.3; HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₃N₂O₄S [M+H]⁺: 399.1373, found 399.1368.

4-{2-[*N***-(Prop-2-yn-1-yl)acetamido]phenyl}but-3-yn-1-yl sulfamate (1c).** Colorless oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.50-7.48 (m, 1H), 7.41-7.32 (comp, 3H), 6.06 (s, 2H), 4.96 (dd, *J* = 17.4, 2.5 Hz, 1H), 4.26 (t, *J* = 5.8 Hz, 2H), 4.01 (dd, *J* = 17.4, 2.5 Hz, 1H), 2.85 (dd, *J* = 6.2, 5.4 Hz, 2H), 2.20 (t, *J* = 2.5 Hz, 1H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 171.8, 143.1, 133.1, 129.5, 129.1, 128.9, 122.8, 91.3, 78.8, 77.9, 72.7, 67.4, 37.7, 22.2, 20.4; HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₇N₂O₄S [M+H]⁺: 321.0904, found 321.0893.

4-{2-[*N*-(**4**-(**Trifluoromethyl**)**benzyl**)**acetamido**]**phenyl**}**but-3-yn-1-yl sulfamate** (**1d**). Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.52 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.7 Hz, 2H), 7.31 – 7.27 (m, 2H), 6.91 (d, *J* = 7.4 Hz, 1H), 6.14 (s, 2H), 5.30 (d, *J* = 13.3 Hz, 1H), 4.53 (d, *J* = 14.6 Hz, 1H), 4.25 – 4.24 (m, 2H), 2.84 – 2.75 (m, 2H), 1.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 172.4, 143.7, 140.9, 133.4, 129.8 (dd, *J* = 64.6, 32.3 Hz), 129.6, 129.5, 128.6 (d, *J* = 9.9 Hz), 125.4 (q, *J* = 3.7 Hz), 124.2 (dd, *J* = 1615.4, 799.7 Hz), 123.2, 123.0, 91.2, 78.1, 67.3, 52.2, 22.4, 20.4; ¹⁹F NMR (471 MHz, CDCl₃) (δ, ppm) -62.45; HRMS (TOF MS ESI⁺) calculated for $C_{20}H_{20}F_3N_2O_4S$ [M+H]⁺: 441.1090, found 441.1096.

4-[2-(*N***-Benzylacetamido)phenyl]but-3-yn-1-yl sulfamate (1e).** Colorless oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.46 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.30-7.18 (comp, 7H), 6.87 (dd, *J* = 7.7, 1.3 Hz, 1H), 6.19 (s, 2H), 5.31 (d, *J* = 14.3 Hz, 1H), 4.43 (d, *J* = 14.3 Hz, 1H), 4.29-4.20 (m, 2H), 2.87-2.74 (m, 2H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.2, 143.8, 136.9, 133.1, 129.3, 129.2, 128.8, 128.4, 128.4, 127.6, 123.0, 91.0, 78.2, 67.3, 52.6, 22.4, 20.4; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₁N₂O₄S [M+H]⁺: 373.1217, found 373.1214.

4-[2-(N-Benzylacetamido)-4-fluorophenyl]but-3-yn-1-yl sulfamate (1f).

Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.46 – 7.43 (m, 1H), 7.29 – 7.21 (comp, 5H), 7.01 (t, *J* = 8.3 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 1H), 6.45 (s, 2H), 5.29 (d, *J* = 14.5 Hz, 1H), 4.51 (d, *J* = 14.5 Hz, 1H), 4.32 – 4.25 (m, 2H), 2.86 – 2.77 (m, 2H), 1.97 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 171.6, 161.7 (d, *J* = 252.3 Hz), 145.0 (d, *J* = 9.9 Hz), 136.3, 134.2 (d, *J* = 9.2 Hz), 129.0, 128.2, 127.5, 119.1 (d, *J* = 3.7 Hz), 116.1 (d, *J* = 22.6 Hz), 115.6 (d, *J* = 21.7 Hz), 90.6, 77.0, 67.2, 52.1, 22.1, 20.0; ¹⁹F NMR (471 MHz, CDCl₃) (δ , ppm) -108.5; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₀FN₂O₄S [M+H]⁺: 391.1122, found 391.1121.

4-[2-(*N***-Benzylacetamido)-4-chlorophenyl]but-3-yn-1-yl sulfamate (1g).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.39 (d, *J* = 8.4 Hz, 1H), 7.29 – 7.21 (comp, 6H), 6.94 (s, 1H), 6.49 (s, 2H), 5.22 (d, *J* = 14.4 Hz, 1H), 4.56 (d, *J* = 14.4 Hz, 1H), 4.32 – 4.26 (m, 2H), 2.86 – 2.76 (m, 2H), 1.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.5, 144.3, 136.1, 134.0, 133.7, 128.9, 128.7, 128.4, 128.1, 127.5, 121.5, 92.0, 77.0, 67.1, 52.1, 22.0, 20.0; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₀ClN₂O₄S [M+H]⁺: 407.0827, found 407.0826.

4-[2-(*N***-Benzylacetamido)-4-bromophenyl]but-3-yn-1-yl sulfamate (1h).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.40 (d, *J* = 8.1 Hz, 1H), 7.32 – 7.23 (comp, 4H), 7.21 (d, *J* = 6.5 Hz, 2H), 7.09 (s, 1H), 6.45 (s, 2H), 5.19 (d, *J* = 14.4 Hz, 1H), 4.55 (d, *J* = 14.4 Hz, 1H), 4.30 – 4.24 (m, 2H), 2.84 – 2.73 (m, 2H), 1.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.5, 144.4, 136.1, 133.8, 131.6, 131.3, 129.0, 128.2, 127.5, 122.0, 121.9, 92.2, 77.1, 67.1, 52.2, 22.1, 20.0; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₀BrN₂O₄S [M+H]⁺: 451.0322, found 451.0328.

4-[2-(*N***-Benzylacetamido)-5-fluorophenyl]but-3-yn-1-yl sulfamate (1i).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.30 – 7.22 (m, 3H), 7.16 (ddd, *J* = 11.5, 8.1, 2.9 Hz, 3H), 7.05 – 6.84 (m, 1H), 6.80 (dd, *J* = 8.8, 5.3 Hz, 1H), 6.23 (s, 2H), 5.32 (d, *J* = 14.3 Hz, 1H), 4.37 (d, *J* = 14.3 Hz, 1H), 4.32 – 4.17 (m, 2H), 2.92 – 2.65 (m, 2H), 1.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 172.2, 161.5 (d, *J* = 249.3 Hz), 139.9 (d, *J* = 3.4 Hz), 136.6, 130.5 (d, *J* = 9.2 Hz), 129.4, 128.4, 127.7, 124.8 (d, *J* = 9.9 Hz), 119.7 (d, *J* = 24.1 Hz), 116.5 (d, *J* = 22.4 Hz), 92.2, 77.3, 67.1, 52.4, 22.4, 20.3; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -112.29; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₀FN₂O₄S [M+H]⁺: 391.1122, found 391.1121.

4-[2-(*N***-Benzylacetamido)-5-chlorophenyl]but-3-yn-1-yl sulfamate (1j).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.42 (s, 1H), 7.31 – 7.17 (comp, 6H), 6.81 (d, *J* = 8.5 Hz, 1H), 6.46 (s, 2H), 5.29 (d, *J* = 14.4 Hz, 1H), 4.44 (d, *J* = 14.4 Hz, 1H), 4.31 – 4.24 (m, 2H), 2.87 – 2.76 (m, 2H), 1.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.7, 142.0, 136.3, 133.7, 132.6, 129.9, 129.2, 129.1, 128.2, 127.5, 124.4, 92.4, 76.8, 67.1, 52.1, 22.1, 20.1; HRMS (TOF MS ESI⁺) calculated for C₁₉H₂₀ClN₂O₄S [M+H]⁺: 407.0827, found 407.0828.

4-[2-(*N***-Benzylacetamido)-5-bromophenyl]but-3-yn-1-yl sulfamate (1k).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.59 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.25 – 7.18 (comp, 5H), 6.71 (d, *J* = 8.3 Hz, 1H), 6.14 (s, 2H), 5.28 (d, *J* = 14.3 Hz, 1H), 4.38 (d, *J* = 14.3 Hz, 1H), 4.24 – 4.23 (m, 2H), 2.85 – 2.76 (m, 2H), 1.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.9, 142.8, 136.6, 135.8, 132.4, 130.3, 129.4, 128.5, 127.8, 125.0, 121.9, 92.6, 77.0, 67.1, 52.4, 22.41, 20.4; HRMS (TOF MS ESI⁺) calculated for $C_{19}H_{20}BrN_2O_4S [M+H]^+$: 451.0322, found 451.0327.

