Supporting Information for

Roquefornine A, a sesterterpenoid with a 5/6/5/5/6-fused ring

system from the fungus Penicillium roqueforti YJ-14

Jia-Peng Wang,‡ Yan Shu,‡ Jun-Tao Hu, Rui Liu, Xue-Yun Cai, Cheng-Tong Sun, Dong Gan, Di-Jiao Zhou, Rui-Feng Mei, Hao Ding, Xiao-Ran Zhang, Le Cai,* and Zhong-Tao Ding*

Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China.

Contents

NMR Computational Methods	1
Figure S3. ¹ H NMR spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1)	6
Figure S4. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of roquefornine A (1)	7
Figure S5. ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1)	8
Figure S6. Enlarged ¹ H- ¹ H COSY spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1)	9
Figure S7. HMBC spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1)	10
Figure S8. Enlarged HMBC spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1)	11
Figure S9. HSQC spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1).	12
Figure S10. NOESY spectrum (CDCl ₃ , 600 MHz) of roquefornine A (1)	13
Figure S11. (+)-HR-ESI-MS [M + Na] ⁺ of roquefornine A (1).	14

NMR Computational Methods

Conf.	G (Hartree) ΔG (Kcal/mol)Boltzmann Distribution		Boltzmann Distribution						
a									
a1	-1165.963094	0.368975527	0.110192264						
a2	-1165.963406	0.173192594	0.153367203						
a3	-1165.962458	0.768071506	0.056165026						
a4	-1165.963079	0.378388168	0.108454644						
a5	-1165.963319	0.227785912	0.139860597						
a6	-1165.963682	0.00	0.205469236						
a7	-1165.962966	0.44929673	0.096215695						
a8	-1165.963252	0.269829042	0.130275334						
		b							
b1	-1165.940225	0.01066766	0.339364246						
b2	-1165.940242	0.00	0.345532919						
b3	-1165.940155	0.054593318	0.315102835						
	c								
c1	-1165.936847	0.00	0.51818103						
c2	-1165.936087	0.476907144	0.231596487						
c3	-1165.93616	0.431098958	0.250222484						
		d							
d1	-1165.964736	0.063378449	0.194322391						
d2	-1165.963033	1.132026958	0.031974794						
d3	-1165.964591	0.154367312	0.166645777						
d4	-1165.963073	1.106926582	0.033359199						
d5	-1165.962993	1.157127334	0.030647841						
d6	-1165.964837	0.00	0.216273206						
d7	-1165.964016	0.515185217	0.090611052						
d8	-1165.962837	1.2550188	0.025978208						
d9	-1165.962843	1.251253744	0.026143899						
d10	-1165.963881	0.599898986	0.078533438						
d11	-1165.962815	1.268824007	0.025379605						
d12	-1165.9639	0.587976308	0.080130591						

Table S1. Energy (298.15 K) analysis for a-d.

c2

Figure S1. mPW1PW91/6-311+G(d,p) (chloroform) optimized lowest energy conformers for a-d.

