SUPPORTING INFORMATION

Rh-catalyzed nitrene alkyne metathesis/formal C-N bond insertion cascade: synthesis of 3-iminoindolines

Kemiao Hong, ${ }^{a}$ Su Zhou, ${ }^{a}$ Wenhao Hu, ${ }^{*, a}$ and Xinfang $X u{ }^{*, a, b}$
${ }^{\text {a }}$ Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
${ }^{\text {b }}$ College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

E-mail: huwh9@mail.sysu.edu.cn
 xinfangxu@suda.edu.cn

Table of Contents

1. General Information S2
2. General Procedure for the Synthesis of Sulfamate Esters 1 S3-S16
3. General Procedure for the Cascade Reaction S17-S29
4. General Procedure for the Asymmetric Cascade Reaction S30
5. General Procedure for Gram Scale Reaction and Derivatizations S31-S38
6. References S38
7. NMR Spectra for 2, 3, 4, 5, 6 and 7 S39-S74
8. HPLC Analyses Figures for $2 a$ and $2 r$ S75-S76
9. Single-Crystal X-ray Diffraction of $2 \mathrm{n}, 6$ and 7a S77-S79

General Information

All reactions were carried out in oven-dried glassware. Solvents were purified by following the standard methods. Flash column chromatography was performed using silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, DMSO-d ${ }_{6}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ on 400 MHz and 500 MHz spectrometer; chemical shifts were reported in ppm with the solvent signal as reference, and coupling constants (J) were given in Hertz. The peak information was described $a s: b r=b r o a d, s=\operatorname{singlet}, d=$ doublet, $t=$ triplet, q = quartet, m = multiplet, comp = composite. Enantioselectivity was determined on HPLC using Daicel Chiralpak AD-H column. High-resolution mass spectra (HRMS) were recorded on a commercial apparatus (ESI Source) and (CI Source).

General Procedure for the Synthesis of Sulfamate Esters 1. ${ }^{1}$

Synthesis of S3: To a 50-mL oven-dried flask containing a magnetic stirring bar, S1 (5.0 mmol), $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$, THF (10 mL), Cul ($9.5 \mathrm{mg}, 1.0 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(52.7 \mathrm{mg}$, $1.5 \mathrm{~mol} \%$), and $\mathbf{S 2}$ ($5.5 \mathrm{mmol}, 1.1$ equiv.) were added in sequence under argon atmosphere. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was filtered through a short pad of Celite and the solid was washed with ethyl acetate. The combined organic layer was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=2: 1$) to give $\mathbf{S 3}$ in $>75 \%$ yields.

Synthesis of 1: To a $50-\mathrm{mL}$ oven-dried round bottom flask equipped with stirring bar, and $\mathrm{CISO}_{2} \mathrm{NCO}$ ($0.65 \mathrm{~mL}, 7.5 \mathrm{mmol}, 1.5$ equiv.), was added formic acid ($0.29 \mathrm{~mL}, 7.5$ $\mathrm{mmol}, 1.5$ equiv.) drop wise under an argon atmosphere at $0^{\circ} \mathrm{C}$. The above resulting white solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The solution was warmed to $25^{\circ} \mathrm{C}$ and allowed to stir overnight. Then a solution of $\mathbf{S 3}(5.0 \mathrm{mmol})$ and pyridine $(0.6 \mathrm{~mL}, 7.5$ mmol, 1.5 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added drop wise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred until complete consumption of starting material ($15 \mathrm{~min}^{\sim} 1 \mathrm{~h}$, monitored by thin layer chromatography). Then the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic extract was washed with brine (50 mL), dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure after filtration. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1$ to 1:1) to afford pure sulfamate ester $\mathbf{1}$ in high yields.

4-[2-(N-Allylacetamido)phenyl]but-3-yn-1-yl sulfamate (1a). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.48 (dd, J = 7.4, 1.7 Hz, 1H), 7.37-7.29 (comp, 2H), 7.16 (dd, J = 7.7, 1.3 Hz, 1H), 6.09 (s, 2H), 5.91-5.81 (m, 1H), 5.10-5.04 (comp, 2H), 4.58 (dd, $J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30-4.25 (m, 2H), 4.01 (dd, $J=14.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, \mathrm{J}=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.89 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.0, 144.0, 133.1, 132.9, 129.4, 128.8, 128.4, 123.1, 118.4, 91.1, 78.5, 67.3, 51.9, 22.4, 20.5; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 323.1060$, found 323.1060.

4-[2-(N-Cinnamylacetamido)phenyl]but-3-yn-1-yl sulfamate (1b). Colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) (δ, ppm) 7.48 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35-7.26 (comp, 6H), 7.19 (dd, $J=18.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.36 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.30-6.24 (comp, 3H), 4.62 (dd, $J=$ $14.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30-4.23 (comp, 3H), 2.86-2.75 (m, 2H), $1.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.0, 143.8, 136.8, 133.6, 133.1, 129.5, 128.7, 128.6, 128.4, 127.7, 125.5, 124.1, 123.2, 91.1, 78.5, 67.3, 51.4, 22.3, 20.3; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 399.1373$, found 399.1368 .

4-\{2-[N-(Prop-2-yn-1-yl)acetamido]phenyl\}but-3-yn-1-yl sulfamate (1c). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.50-7.48 (m, 1H), 7.41-7.32 (comp, 3H), 6.06 (s, 2H), 4.96 (dd, J = 17.4, 2.5 Hz, 1H), 4.26 (t, J=5.8 Hz, 2H), 4.01 (dd, J = 17.4, 2.5 Hz, $1 \mathrm{H}), 2.85$ (dd, $J=6.2,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.8, 143.1, 133.1, 129.5, 129.1, 128.9, 122.8, 91.3, 78.8, 77.9, 72.7, 67.4, 37.7, 22.2, 20.4; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 321.0904, found 321.0893.

4-\{2-[N-(4-(Trifluoromethyl)benzyl)acetamido]phenyl\}but-3-yn-1-yl sulfamate (1d). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.52(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}$, $2 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.24(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.75$ $(\mathrm{m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.4, 143.7, 140.9, 133.4, 129.8 (dd, $J=64.6,32.3 \mathrm{~Hz}), 129.6,129.5,128.6(d, J=9.9 \mathrm{~Hz}), 125.4(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz})$, 124.2 (dd, $J=1615.4,799.7 \mathrm{~Hz}$), 123.2, 123.0, 91.2, 78.1, 67.3, 52.2, 22.4, 20.4; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) -62.45; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 441.1090 , found 441.1096 .