4-[2-(*N***-Benzylacetamido)-5-(trifluoromethyl)phenyl]but-3-yn-1-yl sulfamate (1l).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.74 (s, 1H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.27 – 7.20 (comp, 5H), 7.03 (d, *J* = 8.3 Hz, 1H), 6.33 (s, 2H), 5.32 (d, *J* = 14.4 Hz, 1H), 4.50 (d, *J* = 14.4 Hz, 1H), 4.32 – 4.26 (m, 2H), 2.89 – 2.79 (m, 2H), 1.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.6, 146.6, 136.3, 130.5 (d, *J* = 33.3 Hz), 130.1 (d, *J* = 3.1 Hz), 129.5 (d, *J* = 3.3 Hz), 129.2, 128.4, 127.7, 125.8 (d, *J* = 3.5 Hz), 124.0, 123.2 (q, *J* = 272.8 Hz), 93.0, 76.9, 67.1, 52.3, 22.3, 20.2; ¹⁹F NMR (376 MHz, CDCl₃) (δ, ppm) -62.91; HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₉F₃N₂O₄SNa [M+Na]⁺: 463.0910, found 463.0902.

4-[2-(*N***-Benzylacetamido**)**-5-methoxyphenyl]but-3-yn-1-yl sulfamate (1m).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.27 – 7.18 (comp, 5H), 6.95 (s, 1H), 6.74 (s, 2H), 6.20 (s, 2H), 5.28 (d, *J* = 14.2 Hz, 1H), 4.37 (d, *J* = 14.1 Hz, 1H), 4.29 – 4.22 (m, 2H), 3.78 (s, 3H), 2.84 – 2.75 (m, 2H), 1.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 172.7, 158.9, 137.0, 136.8, 129.7, 129.4, 128.3, 127.5, 123.7, 117.4, 115.3, 90.7, 78.2, 67.3, 55.6, 52.6, 22.3, 20.3; HRMS (TOF MS ESI⁺) calculated for C₂₀H₂₃N₂O₅S [M+H]⁺: 403.1322, found 403.1320.

4-[2-(*N***-Benzylacetamido)-4,5-dimethylphenyl]but-3-yn-1-yl sulfamate (1n).** Colorless oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.29 – 7.21 (comp, 6H), 6.67 (s, 1H), 6.30 (s, 2H), 5.20 (d, *J* = 14.3 Hz, 1H), 4.50 (d, *J* = 14.3 Hz, 1H), 4.28 – 4.18 (m, 2H), 2.84 – 2.70 (m, 2H), 2.21 (s, 3H), 2.15 (s, 3H), 1.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 172.3, 141.5, 138.3, 137.0, 136.9, 133.7, 129.4, 129.2, 128.2, 127.4, 119.8, 89.6, 78.3, 67.4, 52.6, 22.2, 20.2, 19.6, 19.2; HRMS (TOF MS ESI⁺) calculated for $C_{21}H_{25}N_2O_4S$ [M+H]⁺: 401.1530, found 401.1533.

4-[2-(*N***-Benzylacetamido)-5-methylphenyl]but-3-yn-1-yl sulfamate (10).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.29 – 7.20 (comp, 6H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 6.39 (s, 2H), 5.30 (d, *J* = 14.4 Hz, 1H), 4.42 (d, *J* = 14.3 Hz, 1H), 4.29 – 4.22 (m, 2H), 2.85 – 2.74 (m, 2H), 2.30 (s, 3H), 1.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 172.2, 141.1, 138.2, 136.9, 133.4, 129.9, 129.2, 128.3, 128.2, 127.4, 122.4, 90.4, 78.2, 67.3, 52.4, 22.2, 20.8, 20.2; HRMS (TOF MS ESI⁺) calculated for $C_{20}H_{23}N_2O_4S [M+H]^+$: 387.1373, found 387.1370.

4-[2-(*N***-Benzylacetamido)naphthalen-1-yl]but-3-yn-1-yl sulfamate (1p).** Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 8.31 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.6 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.23 (s, 5H), 6.98 (d, *J* = 8.6 Hz, 1H), 6.32 (s, 2H), 5.36 (d, *J* = 14.3 Hz, 1H), 4.61 (d, *J* = 14.3 Hz, 1H), 4.34 – 4.31 (m, 2H), 3.03 – 2.92 (m, 2H), 1.96 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 172.2, 142.3, 136.9, 133.7, 132.3, 129.5, 129.4, 128.3, 128.2, 127.6, 127.6, 127.3, 125.7, 125.9, 120.3, 96.3, 76.5, 67.4, 52.6, 22.5, 20.7; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₃N₂O₄S [M+H]⁺: 423.1373, found 423.1370.

4-[2-(*N***-Benzylpivalamido**)**phenyl]but-3-yn-1-yl sulfamate (1q)** Yellow oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.48 – 7.46 (m, 1H), 7.29 – 7.20 (comp, 4H), 7.17 – 7.12 (comp, 3H), 6.80 (dd, *J* = 7.9, 0.9 Hz, 1H), 6.02 (s, 2H), 5.84 (d, *J* = 14.5 Hz, 1H), 4.34 – 4.27 (m, 2H), 3.93 (d, *J* = 14.5 Hz, 1H), 2.90 (t, *J* = 5.7 Hz, 2H), 1.06 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 178.7, 144.6, 137.6, 132.9, 130.8, 128.9, 128.4, 128.3, 128.2, 127.4, 124.1, 91.7, 79.0, 67.5, 55.2, 41.3, 29.1, 20.5; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₇N₂O₄S [M+H]⁺: 415.1686, found 415.1690.

4-[2-(*N***-Allylpivalamido)phenyl]but-3-yn-1-yl sulfamate (1r).** Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.43 (m, 1H), 7.32 (ddd, *J* = 5.0, 4.2, 2.9 Hz, 2H), 7.24 – 7.14 (m, 1H), 6.01 (s, 2H), 5.93 – 5.78 (m, 1H), 5.09 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.07 – 4.89 (m, 2H), 4.37 – 4.23 (m, 2H), 3.53 (dd, *J* = 14.5, 7.1 Hz, 1H), 2.89 (dd, *J* = 6.5, 5.0 Hz, 2H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 178.5, 144.8, 133.0, 132.9, 130.6, 128.39, 128.36, 124.1, 117.9, 91.6, 79.0, 67.4, 55.0, 41.2, 29.1, 20.5; HRMS (TOF MS ESI⁺) calculated for C₁₈H₂₅N₂O₄S [M+H]⁺: 365.1530, found 365.1530.

4-(2-(N-benzylbenzamido)phenyl)but-3-yn-1-yl sulfamate (1s). Yellow oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.38 – 7.36 (m, 2H), 7.32 – 7.25 (comp, 6H), 7.22 – 7.19 (m, 1H), 7.16 – 7.13 (m, 2H), 7.11 – 7.05 (m, 2H), 6.84 – 6.82 (m, 1H), 5.84 (s, 2H), 5.65 (d, J = 14.4 Hz, 1H), 4.57 (d, J = 14.4 Hz, 1H), 4.33 (t, J = 5.8 Hz, 2H), 2.90 – 2.86 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.7, 144.3, 137.0, 136.0, 133.0, 129.8, 129.6, 129.3, 128.8, 128.5, 128.1, 127.8, 127.7, 123.0, 91.3, 79.0, 67.5, 53.3, 20.6; HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₃N₂O₄S [M+H]⁺: 435.1373, found 435.1373.

4-[2-(N-allylbenzamido)phenyl]but-3-yn-1-yl sulfamate (1t). Yellow oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.37 – 7.35 (m, 2H), 7.29 – 7.27 (m, 1H), 7.24 – 7.20 (m, 2H), 7.17 – 7.12 (comp, 4H), 6.05 – 5.92 (comp, 3H), 5.19 – 5.15 (m, 2H), 4.83 (dd, J = 14.8, 5.9 Hz, 1H), 4.35 (t, J = 5.8 Hz, 2H), 4.24 (dd, J = 14.8, 6.9 Hz, 1H), 2.91 – 2.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 171.4, 144.3, 135.9, 133.0, 132.7, 129.9, 129.4, 128.9, 128.2, 127.8, 127.7, 123.1, 118.6, 91.3, 79.1, 67.5, 52.9, 20.6; HRMS (TOF MS ESI⁺) calculated for C₂₀H₂₁N₂O₄S [M+H]⁺: 385.1217, found 385.1218.

4-[2-(*N***-Benzylthiophene-2-carboxamido**)**phenyl]but-3-yn-1-yl sulfamate (1u).** Yellow oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.47 – 7.45 (m, 1H), 7.35 – 7.23 (comp,

8H), 6.99 – 6.97 (m, 1H), 6.87 (d, J = 3.2 Hz, 1H), 6.80 – 6.78 (m, 1H), 6.04 (s, 2H), 5.65 (d, J = 14.4 Hz, 1H), 4.52 (d, J = 14.5 Hz, 1H), 4.27 – 4.17 (m, 2H), 2.77 – 2.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 163.2, 143.3, 137.5, 136.6, 133.3, 132.6, 131.2, 129.8, 129.3, 129.1, 128.8, 128.4, 127.6, 125.9, 123.7, 91.2, 78.1, 67.4, 54.0, 20.3; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₁N₂O₄S₂ [M+H]⁺: 441.0937, found 441.0939.