	A	В	С	D	E	F	G	Н
3		DP4+		1100 00# J. 0 00# J				
14	Inclei	en 99	UF4T	Teomer 1	Teomer 2	Teomer 3	Teoper A	Teomer 5
15	C	304:	41.3	43.51	51,46	43.32	53, 59	ISUNCI U
16	č		59.4	64.09	63.11	62.95	62.38	
17	c		43.1	46.35	41.88	45.06	42.57	
18	С		28	31.31	32.68	36.45	28.81	
19	С		34.8	38.38	37.52	42.76	30.80	
20	С		33.4	38.71	37.91	37.29	38.50	
21	С	x	162.5	174.36	164.99	175.04	169.49	
22	С	x	118.6	125.68	130.44	127.21	126.63	
23	С		90.2	92.39	84.97	85.69	94.37	
24	С		62.2	67.53	65.78	67.56	68.54	
25	С		45.8	49.30	52.36	52.58	49.78	
26	С		69.3	70.49	78.46	77.64	71.07	
27	С		44.1	47.07	47.71	48.18	46.28	
28	С		49.8	52.87	46.26	47.22	55.76	
29	С		43.2	47.16	46.44	46.31	47.53	
30	C		41.7	44.58	44.63	45.49	44.91	
31	ι 2		40.0	42.99	42.80	42.74	42.77	
32	C C		42.2	09.14	56.28	55.86	59.00	
33	C C		43.3	47.04	47.99	47.79	47.09	
25	C		19.5	20.19	10.03	10 20	21 99	
36	с С		22 1	21.20	22.22	20 13	21.00	
37	C C		33.4	33.89	33.29	33.95	34 38	
38	C C		31.7	32, 35	31 10	31.05	32.50	
39	č		25.4	26.52	24, 58	25, 22	27.05	
40	c		56.3	56.96	57.22	57,70	57.17	
41								
42	Н		2.22	2.353	1.750	1.907	2.388	
43	Н		1.57	1.459	1.701	1.511	1.502	
44	Н		1.42	1.488	2.089	1.587	1.843	
45	Н		1.3	1.321	2.085	1.535	1.362	
46	Н		1.43	1.713	1.239	1.339	2.309	
47	Н		1.55	1.743	1.642	1.965	1.878	
48	Н		1.66	1.714	1.204	0.973	1.274	
49	H		2.85	3.172	2.333	2.354	2.555	
50	H	x	5.28	5.746	5.912	5.620	5.871	
51	H		3.85	3.880	4.072	4.097	3.907	
52	H		2.25	2.393	2.335	2.428	2.355	
03	п		3.84	3.970	3.724	3.770	3.922	
54	п		1.55	1.403	1.592	1.570	1.431	
56	н		1.00	1.501	1.039	2 178	1.624	
57	н		1.40	1.545	1.540	1 546	1.672	
58	н		1.45	1.547	1.665	1.685	1.568	
59	н		1.45	1.547	1.594	1.504	1.515	
60	Н		1.45	1.434	1.345	1.255	1.394	
61	Н		1.4	1.331	1.831	2.129	1.537	
62	Н		0.99	1.056	0.927	1.205	0.887	
63	Н		1.16	1.234	1.085	1.117	1.212	
64	Н		0.98	0.904	1.230	1.174	0.932	
65	Н		1.28	1.321	1.153	1.126	1.295	
66	Н		1.02	1.025	1.007	1.006	1.043	
67	Н		0.9	0.991	1.024	0.905	0.991	
68	H		3.29	3.290	2.496	2.807	3.389	
	А	В	С	D	E	F	G	Н

	A B	C	D	E	F	G	Н	
1	Functional	Solv	vent?	Basi	s Set	Type of Data		
2	mPW1PW91	PCM		6-311+	-G (d, p)	Unscaled Shifts		
3								
4		Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6	
5	sDP4+ (H data)	d 100. 00%	d 0. 00%	d 0. 00%	ⅆ 0.00%	-	-	
6	sDP4+ (C data)	d 100. 00%	d 0. 00%	dl 0.00%	ⅆ 0.00%	-	-	
7	sDP4+ (all data)	d 100. 00%	d 0. 00%	dl 0.00%	ⅆ 0.00%	-	-	
8	uDP4+ (H data)	d 100. 00%	. 00%	0.00%	0.00%	-	-	
9	uDP4+ (C data)	d 100. 00%	. 00%	0.00%	0.00%	-	-	
10	uDP4+ (all data)	d 100. 00%	. 00%	dl 0.00%	1 0. 00%	-	-	
11	DP4+ (H data)	d 100. 00%		d 0. 00%	1 0.00%	-	-	
12	DP4+ (C data)	d 100. 00%	. 00%	d 0. 00%	0.00%	-	-	
13	DP4+ (all data)	1 00. 00%	. 00%	d 0. 00%	0.00%	-	-	

Figure S2. DP4+ evaluation of theoretical and experimental data.