4-[2-(N-Benzylacetamido)phenyl]but-3-yn-1-yl sulfamate (1e). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.46 (dd, $\mathrm{J}=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.18 (comp, 7H), 6.87 (dd, J = 7.7, 1.3 Hz, 1H), $6.19(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29-4.20 (m, 2H), 2.87-2.74 (m, 2H), $1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.2, 143.8, 136.9, 133.1, 129.3, 129.2, 128.8, 128.4, 128.4, 127.6, 123.0, 91.0, 78.2, 67.3, 52.6, 22.4, 20.4; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 373.1217, found 373.1214 .

4-[2-(N-Benzylacetamido)-4-fluorophenyl]but-3-yn-1-yl sulfamate (1f).
Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.21$ (comp, $5 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.77(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) (δ, ppm) 171.6, $161.7(\mathrm{~d}, \mathrm{~J}=252.3 \mathrm{~Hz}), 145.0(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz})$, 136.3, 134.2 ($d, J=9.2 \mathrm{~Hz}), 129.0,128.2,127.5,119.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=$ $22.6 \mathrm{~Hz}), 115.6(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 90.6,77.0,67.2,52.1,22.1,20.0 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , CDCl_{3}) (δ, ppm) -108.5; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 391.1122, found 391.1121.

4-[2-(N-Benzylacetamido)-4-chlorophenyl]but-3-yn-1-yl sulfamate (1g). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.21(\mathrm{comp}, 6 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.26$ (m, 2H), 2.86-2.76(m, 2H), $1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) (δ, ppm) 171.5, $144.3,136.1,134.0,133.7,128.9,128.7,128.4,128.1,127.5,121.5,92.0,77.0,67.1$, 52.1, 22.0, 20.0; $\mathrm{HRMS}\left(\mathrm{TOF} \mathrm{MS} \mathrm{ESI}{ }^{+}\right.$) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 407.0827, found 407.0826 .

4-[2-(N-Benzylacetamido)-4-bromophenyl]but-3-yn-1-yl sulfamate (1h). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.40(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23$ (comp, 4 H$)$, $7.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 171.5,144.4,136.1,133.8,131.6,131.3,129.0,128.2,127.5,122.0$, 121.9, 92.2, 77.1, 67.1, 52.2, 22.1, 20.0; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 451.0322$, found 451.0328 .

4-[2-(N-Benzylacetamido)-5-fluorophenyl]but-3-yn-1-yl sulfamate (1i). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16$ (ddd, $J=11.5,8.1,2.9$ $\mathrm{Hz}, 3 \mathrm{H}$), $7.05-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{dd}, \mathrm{J}=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.17(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.2, $161.5(\mathrm{~d}, \mathrm{~J}=249.3 \mathrm{~Hz}), 139.9(\mathrm{~d}, \mathrm{~J}=$ $3.4 \mathrm{~Hz}), 136.6,130.5(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}), 129.4,128.4,127.7,124.8(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}), 119.7(\mathrm{~d}$, $J=24.1 \mathrm{~Hz}), 116.5(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}), 92.2,77.3,67.1,52.4,22.4,20.3 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) -112.29; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 391.1122$, found 391.1121.

4-[2-(N-Benzylacetamido)-5-chlorophenyl]but-3-yn-1-yl sulfamate (1j). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.42 (s, 1H), 7.31 - 7.17 (comp, 6H), 6.81 (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.24$ $(\mathrm{m}, 2 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.7, 142.0, 136.3, 133.7, 132.6, 129.9, 129.2, 129.1, 128.2, 127.5, 124.4, 92.4, 76.8, 67.1, 52.1, 22.1, 20.1; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{CIN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 407.0827, found 407.0828.

4-[2-(N-Benzylacetamido)-5-bromophenyl]but-3-yn-1-yl sulfamate (1k). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18$ (comp, 5H), $6.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 171.9,142.8,136.6,135.8,132.4,130.3,129.4,128.5,127.8,125.0$, 121.9, 92.6, 77.0, 67.1, 52.4, 22.41, 20.4; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 451.0322$, found 451.0327 .

4-[2-(N-Benzylacetamido)-5-(trifluoromethyl)phenyl]but-3-yn-1-yl sulfamate (11). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.74(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27-7.20$ (comp, 5 H), 7.03 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.33(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.6, 146.6, 136.3, 130.5 (d, J=33.3 Hz), 130.1 (d, J $=3.1 \mathrm{~Hz}), 129.5(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 129.2,128.4,127.7,125.8(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 124.0,123.2$ ($q, J=272.8 \mathrm{~Hz}$), $93.0,76.9,67.1,52.3,22.3,20.2 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ -62.91; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 463.0910, found 463.0902.

4-[2-(N-Benzylacetamido)-5-methoxyphenyl]but-3-yn-1-yl sulfamate (1m). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.27-7.18$ (comp, 5H), 6.95 (s, 1 H), 6.74 (s, $2 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}$, 2 H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ 172.7, 158.9, 137.0, 136.8, 129.7, 129.4, 128.3, 127.5, 123.7, 117.4, 115.3, 90.7, 78.2, 67.3, 55.6, 52.6, 22.3, 20.3; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 403.1322, found 403.1320.

4-[2-(N-Benzylacetamido)-4,5-dimethylphenyl]but-3-yn-1-yl sulfamate (1n). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.29-7.21$ (comp, 6 H), $6.67(\mathrm{~s}, 1 \mathrm{H})$, $6.30(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H})$, $2.84-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 172.3, 141.5, 138.3, 137.0, 136.9, 133.7, 129.4, 129.2, 128.2, 127.4, 119.8, 89.6, 78.3, 67.4, 52.6, 22.2, 20.2, 19.6, 19.2; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 401.1530$, found 401.1533.

4-[2-(N-Benzylacetamido)-5-methylphenyl]but-3-yn-1-yl sulfamate (10). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.29-7.20(\mathrm{comp}, 6 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 172.2,141.1,138.2,136.9,133.4,129.9,129.2,128.3,128.2,127.4$, 122.4, 90.4, 78.2, 67.3, 52.4, 22.2, 20.8, 20.2; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 387.1373$, found 387.1370.

4-[2-(N-Benzylacetamido)naphthalen-1-yl]but-3-yn-1-yl sulfamate (1p). Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 8.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 5 \mathrm{H})$, $6.98(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)(\delta$, ppm) 172.2, 142.3, 136.9, 133.7, 132.3, 129.5, 129.4, 128.3, 128.2, 127.6, 127.6, 127.3, 125.7, 125.9, 120.3, 96.3, 76.5, 67.4, 52.6, 22.5, 20.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 423.1373$, found 423.1370 .

4-[2-(N-Benzylpivalamido)phenyl]but-3-yn-1-yl sulfamate (1q) Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.48-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.20(c o m p, 4 \mathrm{H}), 7.17-7.12$ (comp, 3H), 6.80 (dd, J = 7.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-$ $4.27(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) (δ, ppm) 178.7, 144.6, 137.6, 132.9, 130.8, 128.9, 128.4, 128.3, 128.2, 127.4, 124.1, 91.7, 79.0, 67.5, 55.2, 41.3, 29.1, 20.5; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 415.1686$, found 415.1690 .