4-[2-(N-Benzyl-2-naphthamido)phenyl]but-3-yn-1-yl sulfamate (1v). White oil.

¹H NMR (500 MHz, CDCl₃) (δ, ppm) 8.01 (s, 1H), 7.76 (d, J = 6.3 Hz, 1H), 7.67 (d, J = 6.3 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 6.7 Hz, 4H), 7.34 – 7.28 (comp, 3H), 7.21 (d, J = 7.3 Hz, 1H), 7.05 – 6.95 (comp, 3H), 6.33 (s, 2H), 5.67 (d, J = 14.4 Hz, 1H), 4.77 (d, J = 14.4 Hz, 1H), 4.35 – 4.32 (m, 2H), 2.85 – 2.75 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 171.3, 143.9, 136.7, 133.4, 133.0, 132.9, 132.0, 129.3, 129.1, 128.8, 128.5, 128.2, 127.42, 127.36, 127.1, 127.0, 125.2, 124.9, 122.6, 91.2, 78.7, 67.3, 53.2, 20.2; HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₄N₂O₄S [M+H]⁺: 485.1530, found 485.1529.

4-[2-(*N***-Benzylacrylamido)phenyl]but-3-yn-1-yl sulfamate (1w).** Yellow oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.47 – 7.45 (m, 1H), 7.30 – 7.20 (comp, 7H), 6.87 – 6.85 (m,

1H), 6.41 (dd, J = 16.8, 1.7 Hz, 1H), 6.10 (s, 2H), 5.94 (dd, J = 16.8, 10.4 Hz, 1H), 5.57 (dd, J = 10.4, 1.7 Hz, 1H), 5.45 (d, J = 14.4 Hz, 1H), 4.46 (d, J = 14.4 Hz, 1H), 4.20 (dd, J = 8.9, 3.4 Hz, 2H), 2.78 (t, J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.6, 142.7, 136.7, 133.0, 129.3, 129.2, 129.11, 129.08 128.44, 128.37, 127.9, 127.6, 123.2, 91.3, 78.2, 67.4, 52.7, 20.3; HRMS (TOF MS ESI⁺) calculated for C₂₀H₂₁N₂O₄S [M+H]⁺: 385.1217, found 385.1218.

4-{2-[Benzyl(*tert*-butoxycarbonyl)amino]phenyl}but-3-yn-1-yl sulfamate (1x). Yellow oil. ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.41 (d, J = 6.7 Hz, 1H), 7.26 – 7.24 (comp, 5H), 7.17 – 7.13 (m, 2H), 6.80 (d, J = 7.0 Hz, 1H), 5.78 (s, 2H), 5.28 (d, J = 14.3 Hz, 1H), 4.29 (s, 3H), 2.93 – 2.80 (m, 2H), 1.34 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 155.9, 143.9, 138.0, 132.5, 129.1, 128.7, 128.5, 128.4, 127.4, 127.2, 122.4, 89.7, 80.8, 79.3, 67.7, 53.0, 28.4, 20.5; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₆N₂O₅SNa [M+Na]⁺: 453.1455, found 453.1450.

4-[2-(*N***-Benzylthiophene-2-carboxamido)phenyl]-1-phenylbut-3-yn-1-yl** sulfamate (1y). Yellow oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.44 (t, *J* = 7.9 Hz, 1H), 7.40 – 7.38 (m, 1H), 7.36 – 7.25 (comp, 10H), 7.22 – 7.18 (m, 2H), 6.90 – 6.79 (comp, 3H), 5.82 – 5.76 (m, 3H), 5.64 – 5.57 (m, 1H), 4.40 – 4.32 (m, 1H), 3.25 – 2.92 (m, 2H); ¹³C NMR

(100 MHz, CDCl₃) (δ , ppm) 162.8, 143.1, 137.7, 137.5, 136.7, 133.6, 132.7, 131.4, 130.2, 129.3, 129.0, 128.8, 128.5, 128.3, 127.5, 127.0, 125.6, 123.6, 90.4, 79.9, 79.1, 53.8, 28.3; HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₅N₂O₄S₂ [M+H]⁺: 517.1250, found 517.1255.

4-[2-(*N*-Butylacetamido)phenyl]but-3-yn-1-yl sulfamate (1z). Colorless oil. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.49 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.39 – 7.36 (m, 1H), 7.33 – 7.29 (m, 1H), 7.17 (dd, *J* = 7.8, 0.9 Hz, 1H), 6.42 (s, 2H), 4.28 (t, *J* = 5.9 Hz, 2H), 3.89-3.83 (m, 1H), 3.53-3.47 (m, 1H), 2.86 (t, *J* = 5.9 Hz, 2H), 1.85 (s, 3H), 1.52-1.45 (m, 2H), 1.34-1.27 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 171.8, 144.0, 133.0, 129.3, 128.4, 128.1, 122.9, 90.9, 78.2, 67.2, 60.4, 48.7, 29.6, 22.2, 20.0, 13.7; HRMS (TOF MS ESI⁺) calculated for C₁₆H₂₃N₂O₄S [M+H]⁺: 339.1373, found 339.1369.

General Procedure for the Cascade Reaction

To a 10-mL oven-dried vial containing a magnetic stirring bar, $Rh_2(esp)_2$ (1.5 mg, 1.0 mol%), PhI(OAc)₂ (77.3 mg, 1.2 equiv.), CaO (28.0 mg, 2.5 equiv.), and 4Å MS (50.0 mg) in DCM (1.0 mL), was added as a solution of sulfamate ester **1** (0.2 mmol) in the DCM (1.0 mL) *via* a syringe at room temperature under argon atmosphere. After addition, the reaction mixture was stirred for additional 12 h under these conditions. Until consumption of the material (monitored by TLC). Then the reaction mixture was purified by column chromatography on silica gel without any additional treatment (Hexanes : EtOAc = 4:1 to 2:1) to give the pure products **2** in good to high yields.

1-[6-Allyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]ethan -1-one (2a).** Yellow oil. 51.3 mg, 80% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.70 – 7.67 (m, 2H), 7.00 – 6.93 (m, 2H), 5.76 – 5.70 (m, 1H), 5.24 – 5.17 (m, 2H), 4.75 (t, *J* = 11.9 Hz, 1H), 4.60 (d, *J* = 12.4 Hz, 1H), 4.06 – 4.02 (m, 1H), 3.81 – 3.77 (m, 1H), 2.61 (d, *J* = 14.4 Hz, 1H), 2.06 – 2.00 (m, 1H), 1.90 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.9, 180.2, 158.3, 140.1, 132.3, 125.2, 120.1, 119.8, 117.9, 111.0, 80.1, 69.8, 43.5, 25.8, 24.7; HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₆N₂O₄SNa [M+Na]⁺: 343.0723, found 343.0723.

1-[6-Cinnamyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]e than-1-one (2b). Yellow oil. 60.3 mg, 76% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.73 – 7.67 (m, 2H), 7.41 (d,** *J* **= 7.6 Hz, 2H), 7.31 (t,** *J* **= 7.3 Hz, 2H), 7.23 (t,** *J* **= 7.2 Hz, 1H), 7.11 (d,** *J* **= 8.4 Hz, 1H), 6.95 (t,** *J* **= 7.5 Hz, 1H), 6.61 (d,** *J* **= 15.9 Hz, 1H), 6.20 – 6.14 (m, 1H), 4.78 (t,** *J* **= 11.7 Hz, 1H), 4.62 (d,** *J* **= 12.5 Hz, 1H), 4.22 (dd,** *J* **= 17.3, 6.2 Hz, 1H), 3.97 (dd,** *J* **= 17.3, 5.2 Hz, 1H), 2.70 (d,** *J* **= 14.4 Hz, 1H), 2.17 – 2.11 (m, 1H), 1.93 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 194.0, 180.2, 158.3, 140.2, 136.0, 132.4, 128.6, 127.8, 125.4, 125.2, 123.8, 120.1, 119.9, 111.0, 80.2, 69.9, 43.2, 25.8, 24.7; HRMS (TOF MS ESI⁺) calculated for C_{21}H_{20}N_2O_4SNa [M+Na]⁺: 419.1036, found 419.1030.**

1-[2,2-Dioxido-6-(prop-2-yn-1-yl)-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2c). Yellow oil. 43.3 mg, 68% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.78 – 7.73 (m, 2H), 7.16 (d,** *J* **= 8.4 Hz, 1H), 7.02 (t,** *J* **= 7.5 Hz, 1H), 4.74 (t,** *J* **= 11.3 Hz, 1H), 4.63 (d,** *J* **= 12.3 Hz, 1H), 4.28 – 4.20 (m, 2H), 3.27 (s, 1H), 2.77 (d,** *J* **= 14.6 Hz, 1H), 2.01 – 1.94 (m, 1H), 1.92 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.8, 180.1, 157.3, 140.1, 125.2, 120.8, 120.2, 111.1, 79.7, 77.7, 75.0, 69.7, 30.6, 25.8, 25.7; HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₄N₂O₄SNa [M+Na]⁺: 341.0566, found 341.0559.**

