Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supplementary Information

of Aspidosperma-type alkaloid dimer as a candidate for inhibition of microglial activation

Yang Yu,^{ab} Si-Meng Zhao,^c Mei-Fen Bao^a and Xiang-Hai Cai*^a

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany,

Chinese Academy of Sciences, Kunming 650201, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China ^cihuman Institute, ShanghaiTech University, 200031, China

Table of Contents

Figures S1-S5: 1D and 2D NMR (500 MHz, acetone- <i>d</i> ₆) of compound 1	2-6
Figure S6: HRESIMS of compound 1	7
Figures S7-S11: 1D and 2D NMR (500 MHz, acetone- <i>d</i> ₆) of compound 2	8-12
Figure S12: HRESIMS of compound 2	13
Figures S13-S17: 1D and 2D NMR (500 MHz, acetone- <i>d</i> ₆) of compound 3	14-18
Figure S18: HRESIMS of compound 3	19
Figures S19-S23: 1D and 2D NMR (500 MHz, acetone- <i>d</i> ₆) of compound 4	20-24
Figure S24: HRESIMS of compound 4	25
Figures S25-S29: 1D and 2D NMR (500 MHz, acetone- <i>d</i> ₆) of compound 5	26-30
Figure S30: HRESIMS of compound 5	31
Figures S31-S35: 1D and 2D NMR (600 MHz, acetone- <i>d</i> ₆) of compound 6	32-36
Figure S36: HRESIMS of compound 6	37
Figures S37-S41: 1D and 2D NMR (500 MHz, acetone- <i>d</i> ₆) of compound 7	38-42
Figure S42: HRESIMS of compound 7	43
Figures S43-S47: 1D and 2D NMR (600 MHz, acetone- <i>d</i> ₆) of compound 8	44-48
Figure S48: HRESIMS of compound 8	49
Figures S49-S53: 1D and 2D NMR (600 MHz, acetone- <i>d</i> ₆) of compound 9	50-54
Figure S54: HRESIMS of compound 9	55
Figure S55-S59: 1D and 2D NMR (600 MHz, acetone- <i>d</i> ₆) of compound 10	56-60
Figure S60: HRESIMS of compound 10	61
Figures S61-S65: 1D and 2D NMR (600 MHz, acetone- <i>d</i> ₆) of compound 11	64-68
Figure S66: HRESIMS of compound 11	67
Figures S67-S71: 1D and 2D NMR (600 MHz, acetone- <i>d</i> ₆) of compound 12	68-72
Figure S72: HRESIMS of compound 12	73
Figure S73: ¹ H NMR spectrum of (-)-jerantinine B, lochnericine and pachysiphine	74
Figure S74: Screening of compounds $1-12$ for their anti-inflammatory activity in BV2 microglia cells .	75
Figure S75. Compounds 10 and 12 inhibits inflammatory genes expression	75
Figure S76: Immunolblotting of phosphorylated	76