4-[2-(N-Allylpivalamido)phenyl]but-3-yn-1-yl sulfamate (1r). Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, \mathrm{J}=5.0,4.2,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 5.93-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{dd}, \mathrm{J}=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-$ $4.89(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{dd}, \mathrm{J}=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, \mathrm{J}=6.5,5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.5,144.8,133.0,132.9,130.6$, 128.39, 128.36, 124.1, 117.9, 91.6, 79.0, 67.4, 55.0, 41.2, 29.1, 20.5; HRMS (TOF MS ESI^{+}) calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 365.1530 , found 365.1530 .

4-(2-(N-benzylbenzamido)phenyl)but-3-yn-1-yl sulfamate (1s). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) (δ, ppm) $7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25$ (comp, 6H), 7.22-7.19 (m, 1H), 7.16-7.13 (m, 2H), 7.11-7.05 (m, 2H), 6.84-6.82 (m, 1H), $5.84(\mathrm{~s}, 2 \mathrm{H}), 5.65(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.7, 144.3, 137.0, 136.0, 133.0, 129.8, 129.6, 129.3, 128.8, 128.5, 128.1, 127.8, 127.7, 123.0, 91.3, 79.0, 67.5, 53.3, 20.6; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 435.1373$, found 435.1373.

4-[2-(N-allylbenzamido)phenyl]but-3-yn-1-yl sulfamate (1t). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (δ, ppm) $7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}$, 2H), $7.17-7.12$ (comp, 4H), $6.05-5.92$ (comp, 3H), $5.19-5.15$ (m, 2H), 4.83 (dd, J = $14.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=14.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.4, 144.3, 135.9, 133.0, 132.7, 129.9, 129.4, 128.9, 128.2, 127.8, 127.7, 123.1, 118.6, 91.3, 79.1, 67.5, 52.9, 20.6; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 385.1217$, found 385.1218.

4-[2-(N-Benzylthiophene-2-carboxamido)phenyl]but-3-yn-1-yl sulfamate (1u). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.23$ (comp,
$8 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H})$, $5.65(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.73(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 163.2, 143.3, 137.5, 136.6, 133.3, 132.6, 131.2, 129.8, 129.3, 129.1, 128.8, 128.4, 127.6, 125.9, 123.7, 91.2, 78.1, 67.4, 54.0, 20.3; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 441.0937, found 441.0939.

4-[2-(N-Benzyl-2-naphthamido)phenyl]but-3-yn-1-yl sulfamate (1v). White oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.34-7.28$ (comp, 3H), 7.21 (d, J=7.3 Hz, 1H), $7.05-6.95$ (comp, 3H), 6.33 (s, 2H), 5.67 (d, J = $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.32(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 171.3, 143.9, 136.7, 133.4, 133.0, 132.9, 132.0, 129.3, 129.1, 128.8, 128.5, 128.2, 127.42, 127.36, 127.1, 127.0, 125.2, 124.9, 122.6, 91.2, 78.7, 67.3, 53.2, 20.2; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 485.1530$, found 485.1529.

4-[2-(N-Benzylacrylamido)phenyl]but-3-yn-1-yl sulfamate (1w). Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.20(\mathrm{comp}, 7 \mathrm{H}), 6.87-6.85(\mathrm{~m}$,

1H), 6.41 (dd, J = 16.8, 1.7 Hz, 1H), $6.10(\mathrm{~s}, 2 \mathrm{H}), 5.94$ (dd, J = 16.8, 10.4 Hz, 1H), 5.57 (dd, J=10.4, 1.7 Hz, 1H), $5.45(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J$ $=8.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 166.6$, $142.7,136.7,133.0,129.3,129.2,129.11,129.08128 .44,128.37,127.9,127.6,123.2$, 91.3, 78.2, 67.4, 52.7, 20.3; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 385.1217 , found 385.1218 .

4-\{2-[Benzyl(tert-butoxycarbonyl)amino]phenyl\}but-3-yn-1-yl sulfamate (1x). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.41(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.24$ (comp, 5H), $7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=14.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta$, ppm) 155.9, 143.9, 138.0, 132.5, 129.1, 128.7, 128.5, 128.4, 127.4, 127.2, 122.4, 89.7, 80.8, 79.3, 67.7, 53.0, 28.4, 20.5; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 453.1455$, found 453.1450 .

4-[2-(N-Benzylthiophene-2-carboxamido)phenyl]-1-phenylbut-3-yn-1-yl sulfamate (1y). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $7.44(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.38$ (m, 1H), $7.36-7.25$ (comp, 10H), $7.22-7.18$ (m, 2H), $6.90-6.79$ (comp, 3H), 5.82 $5.76(\mathrm{~m}, 3 \mathrm{H}), 5.64-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.25-2.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}) (δ, ppm) 162.8, 143.1, 137.7, 137.5, 136.7, 133.6, 132.7, 131.4, $130.2,129.3,129.0,128.8,128.5,128.3,127.5,127.0,125.6,123.6,90.4,79.9,79.1$, 53.8, 28.3; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 517.1250, found 517.1255.

4-[2-(N-Butylacetamido)phenyl]but-3-yn-1-yl sulfamate (1z). Colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 7.49(\mathrm{dd}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.89-3.83 (m, 1H), 3.53-3.47 (m, 1H), $2.86(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ 171.8, 144.0, 133.0, 129.3, 128.4, 128.1, 122.9, 90.9, 78.2, 67.2, 60.4, 48.7, 29.6, 22.2, 20.0, 13.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 339.1373, found 339.1369.

General Procedure for the Cascade Reaction

To a $10-\mathrm{mL}$ oven-dried vial containing a magnetic stirring bar, $\mathrm{Rh}_{2}(\mathrm{esp})_{2}(1.5 \mathrm{mg}, 1.0$ $\mathrm{mol} \%$), $\mathrm{Phl}(\mathrm{OAc})_{2}(77.3 \mathrm{mg}, 1.2$ equiv.), $\mathrm{CaO}(28.0 \mathrm{mg}, 2.5$ equiv.), and 4Å $\mathrm{MS}(50.0$ $\mathrm{mg})$ in DCM (1.0 mL), was added as a solution of sulfamate ester $\mathbf{1}(0.2 \mathrm{mmol})$ in the DCM (1.0 mL) via a syringe at room temperature under argon atmosphere. After addition, the reaction mixture was stirred for additional 12 h under these conditions. Until consumption of the material (monitored by TLC). Then the reaction mixture was purified by column chromatography on silica gel without any additional treatment (Hexanes : EtOAc = 4:1 to 2:1) to give the pure products $\mathbf{2}$ in good to high yields.