1-{2,2-Dioxido-6-[4-(trifluoromethyl)benzyl]-4,5-dihydro

[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl}ethan-1-one (2d). Yellow oil. 53.5 mg, 61% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.77 (d,** *J* **= 8.0 Hz, 1H), 7.69 – 7.63 (comp, 3H), 7.46 (d,** *J* **= 7.9 Hz, 2H), 6.99 (t,** *J* **= 7.5 Hz, 1H), 6.81 (d,** *J* **= 8.4 Hz, 1H), 4.81 (d,** *J* **= 17.8 Hz, 1H), 4.75 – 4.70 (m, 1H), 4.58 (d,** *J* **= 12.5 Hz, 1H), 4.48 (d,** *J* **= 17.8 Hz, 1H), 2.54 (d,** *J* **= 14.4 Hz, 1H), 2.22 – 2.16 (m, 1H), 1.93 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 194.0, 179.9, 158.5, 141.6, 140.3, 128.0 (q,** *J* **= 31.8 Hz), 127.3, 125.5 (q,** *J* **= 3.5 Hz), 125.3, 128.0 (q,** *J* **= 31.8 Hz), 120.6, 120.2, 110.9, 80.5, 69.7, 44.5, 26.1, 24.9; ¹⁹F NMR (471 MHz, DMSO-d6) (δ, ppm) -60.93; HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₇F₃N₂O₄SNa [M+Na]⁺: 461.0753, found 461.0758.**

1-[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]eth an-1-one (2e). Yellow oil. 60.0 mg, 81% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.74 (d,** *J* **= 7.9 Hz, 1H), 7.63 (t,** *J* **= 7.6 Hz, 1H), 7.33 (t,** *J* **= 7.1 Hz, 2H), 7.28 – 7.26 (m, 1H), 7.23 (d,** *J* **= 7.3 Hz, 2H), 6.96 (t,** *J* **= 7.3 Hz, 1H), 6.82 (d,** *J* **= 8.4 Hz, 1H), 4.76 – 4.66 (m, 2H), 4.57 (d,** *J* **= 12.5 Hz, 1H), 4.38 (d,** *J* **= 17.2 Hz, 1H), 2.56 (d,** *J* **= 14.3 Hz, 1H), 2.16 – 2.10 (m, 1H), 1.91 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 194.0, 180.0, 158.7, 140.2, 136.6, 128.7, 127.4, 125.6, 125.3, 120.4, 120.1, 111.0, 80.5, 69.8, 44.9, 26.1, 24.8; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₈N₂O₄SNa [M+Na]⁺: 393.0879, found 393.0878.**

1-[6-Benzyl-8-fluoro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2f). Yellow oil. 40.4 mg, 52% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.84 – 7.82 (m, 1H), 7.35 – 7.32 (m, 2H), 7.29 – 7.27 (m, 1H), 7.23 (d,** *J* **= 7.4 Hz, 2H), 6.81 (t,** *J* **= 8.9 Hz, 1H), 6.75 (d,** *J* **= 10.2 Hz, 1H), 4.72 – 4.67 (m, 2H), 4.56 (d,** *J* **= 12.4 Hz, 1H), 4.39 (d,** *J* **= 17.2 Hz, 1H), 2.54 (d,** *J* **= 14.6 Hz, 1H), 2.16 – 2.10 (m, 1H), 1.92 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.9, 178.6, 170.2 (d,** *J* **= 257.1 Hz), 160.6 (d,** *J* **= 15.1 Hz), 136.2, 128.7, 128.4 (d,** *J* **= 13.2 Hz), 127.5, 125.8, 117.0, 109.4 (d,** *J* **= 25.6 Hz), 97.4 (d,** *J* **= 27.6 Hz), 81.3, 69.6, 45.1, 26.2, 24.9; ¹⁹F NMR (471 MHz, DMSO-d6) (δ, ppm) -95.12; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇FN₂O₄SNa [M+Na]⁺: 411.0785, found 411.0780.**

1-[6-Benzyl-8-chloro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2g). Yellow oil. 44.5 mg, 55% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.76 (d, J = 9.0 Hz, 1H), 7.36 – 7.32 (m, 2H), 7.30 – 7.26 (m, 1H), 7.22 (d, J = 7.2 Hz, 2H), 6.99 – 6.97 (m, 2H), 4.75 – 4.67 (m, 2H), 4.60 – 4.54 (m, 1H), 4.38 (d, J = 17.3 Hz, 1H), 2.54 (d, J = 14.7 Hz, 1H), 2.20 – 2.12 (m, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 193.8, 178.9, 159.0, 145.0, 136.2, 128.7, 127.5, 125.9, 125.6, 120.8, 119.0, 110.6, 81.0, 69.7, 44.9, 26.2, 25.0; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇ClN₂O₄SNa [M+Na]⁺: 427.0490, found 427.0491.**

1-[6-Benzyl-8-bromo-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2h). Yellow oil. 51.2 mg, 57% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.67 (d, J = 8.2 Hz, 1H), 7.36 – 7.33 (m, 2H), 7.30 – 7.27 (m, 1H), 7.22 (d, J = 7.1 Hz, 2H), 7.11 (d, J = 10.3 Hz, 2H), 4.75 – 4.68 (m, 2H), 4.58 – 4.56 (m, 1H), 4.38 (d, J = 17.2 Hz, 1H), 2.54 (d, J = 14.7 Hz, 1H), 2.19 – 2.13 (m, 1H), 1.94 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.1, 158.9, 136.2, 134.6, 128.7, 127.5, 125.7, 125.6, 123.6, 119.3, 113.6, 80.9, 69.7, 44.9, 26.1, 25.0; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇BrN₂O₄SNa [M+Na]⁺: 470.9985, found 470.9982.**

1-[6-Benzyl-9-fluoro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2i). Yellow oil. 41.9 mg, 54% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.59 – 7.52 (m, 2H), 7.35 – 7.32 (m, 2H), 7.29 – 7.26 (m, 1H), 7.23 (d,** *J* **= 7.5 Hz, 2H), 6.84 (dd,** *J* **= 9.0, 2.9 Hz, 1H), 4.76 – 4.66 (m, 2H), 4.60 – 4.57 (m, 1H), 4.37 (d,** *J* **= 17.2 Hz, 1H), 2.56 (d,** *J* **= 14.4 Hz, 1H), 2.20 – 2.14 (m, 1H), 1.93 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.8, 155.9, 156.3 (d,** *J* **= 239.2 Hz), 136.4, 128.7, 128.5, 127.4, 125.6, 120.2 (d,** *J* **= 9.1 Hz), 112.6 (d,** *J* **= 8.1 Hz), 109.5 (d,** *J* **= 23.5 Hz), 81.2, 69.9, 45.1, 26.1, 24.9; ¹⁹F NMR (471 MHz, DMSO-d6) (δ, ppm) -122.97; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇FN₂O₄SNa [M+Na]⁺: 411.0785, found 411.0780.**

1-[6-Benzyl-9-chloro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2j). Yellow oil. 40.5 mg, 50% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.74 (s, 1H), 7.65 (d, J = 8.9 Hz, 1H), 7.34 – 7.32 (m, 2H), 7.29 – 7.26 (m, 1H), 7.22 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 8.9 Hz, 1H), 4.75 – 4.68 (m, 2H), 4.60 – 4.57 (m, 1H), 4.38 (d, J = 17.3 Hz, 1H), 2.56 (d, J = 14.5 Hz, 1H), 2.22 – 2.16 (m, 1H), 1.94 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.0, 157.3, 139.6, 136.2, 128.7, 127.5, 125.6, 124.2, 123.9, 121.1, 112.8, 81.1, 69.9, 45.0, 26.0, 25.0; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇ClN₂O₄SNa [M+Na]⁺: 427.0490, found 427.0490.**

1-[6-Benzyl-9-bromo-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6** *H***)-yl]ethan-1-one (2k). Yellow oil. 47.6 mg, 53% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.86 (d, J = 2.0 Hz, 1H), 7.75 (dd, J = 8.9, 2.1 Hz, 1H), 7.35 – 7.27 (comp, 3H), 7.22 (d, J = 7.1 Hz, 2H), 6.80 (d, J = 8.9 Hz, 1H), 4.76 – 4.67 (m, 2H), 4.61 – 4.56 (m, 1H), 4.38 (d, J = 17.3 Hz, 1H), 2.56 (d, J = 14.6 Hz, 1H), 2.22 – 2.14 (m, 1H), 1.94 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 193.7, 178.8, 157.5, 142.1, 136.2, 128.7, 127.5, 127.0, 125.6, 121.7, 113.2, 111.5, 81.0, 69.8, 45.0, 26.0, 25.0; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇BrN₂O₄SNa [M+Na]⁺: 470.9985, found 470.9990.**