Figure S1. ¹H (500 MHz) NMR of compound **1** in acetone- d_6

Figure S2. ¹³C (125 MHz) NMR of compound **1** in acetone- d_6

Qualitative Analysis Report

--- End Of Report ---

Figure S6. HRESIMS of compound 1

Figure S7 ¹H (500 MHz) NMR spectrum of compound **2** in acetone- d_6

Figure S8 ¹³C (125 MHz) NMR spectrum of compound **2** in acetone- d_6

Data File: E:\DATA\2017\0920\wtol13.lcd

Figure S12 HRESIMS spectrum of acetone-*d*₆

Figure S13 ¹H (500 MHz) NMR spectrum of compound **3** in acetone- d_6

Figure S14 13 C (125 MHz) NMR spectrum of compound **3** in acetone- d_6

Figure S17 ROESY spectrum of compound **3** in acetone- d_6

Data File: E:\DATA\2017\0920\wtol12.lcd

Figure S18 HRESIMS spectrum of compound 3

Page 1 of 1

Figure S19 ¹H (125 MHz) NMR spectrum of compound 4 in acetone- d_6

Figure S20 ¹³C (125 MHz) NMR spectrum of compound **4** in acetone- d_6

Data File: E:\DATA\2018\0104\wtol-87b.lcd

Figure S24 HRESIMS spectrum of compound 4

Page 1 of 1

Figure S25 ¹H (500 MHz) NMR of compound **5** in acetone- d_6

Figure S26 ¹³C (125 MHz) NMR of compound **5** in acetone- d_6

Figure S28 HMBC of compound **5** in acetone- d_6

Qualitative Analysis Report

--- End Of Report ---

Figure S30 HRESIMS spectrum of compound 5

Figure S31 ¹H (600 MHz) NMR spectrum of compound **6** in acetone- d_6

Figure S32 13 C (150 MHz) NMR spectrum of compound 6 in acetone- d_6

Figure S34 HMBC spectrum of compound **6** in acetone- d_6

Formula Predictor Report - wtol-83.lcd

Page 1 of 1

Figure S36 HRESIMS spectrum of compound 6

Figure S37 $^{-1}$ H (500 MHz) NMR spectrum of compound 7 in acetone- d_6

Figure S38 ¹³C (125 MHz) NMR spectrum of compound 7 in CD₃ODCD₃

Figure S40 HMBC specrum of **7** in acetone- d_6

Figure S41 ROESY spectrum of **5** in acetone-*d*₆

Page 1 of 1

Figure S43 ¹H (600 MHz) NMR spectrum of compound **8** in acetone- d_6

Figure S44 13 C (150 MHz) NMR spectrum of compound 8 in acetone- d_6

Figure S46 HMBC spectrum of compound 8 in acetone-d₆

Figure S47 ROESY spectrum of compound 8 in acetone- d_6

H C

Ň

Figure S49 ¹ H (600 MHz) NMR spectrum of compound **9** in acetone- d_6

Figure S50 13 C (150 MHz) NMR spectrum of compound 9 in acetone- d_6

Figure S52 HMBC spectrum of **9** in acetone- d_6

Figure S53 ROESY spectrum of **9** in acetone- d_6

Qualitative Analysis Report

--- End Of Report ---

Figure S54 HRESIMS spectrum of acetone-*d*₆

Figure S55 ¹H (600 MHz) NMR spectrum of compound **10** in acetone- d_6

Figure S56 13 C(150 MHz) NMR spectrum of compound **10** in acetone- d_6

57

Figure S58 HMBC spectrum of compound **10** in acetone- d_6

Figure S59 ROESY spectrum of compound **10** in acetone- d_6

Figure S61 ¹H (600 MHz) NMR spectrum of compound **11** in acetone- d_6

Figure S62 13 C (150 MHz) NMR spectrum of compound **11** in acetone- d_6

Figure S64 HMBC spectrum of compound **11** in acetone- d_6

Figure S65 ROESY spectrum of compound 11 in acetone-*d*₆

Formula Predictor Report - wtol-20.lcd

Figure S66 HRESIMS spectrum of compound 11

Figure S67 ¹H (600 MHz) NMR spectrum of compound **12** in acetone- d_6

Figure S68. ${}^{13}C(150 \text{ MHz})$ NMR spectrum of compound **12** in acetone- d_6

Figure S70 HMBC spectrum of compound **12** in acetone- d_6

Figure S71 ROESY spectrum of compound 12 in acetone- d_6
Data File: E:\DATA\2018\0709\wtol-146a.lcd

Figure S72 HRESIMS spectrum of compound 12

Figure S73 ¹H spectrum of (-)-jerantinine B, lochnericine and pachysiphine

Figure S74. Screening of compounds 1 - 12 for their anti-inflammatory activity in BV2 microglia cells. FACS analysis of CD86, CD11b, MHCII expression (left) and statistical analysis of relative mean fluorescence intensity (MFI) (right). Compounds 6, 10 and 12 show significant inhibitory activity. BV2 cells were pretreated with the compounds at the concentration of 10 μ M or vehicle (DMSO) for 4 h and then stimulated with LPS (500 ng/mL) for 12 h. The cells were stained using FITC-conjugated anti-CD86, APC-conjugated anti-CD11b, PE-conjugated anti-MHCII antibodies and further analyzed using FACS.

Figure S75. Compounds 10 (A) and 12 (B) inhibits inflammatory genes expression induced by LPS in BV2 cells. The cells were pretreated with the compounds at indicated concentrations for 4 h and then stimulated with LPS (500 ng/mL) for 12 h (n = 3). Data were presented as mean \pm SD. *p < 0.05, **p < 0.01, ***P < 0.001. NS, not significant.

Figure S76. Immunolblotting of phosphorylated IKK α/β , I κ B α , Akt, Erk and total IKK α/β , I κ B α , Akt, Erk. BV2 cells were treated with **6** at indicated concentrations for 4 h and then stimulated with LPS (500 ng/mL) for 15 min.