1-[6-Allyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl]ethan -1-one (2a). Yellow oil. $51.3 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) (δ, ppm) $7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.75$ $(\mathrm{t}, \mathrm{J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 1 \mathrm{H})$, 2.61 (d, J = $14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) (δ, ppm) 193.9, 180.2, 158.3, 140.1, 132.3, 125.2, 120.1, 119.8, 117.9, 111.0, 80.1, 69.8, 43.5, 25.8, 24.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 343.0723$, found 343.0723 .

1-[6-Cinnamyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl]e than-1-one (2b). Yellow oil. $60.3 \mathrm{mg}, 76 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) (δ, ppm) $7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20-6.14(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=$ 17.3, 6.2 Hz, 1H), 3.97 (dd, J=17.3, 5.2 Hz, 1H), 2.70 (d, J=14.4 Hz, 1H), 2.17-2.11 ($\mathrm{m}, 1 \mathrm{H}$), 1.93 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) (δ, ppm) 194.0, 180.2, 158.3, 140.2, 136.0, 132.4, 128.6, 127.8, 125.4, 125.2, 123.8, 120.1, 119.9, 111.0, 80.2, 69.9, 43.2, 25.8, 24.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 419.1036, found 419.1030.

1-[2,2-Dioxido-6-(prop-2-yn-1-yl)-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (2c). Yellow oil. $43.3 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) (δ, ppm) $7.78-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, \mathrm{J}$ $=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) (δ, ppm) 193.8, 180.1, 157.3, 140.1, 125.2, 120.8, 120.2, 111.1, 79.7, 77.7, 75.0, 69.7, 30.6, 25.8, 25.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 341.0566$, found 341.0559 .

1-\{2,2-Dioxido-6-[4-(trifluoromethyl)benzyl]-4,5-dihydro

[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl\}ethan-1-one (2d). Yellow oil. 53.5 mg , 61% yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) (δ, ppm) 7.77 (d, J = 8.0 Hz, 1H), $7.69-7.63$ (comp, 3H), $7.46(\mathrm{~d}, ~ J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) ($\delta, \mathrm{ppm})$ 194.0, 179.9, 158.5, 141.6, 140.3, 128.0 (q, $J=31.8 \mathrm{~Hz}$), 127.3, $125.5(q, J=3.5 \mathrm{~Hz}), 125.3,128.0(q, J=31.8 \mathrm{~Hz}), 120.6,120.2,110.9,80.5,69.7,44.5$, 26.1, 24.9; ${ }^{19}$ F NMR (471 MHz, DMSO-d6) (δ, ppm) -60.93; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 461.0753$, found 461.0758 .

1-[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl]eth an-1-one (2e). Yellow oil. $60.0 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) (δ, ppm) $7.74(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-$ $4.66(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}$, 1H), $2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 194.0, $180.0,158.7,140.2,136.6,128.7,127.4,125.6,125.3,120.4,120.1,111.0,80.5,69.8$, 44.9, 26.1, 24.8; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.0879, found 393.0878.

1-[6-Benzyl-8-fluoro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (2f). Yellow oil. $40.4 \mathrm{mg}, 52 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $(\delta, p p m) 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H})$, 1.92 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 193.9, 178.6, 170.2 (d, J = 257.1 $\mathrm{Hz}), 160.6(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}), 136.2,128.7,128.4(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}), 127.5,125.8,117.0$, $109.4(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 97.4(\mathrm{~d}, J=27.6 \mathrm{~Hz}), 81.3,69.6,45.1,26.2,24.9 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz , DMSO-d6) (δ, ppm) -95.12; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 411.0785$, found 411.0780.

1-[6-Benzyl-8-chloro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (2g). Yellow oil. $44.5 \mathrm{mg}, 55 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) ($\delta, \mathrm{ppm}) 7.76(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=$ $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6)(\delta, \mathrm{ppm}) 193.8,178.9,159.0,145.0,136.2,128.7,127.5,125.9$, 125.6, 120.8, 119.0, 110.6, 81.0, 69.7, 44.9, 26.2, 25.0; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 427.0490$, found 427.0491.

1-[6-Benzyl-8-bromo-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (2h). Yellow oil. $51.2 \mathrm{mg}, 57 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $(\delta, \mathrm{ppm}) 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}$, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.1, 158.9, 136.2, 134.6, 128.7, 127.5, 125.7, 125.6, 123.6, 119.3, 113.6, 80.9, 69.7, 44.9, 26.1, 25.0; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 470.9985, found 470.9982.

1-[6-Benzyl-9-fluoro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (2i). Yellow oil. $41.9 \mathrm{mg}, 54 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $(\delta, p p m) 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, \mathrm{J}=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~d}$, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.8, 155.9, 156.3 (d, J = 239.2 Hz), 136.4, 128.7, 128.5, 127.4, 125.6, $120.2(d, J=9.1 \mathrm{~Hz}), 112.6(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 109.5(\mathrm{~d}, J=$ $23.5 \mathrm{~Hz}), 81.2,69.9,45.1,26.1,24.9 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO-d6) (δ, ppm) -122.97; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 411.0785, found 411.0780.

1-[6-Benzyl-9-chloro-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yllethan-1-one (2j). Yellow oil. $40.5 \mathrm{mg}, 50 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $(\delta, p p m) 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 193.7, 179.0, 157.3, 139.6, 136.2, 128.7, 127.5, 125.6, 124.2, 123.9, 121.1, 112.8, 81.1, 69.9, 45.0, 26.0, 25.0; HRMS (TOF MS ESI^{+}) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 427.0490$, found 427.0490.

1-[6-Benzyl-9-bromo-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (2k). Yellow oil. $47.6 \mathrm{mg}, 53 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $(\delta, p p m) 7.86(d, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{comp}, 3 \mathrm{H})$, $7.22(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.56(\mathrm{~m}$, $1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) (δ, ppm) 193.7, 178.8, 157.5, 142.1, 136.2, 128.7, $127.5,127.0,125.6,121.7,113.2,111.5,81.0,69.8,45.0,26.0,25.0 ;$ HRMS (TOF MS ESI^{+}) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 470.9985, found 470.9990.
 indol-5a(6H)-yl]ethan-1-one (21). Yellow oil. $30.7 \mathrm{mg}, 35 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) ($\delta, \mathrm{ppm}) 8.01$ (s, 1H), 7.92 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 - 7.26 (comp, 3H), 7.24 (d, J = 7.5 Hz, 2H), $6.99(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H})$, 4.45 ($\mathrm{d}, \mathrm{J}=17.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.61(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) (δ, ppm) 193.7, 179.4, 159.8, 135.9, 135.7, 128.8, 127.5, 125.6, $124.0(q, J=271.4 \mathrm{~Hz}), 122.7(q, J=3.8 \mathrm{~Hz}), 120.4(q, J=33.2 \mathrm{~Hz}), 119.8,112.0$, 81.2, 69.8, 45.0, 26.0, 25.2; ${ }^{19}$ F NMR (376 MHz, DMSO-d6) (δ, ppm) -60.34; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 461.0753, found 461.0764.