1-[6-Benzyl-2,2-dioxido-9-(trifluoromethyl)-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***] indol-5a(6***H***)-yl]ethan-1-one (2l). Yellow oil. 30.7 mg, 35% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 8.01 (s, 1H), 7.92 (d,** *J* **= 8.7 Hz, 1H), 7.35 – 7.26 (comp, 3H), 7.24 (d,** *J* **= 7.5 Hz, 2H), 6.99 (d,** *J* **= 8.9 Hz, 1H), 4.80 – 4.70 (m, 2H), 4.63 – 4.58 (m, 1H), 4.45 (d,** *J* **= 17.4 Hz, 1H), 2.61 (d,** *J* **= 14.8 Hz, 1H), 2.29 – 2.21 (m, 1H), 1.97 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.4, 159.8, 135.9, 135.7, 128.8, 127.5, 125.6, 124.0 (q,** *J* **= 271.4 Hz), 122.7 (q,** *J* **= 3.8 Hz), 120.4 (q,** *J* **= 33.2 Hz), 119.8, 112.0, 81.2, 69.8, 45.0, 26.0, 25.2; ¹⁹F NMR (376 MHz, DMSO-d6) (δ, ppm) -60.34; HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₇F₃N₂O₄SNa [M+Na]⁺: 461.0753, found 461.0764.**

1-[6-Benzyl-9-methoxy-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a (***6H***)-yl]ethan-1-one (2m). Red oil. 60.9 mg, 76% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.34 – 7.32 (m, 3H), 7.28 – 7.25 (m, 1H), 7.22 (d,** *J* **= 7.1 Hz, 2H), 7.10 (s, 1H), 6.80 (d,** *J* **= 8.9 Hz, 1H), 4.74 (t,** *J* **= 11.9 Hz, 1H), 4.65 (d,** *J* **= 17.1 Hz, 1H), 4.56 (d,** *J* **= 12.1 Hz, 1H), 4.36 (d,** *J* **= 17.1 Hz, 1H), 3.78 (s, 3H), 2.54 (d,** *J* **= 14.5 Hz, 1H), 2.10 – 2.06 (m, 1H), 1.90 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 193.9, 179.4, 155.2, 153.7, 136.8, 131.8, 128.7, 127.4, 125.6, 120.1, 112.6, 103.7, 81.1, 69.8, 55.7, 45.1, 26.2, 24.7; HRMS (TOF MS ESI⁺) calculated for C₂₀H₂₀N₂O₅SNa [M+Na]⁺: 423.0985, found 423.0982.**

1-[6-Benzyl-8,9-dimethyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]ethan-1-one (2n).** Yellow solid, mp = 200 – 201 °C. 56.6 mg, 71% yield;

¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.56 (s, 1H), 7.39 – 7.36 (m, 2H), 7.33 – 7.29 (m, 1H), 7.25 (d, *J* = 7.1 Hz, 2H), 6.80 (s, 1H), 4.78 – 4.70 (m, 2H), 4.59 – 4.54 (m, 1H), 4.37 (d, *J* = 17.3 Hz, 1H), 2.55 – 2.54 (m, 1H), 2.29 (s, 3H), 2.25 (s, 3H), 2.07 – 2.00 (m, 1H), 1.91 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 194.2, 179.0, 158.2, 152.3, 136.8, 129.9, 128.7, 127.3, 125.5, 124.3, 118.2, 111.1, 80.7, 69.6, 44.7, 26.4, 24.6, 21.4, 18.7. HRMS (TOF MS ESI⁺) calculated for $C_{21}H_{22}N_2O_4SNa$ [M+Na]⁺: 421.1192, found 421.1198.

1-[6-Benzyl-9-methyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(** *6H***)-yl]ethan-1-one (2o). Yellow oil. 53.8 mg, 70% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.54 (s, 1H), 7.49 – 7.46 (m, 1H), 7.34 – 7.31 (m, 2H), 7.28 – 7.25 (m, 1H), 7.22 – 7.20 (m, 2H), 6.75 (d,** *J* **= 8.6 Hz, 1H), 4.76 – 4.69 (m, 1H), 4.65 (d,** *J* **= 17.2 Hz, 1H), 4.58 – 4.53 (m, 1H), 4.35 (d,** *J* **= 17.2 Hz, 1H), 2.54 (d,** *J* **= 14.7 Hz, 1H), 2.27 (s, 3H), 2.11 – 2.06 (m, 1H), 1.89 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 194.0, 179.7, 157.4, 141.9, 136.7, 129.8, 128.7, 127.4, 125.6, 124.1, 120.1, 110.9, 80.7, 69.7, 44.9, 26.2, 24.7, 19.9; HRMS (TOF MS ESI⁺) calculated for C₂₀H₂₀N₂O₄SNa [M+Na]⁺: 407.1036, found 407.1035.**

1-[7-Benzyl-11,11-dioxido-8,9-dihydrobenzo[*e*][**1,2,3**]**oxathiazepino**[**5,4-***b*]**indol-7a**(**7H**)-**y**]**ethan-1-one (2p).** Yellow oil. 16.8 mg, 20% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 8.90 (d, *J* = 8.1 Hz, 1H), 8.23 (d, *J* = 9.2 Hz, 1H), 7.94 (d, *J* = 7.7 Hz, 1H), 7.79 – 7.75 (m, 1H), 7.52 – 7.48 (m, 1H), 7.36 – 7.28 (comp, 3H), 7.25 – 7.23(m, 2H), 7.17 (d, $J = 9.2 \text{ Hz}, 1\text{H}, 4.93 \text{ (d, } J = 17.5 \text{ Hz}, 1\text{H}, 4.78 - 4.71 \text{ (m, 1H)}, 4.56 - 4.52 \text{ (m, 2H)}, 2.56 - 2.53 \text{ (m, 1H)}, 2.15 - 2.07 \text{ (m, 1H)}, 1.95 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{DMSO-d6}) \text{ (\delta, ppm)} 194.5, 162.3, 143.3, 136.2, 131.0, 129.9, 129.4, 128.7, 128.3, 127.5, 125.5, 125.2, 123.1, 112.1, 110.6, 81.6, 69.3, 44.8, 26.3, 24.6; \text{HRMS} (TOF MS ESI⁺) calculated for C₂₃H₂₀N₂O₄SNa [M+Na]⁺: 443.1036, found 443.1031.$

1-[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]-2,2 -dimethylpropan-1-one (2**q). Yellow oil. 64.4 mg, 78% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.75 (d, J = 7.9 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.32 – 7.29 (m, 2H), 7.26 – 7.23 (m, 1H), 7.18 (d, J = 7.3 Hz, 2H), 6.95 (t, J = 7.2 Hz, 1H), 6.84 (d, J =8.3 Hz, 1H), 4.86 (d, J = 17.7 Hz, 1H), 4.62 – 4.58 (m, 1H), 4.49 – 4.48 (m, 1H), 4.16 (d, J = 17.7 Hz, 1H), 2.43 – 2.40 (m, 1H), 1.98 – 1.91 (m, 1H), 1.06 (s, 9H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 202.3, 179.8, 157.7, 139.9, 136.5, 128.7, 127.2, 125.5, 125.3, 120.5, 120.2, 110.6, 80.0, 69.0, 46.4, 44.8, 28.8, 28.3; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₄N₂O₄SNa [M+Na]⁺: 435.1349, found 435.1345.

1-[6-Allyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]-2,2-di methylpropan-1-one (2r). Yellow oil. 49.9 mg, 69% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.71 – 7.64 (m, 2H), 6.98 – 6.92 (m, 2H), 5.77 – 5.67 (m, 1H), 5.25 – 5.17 (m, 2H), 4.73 – 4.67 (m, 1H), 4.59 – 4.54 (m, 1H), 4.14 (dd, J = 17.5, 5.9 Hz, 1H), 3.54 (dd, J = 17.5, 4.7 Hz, 1H), 2.63 – 2.59 (m, 1H), 1.92 – 1.84 (m, 1H), 1.02 (s, 9H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 202.3, 180.4, 157.2, 139.7, 132.6, 125.2,** 120.6, 120.0, 118.2, 110.9, 79.9, 69.4, 46.2, 43.8, 28.3, 28.1. HRMS (TOF MS ESI^+) calculated for $C_{18}H_{22}N_2O_4SNa~[M+Na]^+$: 385.1192, found 385.1190.

[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl](phen yl)methanone (2s). Yellow oil. 64.0 mg, 74% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.80 (d,** *J* **= 7.9 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.52 – 7.49 (comp, 3H), 7.34 – 7.29 (m, 2H), 7.25 – 7.20 (comp, 3H), 7.13 – 7.11 (m, 2H), 6.96 (t,** *J* **= 7.5 Hz, 1H), 6.71 (d,** *J* **= 8.5 Hz, 1H), 4.94 – 4.87 (m, 1H), 4.68 – 4.60 (m, 2H), 4.48 (d,** *J* **= 17.2 Hz, 1H), 2.79 – 2.75 (m, 1H), 2.20 – 2.12 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 189.7, 180.2, 158.1, 140.2, 136.3, 135.0, 133.3, 128.5, 128.5, 127.6, 127.3, 125.6, 125.3, 120.52, 120.48, 110.9, 79.8, 69.9, 45.1, 27.5; HRMS (TOF MS ESI⁺) calculated for C_{24}H_{21}N_2O_4S [M+H]^+: 433.1217, found 433.1215.**

[6-Allyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b*]indol-5a(6*H*)-yl](phenyl)methanone (2t). Yellow oil, 54.5 mg, 71% yield; ¹H NMR (400 MHz, C₆D₆) (δ, ppm) 7.75 – 7.70 (comp, 3H), 6.93 – 6.85 (m, 2H), 6.80 – 6.76 (m, 2H), 6.43 (t, *J* = 7.5 Hz, 1H), 6.11 (d, *J* = 8.4 Hz, 1H), 5.17 – 5.08 (m, 1H), 4.85 (s, 1H), 4.75 – 4.64 (m, 2H), 3.93 – 3.85 (m, 1H), 3.36 – 3.21 (m, 2H), 2.08 (d, *J* = 14.0 Hz, 1H), 1.08 – 1.01 (m, 1H); ¹³C NMR (100 MHz, C₆D₆) (δ, ppm) 190.1, 179.4, 156.9, 138.6, 135.9, 133.2, 132.6, 128.6, 126.2, 121.8, 120.1, 117.4, 110.0, 79.6, 68.9, 44.0, 28.4; HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₉N₂O₄S [M+H]⁺: 383.1060, found 383.1065.

[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl](thiop hen-2-yl)methanone (2u). Yellow oil, 81.6 mg, 93% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.98 – 7.97 (m, 1H), 7.86 (d,** *J* **= 7.8 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.28 – 7.26 (m, 1H), 7.21 – 7.19 (comp, 3H), 7.09 – 6.99 (comp, 4H), 6.76 (d,** *J* **= 8.5 Hz, 1H), 4.88 – 4.82 (m, 1H), 4.66 – 4.61 (m, 2H), 4.52 (d,** *J* **= 17.2 Hz, 1H), 2.84 – 2.80 (m, 1H), 2.19 – 2.12 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 181.3, 179.4, 157.9, 140.3, 139.7, 136.4, 136.2, 131.1, 128.6, 128.4, 127.2, 125.5, 125.2, 120.6, 120.4, 111.1, 78.9, 69.6, 45.0, 27.4; HRMS (TOF MS ESI⁺) calculated for C₂₂H₁₉N₂O₄S₂ [M+H]⁺: 439.0781, found 439.0782.**

[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl](naph thalen-2-yl)methanone (2v). Yellow oil. 74.3 mg, 77% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 8.04 (s, 1H), 7.91 – 7.85 (m, 3H), 7.67 (d, J = 8.1 Hz, 1H), 7.63 – 7.52 (comp, 4H), 7.18 (s, 3H), 7.15 (s, 2H), 6.99 (t, J = 7.3 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 4.95 (t, J = 11.6 Hz, 1H), 4.71 – 4.65 (m, 2H), 4.54 (d, J = 17.2 Hz, 1H), 2.86 – 2.83 (m, 1H), 2.25 – 2.19 (m, 1H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 189.5, 180.3, 158.1, 140.2, 136.3, 134.8, 132.3, 131.4, 129.1, 128.9, 128.7, 128.5, 128.2, 127.6, 127.3, 127.2, 125.7, 125.2, 123.8, 120.6, 120.6, 111.0, 79.9, 70.0, 45.2, 27.6; HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂N₂O₄SNa [M+Na]⁺: 505.1192, found 505.1195.**

1-[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b***]indol-5a(6***H***)-yl]pro p-2-en-1-one (2w).** Yellow oil. 65.8 mg, 86% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.76 (d, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.32 – 7.30 (m, 2H), 7.26 (d, *J* = 6.8 Hz, 1H), 7.23 – 7.22 (m, 2H), 6.97 (t, *J* = 7.1 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.37 (d, *J* = 16.7 Hz, 1H), 6.03 – 5.98 (m, 1H), 5.82 (d, *J* = 10.2 Hz, 1H), 4.84 (t, *J* = 11.7 Hz, 1H), 4.66 – 4.59 (m, 2H), 4.38 (d, *J* = 17.2 Hz, 1H), 2.64 – 2.61 (m, 1H), 2.21 – 2.16 (m, 1H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 185.1, 179.4, 158.8, 140.1, 136.4, 133.1, 130.3, 128.6, 127.4, 125.7, 125.3, 120.4, 110.9, 79.8, 69.7, 45.0, 26.2; HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₈N₂O₄SNa [M+Na]⁺: 405.0879, found 405.0880.

tert-Butyl

6-benzyl-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indole-5a(6H)-carboxylate

2,2-dioxide (2x). Yellow oil. 42.0 mg, 49% yield; ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.54 – 7.50 (m, 2H), 7.35 – 7.15 (m, 1H), 7.05 – 6.94 (comp, 6H), 5.00 – 4.94 (m, 1H), 4.72 – 4.66 (m, 1H), 4.04 (d, *J* = 13.6 Hz, 1H), 3.71 (d, *J* = 13.6 Hz, 1H), 3.24 – 3.21 (m, 1H), 2.48 – 2.41 (m, 1H), 1.67 (s, 9H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 180.0, 151.0, 149.5, 138.5, 133.4, 129.1, 127.8, 127.1, 123.7, 123.6, 123.1, 115.5, 83.8, 78.9, 75.8, 68.2, 27.9, 27.6; HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₄N₂O₅SNa [M+Na]⁺: 451.1298, found 451.1297.

[6-Benzyl-2,2-dioxido-4-phenyl-4,5-dihydro-[1,2,3]oxathiazepino[5,4-*b*]indol-5a(6*H*)-yl](thiophen-2-yl)methanone (2y). Yellow oil. 67.9 mg, 66% yield, > 95:5 *dr*. ¹H NMR (400 MHz, DMSO-d6) (δ, ppm) 7.99 – 7.98 (m, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.65 – 7.62 (m, 1H), 7.53 – 7.51 (m, 2H), 7.45 – 7.42 (comp, 3H), 7.28 – 7.27 (m, 1H), 7.15 – 7.13 (comp, 3H), 7.08 – 7.05 (m, 1H), 7.04 – 7.01 (comp, 3H), 6.72 (d, J = 8.5 Hz, 1H), 6.12 (d, J = 10.9 Hz, 1H), 4.57 (s, 2H), 2.87 (d, J = 13.6 Hz, 1H), 2.59 (dd, J = 14.6, 11.7 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d6) (δ, ppm) 181.7, 180.7, 158.2, 140.6, 139.9, 137.6, 136.3, 136.1, 130.9, 129.5, 128.8, 128.6, 128.3, 127.1, 125.9, 125.4, 125.2, 121.0, 120.7, 111.3, 84.7, 78.5, 45.0, 32.7; HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂N₂O₄S₂Na [M+Na]⁺: 537.0913, found 537.0919.

General Procedure for the Asymmetric Cascade Reaction:

To a 10-mL oven-dried vial containing a magnetic stirring bar, $Rh_2(S-TCPTTL)_4$ (1.8 mg, 1.0 mol%), PhI(OAc)₂ (38.7 mg, 1.2 equiv.), MgO (10.0 mg, 2.5 equiv.), and 4Å MS (50.0 mg) in trifluoromethyl benzene (1.0 mL), was added as a solution of sulfamate ester **1** (0.1 mmol) in trifluoromethyl benzene (1.0 mL) *via* a syringe at 0 °C under argon atmosphere. After addition, the reaction mixture was stirred under these conditions until consumption of the material (monitored by TLC, about 4 days). Then the reaction mixture was purified by column chromatography on silica gel without any additional treatment (Hexanes : EtOAc = 4:1 to 2:1) to give the pure products **2** as yellow oil.

2a, 20.5 mg, 64% yield. 83% *ee*; HPLC conditions for determination of enantiomeric excess: Daicel Chiralpak AD-H, λ = 254 nm, hexane : 2-propanol = 85:15, flow rate = 1.0 mL/min, t_{major} = 30.8 min, t_{minor} = 42.2 min.

2r, 21.4 mg, 59% yield. 63% *ee*; HPLC conditions for determination of enantiomeric excess: Daicel Chiralpak AD-H, λ = 254 nm, hexane : 2-propanol = 85:15, flow rate = 1.0 mL/min, t_{major} = 13.0 min, t_{minor} = 16.8 min.

General Procedure of the Gram Scale Reaction

To a 50-mL oven-dried vial containing a magnetic stirring bar, $Rh_2(esp)_2$ (13.3 mg, 0.5 mol%), $PhI(OAc)_2$ (1.35 g, 4.2 mmol, 1.2 equiv.), CaO (490 mg, 8.75 mmol, 2.5 equiv.), and 4Å MS (1.0 g) in DCM (10 mL), was added as a solution of sulfamate ester **1u** (1.54 g, 3.5 mmol) in DCM (5 mL) *via* a syringe under argon atmosphere at room temperature. After addition, the reaction mixture was stirred for additional 12 h. Then most of the solvent was evaporated in vacuo (about 2 mL left), the residue was purified by column chromatography on silica gel (Hexanes : EtOAc = 4:1 to 2:1) to give 1.38 g of pure **2u** in 90% yield.