1-[6-Benzyl-9-methoxy-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a (6H)-yl]ethan-1-one (2m). Red oil. $60.9 \mathrm{mg}, 76 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) (δ, ppm) $7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 ($\mathrm{d}, \mathrm{J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 193.9, 179.4, 155.2, 153.7, 136.8, 131.8, 128.7, 127.4, 125.6, 120.1, 112.6, 103.7, 81.1, 69.8, 55.7, 45.1, 26.2, 24.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 423.0985 , found 423.0982 .

1-[6-Benzyl-8,9-dimethyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yllethan-1-one (2n). Yellow solid, $\mathrm{mp}=200-201{ }^{\circ} \mathrm{C} .56 .6 \mathrm{mg}, 71 \%$ yield;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) (δ, ppm) 7.56 (s, 1H), $7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29$ $(\mathrm{m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.78-4.70(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.00(\mathrm{~m}$, 1H), 1.91 (s, 3H); ${ }^{13}$ C NMR (100 MHz , DMSO-d6) (δ, ppm) 194.2, 179.0, 158.2, 152.3, 136.8, 129.9, 128.7, 127.3, 125.5, 124.3, 118.2, 111.1, 80.7, 69.6, 44.7, 26.4, 24.6, 21.4, 18.7. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 421.1192, found 421.1198.

1-[6-Benzyl-9-methyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6 H)-yl]ethan-1-one (20). Yellow oil. $53.8 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) (δ, ppm) $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, 3H), 2.11 - $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) (δ, ppm) 194.0, 179.7, 157.4, 141.9, 136.7, 129.8, 128.7, 127.4, 125.6, 124.1, 120.1, 110.9, 80.7, 69.7, 44.9, 26.2, 24.7, 19.9; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 407.1036, found 407.1035.

1-[7-Benzyl-11,11-dioxido-8,9-dihydrobenzo[e][1,2,3]oxathiazepino[5,4-b]indol-7a(7H)-yl]ethan-1-one (2p). Yellow oil. $16.8 \mathrm{mg}, 20 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) (δ, ppm) $8.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.28$ (comp, 3H), $7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (d,
$J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 2 \mathrm{H}), 2.56$ - $2.53(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) (δ, ppm) 194.5, 162.3, 143.3, 136.2, 131.0, 129.9, 129.4, 128.7, 128.3, 127.5, 125.5, 125.2, 123.1, 112.1, 110.6, 81.6, 69.3, 44.8, 26.3, 24.6; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 443.1036$, found 443.1031.

1-[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl]-2,2 -dimethylpropan-1-one (2q). Yellow oil. $64.4 \mathrm{mg}, 78 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) (δ, ppm) 7.75 ($\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 202.3, 179.8, 157.7, 139.9, 136.5, 128.7, 127.2, 125.5, 125.3, 120.5, 120.2, 110.6, 80.0, 69.0, 46.4, 44.8, 28.8, 28.3; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 435.1349 , found 435.1345 .

1-[6-Allyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl]-2,2-di methylpropan-1-one (2r). Yellow oil. $49.9 \mathrm{mg}, 69 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) (δ, ppm) 7.71-7.64 (m, 2H), 6.98-6.92 (m, 2H), 5.77-5.67 (m, 1H), 5.25 $-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathrm{J}=17.5,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (dd, J = 17.5, 4.7 Hz, 1H), 2.63-2.59 (m, 1H), $1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13}$ C NMR (100 MHz, DMSO-d6) (δ, ppm) 202.3, 180.4, 157.2, 139.7, 132.6, 125.2,
120.6, 120.0, 118.2, 110.9, 79.9, 69.4, 46.2, 43.8, 28.3, 28.1. HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 385.1192$, found 385.1190 .

[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl](phen yl)methanone (2s). Yellow oil. $64.0 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) (δ, ppm) 7.80 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58-7.54$ (m, 1H), $7.52-7.49$ (comp, 3H), $7.34-7.29$ (m, 2H), $7.25-7.20(c o m p, 3 H), 7.13-7.11(m, 2 H), 6.96(t, J=7.5 H z, 1 H), 6.71(d, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-$ 2.75 ($\mathrm{m}, 1 \mathrm{H}$), $2.20-2.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) (δ, ppm) 189.7, 180.2, 158.1, 140.2, 136.3, 135.0, 133.3, 128.5, 128.5, 127.6, 127.3, 125.6, 125.3, 120.52, 120.48, 110.9, 79.8, 69.9, 45.1, 27.5; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 433.1217$, found 433.1215 .

[6-Allyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl](phenyl)methanone (2t). Yellow oil, $54.5 \mathrm{mg}, 71 \%$ yield; ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)(\delta, \mathrm{ppm})$ $7.75-7.70$ (comp, 3H), $6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.75-4.64(\mathrm{~m}, 2 \mathrm{H})$, $3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) (δ, ppm) 190.1, 179.4, 156.9, 138.6, 135.9, 133.2, 132.6, 128.6, 126.2, 121.8, 120.1, 117.4, 110.0, 79.6, 68.9, 44.0, 28.4; HRMS (TOF MS ESI') calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 383.1060$, found 383.1065.

[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl](thiop hen-2-yl)methanone (2u). Yellow oil, $81.6 \mathrm{mg}, 93 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) ($\delta, \mathrm{ppm}) 7.98-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.86$ (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64-7.60(\mathrm{~m}, 1 \mathrm{H})$, $7.28-7.26$ (m, 1H), 7.21 - 7.19 (comp, 3H), $7.09-6.99$ (comp, 4H), 6.76 (d, $J=8.5$ Hz, 1H), 4.88-4.82 (m, 1H), 4.66-4.61 (m, 2H), $4.52(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.80$ (m, 1H), $2.19-2.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) (δ, ppm) 181.3, 179.4, 157.9, 140.3, 139.7, 136.4, 136.2, 131.1, 128.6, 128.4, 127.2, 125.5, 125.2, 120.6, 120.4, 111.1, 78.9, 69.6, 45.0, 27.4; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 439.0781$, found 439.0782 .

[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl](naph thalen-2-yl)methanone (2v). Yellow oil. $74.3 \mathrm{mg}, 77 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) ($\delta, \operatorname{ppm}) 8.04$ (s, 1H), 7.91 - 7.85 (m, 3H), 7.67 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 7.52 (comp, 4H), $7.18(\mathrm{~s}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{t}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.83$ (m, 1H), $2.25-2.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 189.5, 180.3, 158.1, 140.2, 136.3, 134.8, 132.3, 131.4, 129.1, 128.9, 128.7, 128.5, 128.2, 127.6, 127.3, 127.2, 125.7, 125.2, 123.8, 120.6, 120.6, 111.0, 79.9, 70.0, 45.2, 27.6; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}\left[\mathrm{M}+\mathrm{Na}^{+}{ }^{+}\right.$: 505.1192 , found 505.1195 .