To a 10-mL oven-dried vial containing a magnetic stirring bar, a solution of methyl magnesium bromide (3.0 M in 2-methyl-THF, 0.4 mL, 1.2 mmol) in THF (1.0 mL), was added as a solution of **2u** (87.6 mg, 0.2 mmol, 1.0 equiv.) in THF (1.0 mL) via a syringe pump over 2 h under argon atmosphere at 0 °C. After addition, the reaction mixture was stirred under these conditions until consumption of the material (monitored by TLC, about 1 h). The reaction mixture was quenched with saturated aqueous NH₄Cl solution (10 mL), and extracted with Et₂O (3 X 10 mL). The combined extract was washed with brine (10 mL), dried with Na_2SO_4 , and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 5:1 to 3:1) to afford 72.4 mg pure product **3** in 77% yield. Colorless oil, > 95:5 dr. ¹H NMR (400 MHz, DMSO-d6) (δ , ppm) 7.97 (s, 1H), 7.54 (d, J = 4.9 Hz, 1H), 7.27 - 7.26 (comp, 4H), 7.22 - 7.17 (m, 1H), 7.12 - 7.09 (m, 2H), 7.08 -7.05 (m, 1H), 7.03 – 7.00 (m, 1H), 6.97 (d, J = 7.1 Hz, 1H), 6.65 (t, J = 7.3 Hz, 1H), 6.48 (d, J = 7.7 Hz, 1H), 5.86 (t, J = 12.3 Hz, 1H), 4.48 (dd, J = 30.1, 14.2 Hz, 2H), 3.62 (d, J = 15.9 Hz, 1H), 2.54 – 2.50 (m, 1H), 2.41 – 2.39 (m, 1H), 1.63 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 152.8, 147.4, 138.9, 136.2, 128.4, 128.2, 127.8, 127.1, 125.8, 125.7, 125.5, 118.5, 117.9, 107.3, 83.6, 75.6, 69.1, 68.8, 47.7, 31.0, 29.6, 27.1; HRMS (TOF MS ESI⁺) calculated for $C_{24}H_{27}N_2O_4S_2$ [M+H]⁺: 471.1407, found 471.1410.

To a 10-mL oven-dried vial containing a magnetic stirring bar, 2u (87.6 mg, 0.2 mmol) in anhydrous MeOH (2.0 mL), was added NaBH₄ (22.7 mg, 0.6 mmol, 3.0 equiv.) at 0 °C. The reaction mixture was warmed to room temperature and stirred for additional 1 h under these conditions until consumption of the material (monitored by TLC). The reaction mixture was quenched with saturated aqueous NH₄Cl solution (10 mL), and extracted with Et₂O (2 X 10 mL). The combined extract was washed with brine (10 mL), dried with Na₂SO₄, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 4:1 to 2:1) to give 75.1 mg pure product 4 in 85% yield. White solid, mp = $158 - 160 \degree$ C, > 95:5 dr. ¹H NMR (500 MHz, DMSO-d6) (δ , ppm) 7.89 (d, J = 10.8 Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 7.25 - 7.22 (m, 2H), 7.18 - 7.14 (comp, 3H), 7.05 (d, J = 3.3 Hz, 1H), 7.01 – 6.99 (m, 1H), 6.91 (d, J = 7.1 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.47 (t, J = 7.3 Hz, 1H), 5.90 (d, J = 7.7 Hz, 1H), 5.78 (d, J = 4.7 Hz, 1H), 5.50 - 5.44 (m, 2H), 4.88 – 4.82 (m, 1H), 4.78 – 4.73 (m, 1H), 4.19 (d, J = 17.1 Hz, 1H), 3.69 (d, J = 17.1 Hz, 1H), 2.48 – 2.45 (m, 1H), 2.25 – 2.19 (m, 1H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 149.6, 145.8, 139.1, 128.4, 127.8, 127.6, 125.6, 125.6, 125.3, 125.4, 125.1, 119.7, 116.1, 104.5, 73.9, 71.6, 68.8, 63.0, 46.8, 34.1; HRMS (TOF MS ESI⁺) calculated for $C_{22}H_{23}N_2O_4S_2$ [M+H]⁺: 443.1094, found 443.1094.

To a 10-mL oven-dried vial containing a magnetic stirring bar, 4 (88.4 mg, 0.2 mmol) in MeCN (2.0 mL), was added MeI (24.9 µL, 0.4 mmol, 2.0 equiv.), K₂CO₃ (82.8 mg, 0.6 mmol, 3.0 equiv.), and *n*-Bu₄NI (11.1 mg, 0.03 mmol, 0.15 equiv.) in sequence at 0 $^{\circ}$ C, and the mixture was stirred at room temperature for 12 h. Then the reaction was quenched with H₂O (15 mL) and extracted with ethyl acetate (3 X 10 mL). The combined organic layer was washed successively with water and brine, dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 10:1 to 5:1) to give 80.3 mg pure product 5 in 88% yield. White solid, mp = 137 – 139 °C, > 95:5 dr. ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 7.54 (d, J = 4.9 Hz, 1H), 7.25 – 7.22 (m, 2H), 7.17 – 7.15 (m, 2H), 7.09 – 7.05 (m, 2H), 6.95 (d, J = 7.1 Hz, 1H), 6.84 (t, J = 7.7 Hz, 1H), 6.50 (t, J = 7.3 Hz, 1H), 6.06 (d, J = 4.1 Hz, 1H), 5.99 (d, J = 7.8 Hz, 1H), 5.76 (s, 1H), 5.41 (d, J = 4.1 Hz, 1H), 4.85 (t, J = 11.3 Hz, 1H), 4.72 - 4.68 (m, 1H), 4.35 (d, J = 17.0 Hz, 1H), 3.71 (d, J = 17.0 Hz, 1H), 3.21 (s, 3H), 2.33 - 2.23 (m, 2H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 150.4, 146.8, 139.0, 128.4, 127.6, 125.8, 125.7, 125.3, 125.9, 125.34, 125.26, 121.0, 115.9, 104.9, 73.4, 70.0, 69.3, 67.5, 47.8, 34.5, 31.5; HRMS (TOF MS ESI⁺) calculated for C₂₃H₂₄N₂O₄S₂Na [M+Na]⁺: 479.1070, found 479.1062.

To a 10-mL oven-dried vial containing a magnetic stirring bar, NaOt-Bu (57.6 mg, 0.6 mmol, 3.0 equiv.) in anhydrous THF (1.0 mL), was added as a solution of 4 (88.4 mg, 0.2 mmol) and Cbz-Cl (85.3 mg, 0.5 mmol, 2.5 equiv.) in THF (1.0 mL) at 0 $^{\circ}$ C, and the reaction mixture was stirred at room temperature for 12 h. Then the reaction was quenched with H₂O (15 mL) and extracted with ethyl acetate (3 X 10 mL). The combined organic layer was washed successively with water and brine, dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 10:1 to 4:1) to give 44.9 mg pure product 6 in 51% yield. Yellow solid, mp = 214 – 216 °C, > 95:5 dr. ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.68 – 7.66 (m, 1H), 7.32 - 7.26 (comp, 6H), 7.11 - 7.06 (m, 2H), 6.98 - 6.97 (m, 1H), 6.89 - 6.86 (m, 1H), 6.29 (d, J = 7.5 Hz, 1H), 5.57 (dd, J = 30.9, 12.1 Hz, 2H), 4.71 – 4.60 (m, 2H), 4.25 (dd, J = 73.0, 16.5 Hz, 2H), 3.07 – 3.04 (m, 1H), 2.55 – 2.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 189.6, 149.0, 142.9, 137.9, 135.8, 132.6, 129.9, 129.0, 128.6, 127.7, 125.7, 125.6, 122.8, 120.4, 109.3, 80.2, 68.7, 64.8, 49.1, 35.9; HRMS (TOF MS ESI⁺) calculated for $C_{22}H_{21}N_2O_4S_2$ [M+H]⁺: 441.0937, found 441.0940.

To a 10-mL oven-dried vial containing a magnetic stirring bar, **2** (0.1 mmol) in THF (2.0 mL), was added H₂O (20.0 μ L, 1.1 mmol, 11.0 equiv.) at room temperature, and the reaction mixture was stirred at 80 °C for 24 h. Then the reaction was quenched with saturated aqueous NaHCO₃ solution (10 mL) and extracted with ethyl acetate (3 X 10 mL). The combined organic layer was washed successively with water and brine, dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 5:1 to 3:1) to give pure products **7** in good to high yields.

6-Allyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-*b*]indole 2,2-dioxide (7a). Colorless solid, mp = 151 – 153 °C. 18.9 mg, 68% yield; ¹H NMR (500 MHz, CDCl₃) (δ, ppm) 7.59 (d, *J* = 7.8 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 6.38 (s, 1H), 5.97 – 5.90 (m, 1H), 5.17 (d, *J* = 10.4 Hz, 1H), 4.81 (d, *J* = 17.1 Hz, 1H), 4.69 – 4.66 (comp, 4H), 3.20 (t, *J* = 5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 135.0, 132.9, 132.7, 124.4, 122.8, 120.9, 117.6, 116.9, 109.6, 109.4, 70.0, 45.3, 26.7; HRMS (TOF MS ESI⁺) calculated for C₁₃H₁₄N₂O₃SNa [M+Na]⁺: 301.0617, found 301.0617.

6-Cinnamyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-*b***]indole 2,2-dioxide (7b).** Colorless oil. 26.2 mg, 74% yield; ¹H NMR (500 MHz, CDCl₃) (δ , ppm) 7.59 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.27 – 7.21 (comp, 6H), 7.17 (t, *J* = 7.4 Hz, 1H), 6.32 (s, 1H), 6.26 – 6.14 (m, 2H), 4.84 (d, *J* = 4.4 Hz, 2H), 4.64 (t, *J* = 5.0 Hz, 2H), 3.24 (t, *J* = 5.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) (δ , ppm) 135.8, 135.1, 132.7, 131.8, 128.8, 128.3, 125.6, 124.5, 124.1, 123.0, 121.0, 117.6, 109.7, 109.6, 69.9, 45.0, 26.9; HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₉N₂O₃S [M+H]⁺: 355.1111, found 355.1116.

6-(Prop-2-yn-1-yl)-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-*b*]indole 2,2-dioxide (7c). Colorless solid, mp = 205 – 207 °C. 19.6 mg, 71% yield; ¹H NMR (500 MHz, DMSO-d6) (δ, ppm) 9.79 (s, 1H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 5.10 (s, 2H), 4.69 (t, *J* = 5.1 Hz, 2H), 3.35 – 3.32 (m, 3H); ¹³C NMR (125 MHz, DMSO-d6) (δ, ppm) 134.2, 132.5, 124.2, 122.0, 120.2, 116.9, 110.0, 109.7, 79.2, 75.1, 68.6, 32.1, 26.2; HRMS (TOF MS ESI⁺) calculated for $C_{13}H_{13}N_2O_3S$ [M+H]⁺: 277.0641, found 277.0640.

6-Benzyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-*b***]indole 2,2-dioxide (7e).** Colorless oil. 23.6 mg, 72% yield; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.62 – 7.60 (m, 1H), 7.29 – 7.19 (comp, 6H), 6.94 (d, *J* = 7.0 Hz, 2H), 6.36 (s, 1H), 5.31 (s, 2H), 4.58 – 4.55 (m, 2H), 3.15 – 3.12 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 137.0, 135.5, 132.8, 129.2, 128.0, 125.8, 124.5, 123.1, 121.1, 117.7, 109.80, 109.75, 69.9, 46.7, 26.9; HRMS (TOF MS ESI⁺) calculated for $C_{17}H_{17}N_2O_3S$ [M+H]⁺: 329.0954, found 329.0957.

6-Butyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-*b***]indole 2,2-dioxide (7z)** Colorless solid, mp = 58 – 60 °C. 18.2 mg, 62% yield; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.56 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.17 – 7.13 (m, 1H), 6.29 (s, 1H), 4.70 – 4.67 (m, 2H), 4.05 (t, *J* = 7.4 Hz, 2H), 3.26 – 3.23 (m, 2H), 1.73 – 1.65 (m, 1H), 1.40 – 1.29 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) (δ, ppm) 134.8, 132.6, 124.4, 122.5, 120.7, 117.5, 109.7, 108.9, 69.9, 43.2, 32.7, 26.8, 20.3, 13.9; HRMS (TOF MS ESI⁺) calculated for C₁₄H₁₉N₂O₃S [M+H]⁺: 295.1111, found 295.1111.

References:

1 (a) D. Zhu, J. Ma, K. Luo, H. G. Fu, L. Zhang and S. F. Zhu, Enantioselective intramolecular C-H insertion of donor and donor/donor carbenes by a nondiazo approach. *Angew. Chem., Int. Ed.,* 2016, 55, 8452-8456; (b) A. R. Thornton and S. B. Blakey, Catalytic metallonitrene/alkyne metathesis: a powerful cascade process for the synthesis of nitrogen-containing molecules. *J. Am. Chem. Soc.,* 2008, 130, 5020-5021.

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

Condition: hexane : 2-propanol = 85:15 Flow rate = 1.0 mL/min, λ = 254 nm, Daicel Chiralpak AD-H.

Peak#	Ret. Time	Area	Height	Area%
1	30.821	3242254	66043	91.56
2	42.239	298836	5171	8.44
Total		3541090	71214	100

Condition: hexane : 2-propanol = 85:15 Flow rate = 1.0 mL/min, λ = 254 nm, Daicel Chiralpak AD-H.

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%	
1	13.540	2772193	128275	50.08	
2	17.397	2762888	97523	49.92	
Total		5535081	225798	100	

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	13.006	2343745	112504	81.50
2	16.768	531993	20864	18.50
Total		2875738	133368	100

Crystallographic Data for 2n.

Datablock: hongkm_190926

Bond precision:	C-C = 0.0030	A	A Wavelength=1.54184		
Cell:	a=13.8567(3) alpha=90		b=14. beta=	0776(3) 90	c=19.5063(3) gamma=90
Temperature:	100 K				2
	Calculated			Reported	d
Volume	3805.08(13)			3805.06	(13)
Space group	Рbса			Рbса	
Hall group	-P 2ac 2ab			-P 2ac 2	2ab
Moiety formula	C21 H22 N2 O4	S		C21 H22	N2 04 S
Sum formula	C21 H22 N2 O4	S		C21 H22	N2 04 S
Mr	398.47			398.46	
Dx,g cm-3	1.391			1.391	
Z	8			8	
Mu (mm-1)	1.773			1.773	
F000	1680.0			1680.0	
F000'	1687.54				
h,k,lmax	17,17,24			17,17,24	4
Nref	4138			3840	
Tmin,Tmax	0.737,0.701			0.405,1	.000
Tmin'	0.668				
Correction metho AbsCorr = MULTI-	od= # Reported -SCAN	T L:	imits:	Tmin=0.405	5 Tmax=1.000
Data completenes	ss= 0.928		Theta	(max) = 79.	616
R(reflections)=	0.0592(3368)		wR2(r	eflections)= 0.1650(3840)
S = 1.067	Npa	r= 2	56		

Crystallographic Data for 6.

Datablock: hongkm_191118_2

Bond precision	: C-C = 0.0	032 A	\overline{V}	Vaveleng	gth=1.54184	
Cell: Temperature:	a=9.7354(3) alpha=99.198 100 K	8(3)	b=10.1100 beta=96.8	(4) 18(2)	c=10.7275(3) gamma=107.990(3)	
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 975.31(6) P -1 -P 1 C22 H20 N2 C22 H20 N2 440.52 1.500 2 2.767 460.0 462.59 12,12,13 4137 0.847,0.87 0.758	04 S2 04 S2		Reporte 975.30 P -1 -P 1 C22 H20 C22 H20 440.52 1.500 2 2.767 460.0 12,12,1 3986 0.872,1	ed (6) D N2 O4 S2 D N2 O4 S2 13 1.000	
Correction met AbsCorr = MULT	hod= # Repor I-SCAN	ted T	Limits: Tm	nin=0.87	72 Tmax=1.000	
Data completen	ess= 0.964		Theta(ma	ax)= 77	.202	
R(reflections)	= 0.0457(34	38)	wR2(ref]	lections	s)= 0.1307(3986)	
S = 1.098		Npar=	272			

Crystallographic Data for 7a.

Datablock: a

Bond precisio	on:	C-C = 0.0031	Ą	Wavelen	gth=0.71075
Cell:	a=9 alp	9.6651(3) bha=93.4901(10)	b=10.7492 beta=98.4	(4) 723(10)	c=13.2113(4) gamma=106.3564(10)
Temperature:	120) K			
		Calculated		Report	ed
Volume		1295.03(7)		1295.0	3(7)
Space group		P -1		P -1	
Hall group		-P 1		-P 1	
Moiety formul	la	C13 H14 N2 O3 S	3	C13 H1	4 N2 O3 S
Sum formula		C13 H14 N2 O3 S	3	C13 H1	4 N2 O3 S
Mr		278.32		278.32	
Dx,g cm-3		1.428		1.428	
Z		4		4	
Mu (mm-1)		0.255		0.255	
F000		584.0		584.0	
F000 ′		584.75			
h,k,lmax		12,13,17		12,13,	17
Nref		5928		5920	
Tmin,Tmax		0.955,0.975		0.673,	0.746
Tmin'		0.950			
Correction me AbsCorr = MUI	etho LTI-	od= # Reported 7 -SCAN	f Limits: T	min=0.6	73 Tmax=0.746
Data complete	enes	ss= 0.999	Theta (n	nax)= 27	.466
R(reflections	s)=	0.0428(4914)	wR2(ref	flection	s)= 0.1326(5920)
S = 1.084		Npar	= 343		