1-[6-Benzyl-2,2-dioxido-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl]pro p-2-en-1-one (2w). Yellow oil. $65.8 \mathrm{mg}, 86 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) (δ, ppm) 7.76 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ ($\mathrm{d}, \mathrm{J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.03-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=11.7 \mathrm{~Hz}$, 1H), $4.66-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}$, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) (δ, ppm) 185.1, 179.4, 158.8, 140.1, 136.4, 133.1, 130.3, 128.6, 127.4, 125.7, 125.3, 120.4, 110.9, 79.8, 69.7, 45.0, 26.2; HRMS (TOF MS ESI^{+}) calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 405.0879$, found 405.0880 .

tert-Butyl
6-benzyl-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indole-5a(6H)-carboxylate
2,2-dioxide (2x). Yellow oil. $42.0 \mathrm{mg}, 49 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) (δ, ppm) $7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.94$ (comp, 6H), 5.00-4.94 (m, $1 \mathrm{H}), 4.72-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.21$ (m, 1H), $2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) (δ, ppm) 180.0, 151.0, 149.5, 138.5, 133.4, 129.1, 127.8, 127.1, 123.7, 123.6, 123.1, 115.5, 83.8, 78.9, 75.8, 68.2, 27.9, 27.6; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 451.1298$, found 451.1297 .

[6-Benzyl-2,2-dioxido-4-phenyl-4,5-dihydro-[1,2,3]oxathiazepino[5,4-b]indol-5a(6H)-yl](thiophen-2-yl)methanone (2y). Yellow oil. $67.9 \mathrm{mg}, 66 \%$ yield, $>95: 5 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) (δ, ppm) $7.99-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ - 7.62 (m, 1H), $7.53-7.51$ (m, 2H), $7.45-7.42$ (comp, 3H), $7.28-7.27$ (m, 1H), 7.15 - 7.13 (comp, 3H), $7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01$ (comp, 3H), $6.72(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.12(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, \mathrm{J}=14.6,11.7$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) (δ, ppm) 181.7, 180.7, 158.2, 140.6, 139.9, 137.6, 136.3, 136.1, 130.9, 129.5, 128.8, 128.6, 128.3, 127.1, 125.9, 125.4, 125.2, 121.0, 120.7, 111.3, 84.7, 78.5, 45.0, 32.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 537.0913$, found 537.0919 .

General Procedure for the Asymmetric Cascade Reaction:

$\begin{array}{ll}\mathbf{1 a}, R=\mathrm{Me} & \mathbf{2 a}, 64 \% \text { yield, } 83 \% \text { ee } \\ \mathbf{1 r}, R={ }^{t} \mathrm{Bu}\end{array} \quad \mathbf{2 r , 5 9 \% \text { yield, } 6 3 \% \text { ee }}$

MgO (2.5 equiv.)
$\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}, 4 \AA \mathrm{MS}, 0{ }^{\circ} \mathrm{C}, \mathrm{Ar}$

To a $10-\mathrm{mL}$ oven-dried vial containing a magnetic stirring bar, $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TCPTTL})_{4}(1.8 \mathrm{mg}$, $1.0 \mathrm{~mol} \%$), $\mathrm{Phl}(\mathrm{OAc})_{2}(38.7 \mathrm{mg}, 1.2$ equiv.), $\mathrm{MgO}(10.0 \mathrm{mg}, 2.5$ equiv.), and 4Å MS $(50.0 \mathrm{mg})$ in trifluoromethyl benzene (1.0 mL), was added as a solution of sulfamate ester $1(0.1 \mathrm{mmol})$ in trifluoromethyl benzene (1.0 mL) via a syringe at $0^{\circ} \mathrm{C}$ under argon atmosphere. After addition, the reaction mixture was stirred under these conditions until consumption of the material (monitored by TLC, about 4 days). Then the reaction mixture was purified by column chromatography on silica gel without any additional treatment (Hexanes : $\mathrm{EtOAc}=4: 1$ to 2:1) to give the pure products $\mathbf{2}$ as yellow oil.

2a, $20.5 \mathrm{mg}, 64 \%$ yield. 83% ee; HPLC conditions for determination of enantiomeric excess: Daicel Chiralpak AD-H, $\lambda=254 \mathrm{~nm}$, hexane : 2 -propanol $=85: 15$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=30.8 \mathrm{~min}, t_{\text {minor }}=42.2 \mathrm{~min}$.

2r, $21.4 \mathrm{mg}, 59 \%$ yield. $63 \% \mathrm{ee}$; HPLC conditions for determination of enantiomeric excess: Daicel Chiralpak AD-H, $\lambda=254 \mathrm{~nm}$, hexane : 2-propanol $=85: 15$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}=13.0 \mathrm{~min}, t_{\text {minor }}=16.8 \mathrm{~min}$.

General Procedure of the Gram Scale Reaction

To a $50-\mathrm{mL}$ oven-dried vial containing a magnetic stirring bar, Rh_{2} (esp) ($^{(13.3 \mathrm{mg}, 0.5}$ $\mathrm{mol} \%), \mathrm{Phl}(\mathrm{OAc})_{2}(1.35 \mathrm{~g}, 4.2 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{CaO}(490 \mathrm{mg}, 8.75 \mathrm{mmol}, 2.5$ equiv.), and $4 \AA$ MS (1.0 g) in DCM (10 mL), was added as a solution of sulfamate ester $\mathbf{1 u}$ $(1.54 \mathrm{~g}, 3.5 \mathrm{mmol})$ in DCM (5 mL) via a syringe under argon atmosphere at room temperature. After addition, the reaction mixture was stirred for additional 12 h . Then most of the solvent was evaporated in vacuo (about 2 mL left), the residue was purified by column chromatography on silica gel (Hexanes : EtOAc $=4: 1$ to $2: 1$) to give 1.38 g of pure $\mathbf{2 u}$ in 90% yield.

General Procedure for the Synthesis of 3

To a $10-\mathrm{mL}$ oven-dried vial containing a magnetic stirring bar, a solution of methyl magnesium bromide (3.0 M in 2-methyl-THF, $0.4 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in THF (1.0 mL), was added as a solution of $\mathbf{2 u}(87.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) in THF (1.0 mL) via a syringe pump over 2 h under argon atmosphere at $0^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred under these conditions until consumption of the material (monitored by TLC, about 1 h). The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 10 \mathrm{~mL})$. The combined extract was washed with brine (10 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc =5:1 to 3:1) to afford 72.4 mg pure product $\mathbf{3}$ in 77% yield. Colorless oil, > 95:5 dr. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) (δ, ppm) 7.97 (s, 1H), 7.54 (d, J $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.26(c o m p, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $7.05(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (d, J = 7.7 Hz, 1H), $5.86(\mathrm{t}, \mathrm{J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=30.1,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 152.8, 147.4, 138.9, 136.2, 128.4, 128.2, 127.8, 127.1, 125.8, 125.7, 125.5, 118.5, 117.9, 107.3, 83.6, 75.6, 69.1, 68.8, 47.7, 31.0, 29.6, 27.1; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 471.1407, found 471.1410.

General Procedure for the Synthesis of 4

To a $10-\mathrm{mL}$ oven-dried vial containing a magnetic stirring bar, $\mathbf{2 u}(87.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous MeOH (2.0 mL), was added $\mathrm{NaBH}_{4}(22.7 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for additional 1 h under these conditions until consumption of the material (monitored by TLC). The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{X} 10 \mathrm{~mL})$. The combined extract was washed with brine (10 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes: EtOAc = 4:1 to 2:1) to give 75.1 mg pure product 4 in 85% yield. White solid, $\mathrm{mp}=158-160{ }^{\circ} \mathrm{C}$, > 95:5 dr. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) (δ, ppm) 7.89 (d, J $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14$ (comp, 3H), $7.05(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.44$ $(\mathrm{m}, 2 \mathrm{H}), 4.88-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=$ 17.1 Hz, 1H), 2.48-2.45 (m, 1H), 2.25-2.19 (m, 1H); ${ }^{13}$ C NMR (125 MHz, DMSO-d6) (δ, ppm) 149.6, 145.8, 139.1, 128.4, 127.8, 127.6, 125.6, 125.6, 125.3, 125.4, 125.1, 119.7, 116.1, 104.5, 73.9, 71.6, 68.8, 63.0, 46.8, 34.1; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 443.1094$, found 443.1094.

General Procedure for the Synthesis of 5

To a 10-mL oven-dried vial containing a magnetic stirring bar, 4 ($88.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{MeCN}(2.0 \mathrm{~mL})$, was added $\mathrm{Mel}\left(24.9 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2.0\right.$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(82.8 \mathrm{mg}, 0.6$ mmol, 3.0 equiv.), and $n-\mathrm{Bu}_{4} \mathrm{NI}\left(11.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.15\right.$ equiv.) in sequence at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 12 h . Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with ethyl acetate (3 X 10 mL). The combined organic layer was washed successively with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : $\mathrm{EtOAc}=10: 1$ to $5: 1$) to give 80.3 mg pure product 5 in 88% yield. White solid, $\mathrm{mp}=$ $137-139{ }^{\circ} \mathrm{C}$, > 95:5 dr. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d 6$) (δ, ppm) $7.54(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, \mathrm{J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.68(\mathrm{~m}$, $1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.23(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6) (δ, ppm) 150.4, 146.8, 139.0, 128.4, 127.6, 125.8, 125.7, 125.3, 125.9, 125.34, 125.26, 121.0, 115.9, 104.9, 73.4, 70.0, 69.3, 67.5, 47.8, 34.5, 31.5; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 479.1070, found 479.1062.

General Procedure for the Synthesis of 6

To a $10-\mathrm{mL}$ oven-dried vial containing a magnetic stirring bar, NaOt - Bu ($57.6 \mathrm{mg}, 0.6$ mmol, 3.0 equiv.) in anhydrous THF (1.0 mL), was added as a solution of $4(88.4 \mathrm{mg}$, 0.2 mmol) and $\mathrm{Cbz}-\mathrm{Cl}\left(85.3 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5\right.$ equiv.) in THF (1.0 mL) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 12 h . Then the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with ethyl acetate (3 X 10 mL). The combined organic layer was washed successively with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc = 10:1 to 4:1) to give 44.9 mg pure product 6 in 51% yield. Yellow solid, $\mathrm{mp}=$ $214-216{ }^{\circ} \mathrm{C},>95: 5 \mathrm{dr} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.68-7.66(m,1H),7.32 - 7.26 (comp, 6H), $7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.29$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.57(\mathrm{dd}, J=30.9,12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.71-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=$ $73.0,16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 189.6, 149.0, 142.9, 137.9, 135.8, 132.6, 129.9, 129.0, 128.6, 127.7, 125.7, 125.6, 122.8, 120.4, 109.3, 80.2, 68.7, 64.8, 49.1, 35.9; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 441.0937, found 441.0940.

General Procedure for the Synthesis of 7

To a 10-mL oven-dried vial containing a magnetic stirring bar, 2 (0.1 mmol) in THF (2.0 mL), was added $\mathrm{H}_{2} \mathrm{O}$ ($20.0 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 11.0$ equiv.) at room temperature, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . Then the reaction was quenched with saturated aqueous NaHCO_{3} solution $(10 \mathrm{~mL})$ and extracted with ethyl acetate (3 X 10 mL). The combined organic layer was washed successively with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel (Hexanes : EtOAc =5:1 to $3: 1$) to give pure products 7 in good to high yields.

6-Allyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-b]indole ppm) $7.59(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H})$, $5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.66$ (comp, 4H), $3.20(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 135.0,132.9$, 132.7, 124.4, 122.8, 120.9, 117.6, 116.9, 109.6, 109.4, 70.0, 45.3, 26.7; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 301.0617, found 301.0617.

6-Cinnamyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-b]indole 2,2-dioxide (7b). Colorless oil. $26.2 \mathrm{mg}, 74 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 7.59 (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{comp}, 6 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}$, $1 \mathrm{H}), 6.26-6.14(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=5.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }^{2}$) (δ, ppm) 135.8, 135.1, 132.7, 131.8, 128.8, 128.3, 125.6, 124.5, 124.1, 123.0, 121.0, 117.6, 109.7, 109.6, 69.9, 45.0, 26.9; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 355.1111, found 355.1116.

6-(Prop-2-yn-1-yl)-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-b]indole 2,2-dioxide (7c). Colorless solid, $\mathrm{mp}=205-207{ }^{\circ} \mathrm{C} .19 .6 \mathrm{mg}, 71 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) ($\delta, \mathrm{ppm}) 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-$ 3.32 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) (δ, ppm) 134.2, 132.5, 124.2, 122.0, 120.2, 116.9, 110.0, 109.7, 79.2, 75.1, 68.6, 32.1, 26.2; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 277.0641, found 277.0640.

6-Benzyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-b]indole 2,2-dioxide (7e). Colorless oil. $23.6 \mathrm{mg}, 72 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $(\delta, \mathrm{ppm}) 7.62-7.60(\mathrm{~m}$, 1H), 7.29 - 7.19 (comp, 6H), 6.94 (d, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.36 (s, 1H), 5.31 (s, 2H), $4.58-$ $4.55(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 137.0, 135.5, 132.8, 129.2, 128.0, 125.8, 124.5, 123.1, 121.1, 117.7, 109.80, 109.75, 69.9, 46.7, 26.9; HRMS (TOF MS ESI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 329.0954, found 329.0957.

6-Butyl-1,4,5,6-tetrahydro-[1,2,3]oxathiazepino[5,4-b]indole 2,2-dioxide
Colorless solid, $\mathrm{mp}=58-60{ }^{\circ} \mathrm{C} .18 .2 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) 7.56 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13$ $(\mathrm{m}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.70-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.23(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 134.8,132.6,124.4,122.5,120.7,117.5,109.7,108.9,69.9,43.2$, 32.7, 26.8, 20.3, 13.9; HRMS (TOF MS ESI') calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 295.1111, found 295.1111.

References:

1 (a) D. Zhu, J. Ma, K. Luo, H. G. Fu, L. Zhang and S. F. Zhu, Enantioselective intramolecular C-H insertion of donor and donor/donor carbenes by a nondiazo approach. Angew. Chem., Int. Ed., 2016, 55, 8452-8456; (b) A. R. Thornton and S. B. Blakey, Catalytic metallonitrene/alkyne metathesis: a powerful cascade process for the synthesis of nitrogen-containing molecules. J. Am. Chem. Soc., 2008, 130, 5020-5021.

		N	N－\square_{0}°	M Nomam	
へへ－000		10	ザサ	\square	

$\left.\iiint \iiint \int 1\right)$

2a

-193.88
-180.21
$\stackrel{N}{\infty}$
$\stackrel{\sim}{\circ}$
$\stackrel{n}{1}$

2a

$? 10$	190	170	150	130	$\begin{aligned} & 110 \\ & \mathrm{f} 1 \text { (ppm) } \end{aligned}$	90	80	70	60	50	40	30	20	10	0

$\mathrm{Ph}_{2 \mathrm{e}}$

$\begin{array}{llllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\underbrace{\substack{\infty \\ \sim}}_{\text {- }}$

$1 / \int$

Nul \qquad
 M

 r-

A(d) 15.31 H

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	

2v

$\begin{array}{llllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

5

5

స~

 i

130.0
$129.0 \begin{gathered}128.0 \\ \mathrm{f} 1(\mathrm{ppm})\end{gathered}$
127.0

$\begin{array}{lllllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{r}110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Condition: hexane : 2-propanol $=85: 15$
Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, Daicel Chiralpak AD-H.

PDA Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	31.381	1232322	24685	50.21
2	43.290	1222042	17435	49.79
Total		2454364	42120	100

PDA Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	30.821	3242254	66043	91.56
2	42.239	298836	5171	8.44
Total		3541090	71214	100

Condition: hexane : 2-propanol $=85: 15$
Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, Daicel Chiralpak AD-H.

PDA Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	13.540	2772193	128275	50.08
2	17.397	2762888	97523	49.92
Total		5535081	225798	100

PDA Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area\%
1	13.006	2343745	112504	81.50
2	16.768	531993	20864	18.50
Total		2875738	133368	100

Crystallographic Data for 2n.

Datablock: hongkm_190926

```
Bond precision: C-C = 0.0030 A
Wavelength=1.54184
Cell: a=13.8567(3)
    alpha=90
Temperature: }100\textrm{K
\begin{tabular}{|c|c|c|}
\hline & Calculated & Reported \\
\hline Volume & 3805.08 (13) & 3805.06 (13) \\
\hline Space group & P b c a & P b c a \\
\hline Hall group & -P 2ac 2ab & -P 2ac 2ab \\
\hline Moiety formula & C 21 H 22 N 2 O 4 S & C21 H22 N2 O4 S \\
\hline Sum formula & C 21 H 22 N 2 O 4 S & C21 H22 N2 O4 S \\
\hline Mr & 398.47 & 398.46 \\
\hline Dx,g cm-3 & 1.391 & 1.391 \\
\hline Z & 8 & 8 \\
\hline Mu (mm-1) & 1.773 & 1.773 \\
\hline F000 & 1680.0 & 1680.0 \\
\hline FOOO' & 1687.54 & \\
\hline h, k, lmax & 17,17,24 & 17,17,24 \\
\hline Nref & 4138 & 3840 \\
\hline Tmin, Tmax & \(0.737,0.701\) & \(0.405,1.000\) \\
\hline Tmin' & 0.668 & \\
\hline
\end{tabular}
```

Correction method $=\#$ Reported T Limits: Tmin=0.405 Tmax $=1.000$ AbsCorr $=$ MULTI-SCAN
Data completeness $=0.928 \quad$ Theta $(\max)=79.616$
$R($ reflections $)=0.0592(3368) \quad$ wR2 (reflections) $=0.1650(3840)$
$S=1.067$
Npar= 256

Crystallographic Data for 6.

Datablock: hongkm_191118_2

Bond precision: $C-C=0.0032 \mathrm{~A}$
Wavelength=1.54184
$\begin{array}{llll}\text { Cell: } & \mathrm{a}=9.7354(3) & \mathrm{b}=10.1100(4) & \mathrm{c}=10.7275(3) \\ & \mathrm{alph} a=99.198(3) & \mathrm{beta}=96.818(2) & \text { gamma=107.990(3) }\end{array}$
Temperature: 100 K

Crystallographic Data for 7a.

Datablock: a

```
Bond precision: C-C = 0.0031 A Wavelength=0.71075
```

```
Cell: a=9.6651(3) b=10.7492(4) c=13.2113(4)
    alpha=93.4901(10) beta=98.4723(10) gamma=106.3564(10)
```

Temperature: 120 K

	Calculated	Reported
Volume	1295.03(7)	1295.03(7)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C13 H14 N2 O3 S	C13 H14 N2 O3 S
Sum formula	C13 H14 N2 O3 S	C13 H14 N2 O3 S
Mr	278.32	278.32
Dx,g cm-3	1.428	1.428
Z	4	4
Mu (mm-1)	0.255	0.255
F000	584.0	584.0
F000'	584.75	
h, k, lmax	12,13,17	12,13,17
Nref	5928	5920
Tmin, Tmax	0.955,0.975	$0.673,0.746$
Tmin'	0.950	

Correction method= \# Reported T Limits: Tmin=0.673 Tmax=0.746
AbsCorr = MULTI-SCAN
Data completeness $=0.999 \quad$ Theta $(\max)=27.466$
$R($ reflections $)=0.0428(4914) \quad$ wR2 (reflections $)=0.1326(5920)$
$S=1.084 \quad$ Npar= 343