no.	exp.	calc. a	$ calc. \mathbf{a} - exp. $	calc. b	$ calc. \mathbf{b} - exp. $	calc. c	calc. c - exp.	calc. d	calc. d - exp.
1	41.3	43.51	2.21	51.46	10.16	43.32	2.02	53.59	12.29
2	59.4	64.09	4.69	63.11	3.71	62.95	3.55	62.38	2.98
3	43.1	46.35	3.25	41.88	1.22	45.06	1.96	42.57	0.53
4	28.0	31.31	3.31	32.68	4.68	36.45	8.45	28.81	0.81
5	34.8	38.38	3.58	37.52	2.72	42.76	7.96	30.80	4.00
6	33.4	38.71	5.31	37.91	4.51	37.29	3.89	38.50	5.10
7	162.5	174.36	11.86	164.99	2.49	175.04	12.54	169.49	6.99
8	118.6	125.68	7.08	130.44	11.84	127.21	8.61	126.63	8.03
9	90.2	92.39	2.19	84.97	5.23	85.69	4.51	94.37	4.17
10	62.2	67.53	5.33	65.78	3.58	67.56	5.36	68.54	6.34
11	45.8	49.30	3.5	52.36	6.56	52.58	6.78	49.78	3.98
12	69.3	70.49	1.19	78.46	9.16	77.64	8.34	71.07	1.77
13	44.1	47.07	2.97	47.71	3.61	48.18	4.08	46.28	2.18
14	49.8	52.87	3.07	46.26	3.54	47.22	2.58	55.76	5.96
15	43.2	47.16	3.96	46.44	3.24	46.31	3.11	47.53	4.33
16	41.7	44.58	2.88	44.63	2.93	45.49	3.79	44.91	3.21
17	40.5	42.99	2.49	42.80	2.30	42.74	2.24	42.77	2.27
18	56.2	59.14	2.94	56.28	0.08	55.86	0.34	59.00	2.80
19	43.3	47.04	3.74	47.99	4.69	47.79	4.49	47.09	3.79
20	18.5	20.19	1.69	16.05	2.45	23.88	5.38	16.66	1.84
21	19.5	21.28	1.78	19.17	0.33	19.20	0.30	21.88	2.38
22	22.1	23.34	1.24	23.33	1.23	20.13	1.97	22.60	0.50
23	33.4	33.89	0.49	33.29	0.11	33.95	0.55	34.38	0.98
24	31.7	32.35	0.65	31.10	0.60	31.05	0.65	32.54	0.84
25	25.4	26.52	1.12	24.58	0.82	25.22	0.18	27.05	1.65
26	56.3	56.96	0.66	57.22	0.92	57.70	1.40	57.17	0.87
TAD			83.17		92.72		105.02		90.60
MAE			3.20		3.57		4.04		3.48

Table S2. Calculated (calc.) and experimental (exp.) 13 C NMR chemical shift values of **a-d** at the mPW1PW91/6-311+G(d,p) level in chloroform and total absolute deviation (TAD) and mean absolute error (MAE).

no.	exp.	calc. a	$ calc. \mathbf{a} - exp. $	calc. b	$ calc. \mathbf{b} - exp. $	calc. c	calc. c - exp.	calc. d	calc. d - exp.
1α	2.22	2.35	0.13	1.75	0.47	1.91	0.31	2.39	0.17
1β	1.58	1.46	0.12	1.70	0.12	1.51	0.07	1.50	0.08
3	1.42	1.49	0.07	2.09	0.67	1.59	0.17	1.84	0.42
4α	1.30	1.32	0.02	2.09	0.79	1.54	0.24	1.36	0.06
4β	1.43	1.71	0.28	1.24	0.19	1.34	0.09	2.31	0.88
5α	1.55	1.74	0.20	1.64	0.09	1.96	0.41	1.88	0.33
5β	1.66	1.71	0.05	1.20	0.46	0.97	0.69	1.27	0.39
6	2.85	3.17	0.29	2.33	0.52	2.35	0.50	2.56	0.29
8	5.28	5.75	0.45	5.91	0.63	5.62	0.34	5.87	0.59
9	3.85	3.88	0.02	4.07	0.22	4.10	0.25	3.91	0.06
10	2.25	2.39	0.15	2.34	0.09	2.43	0.18	2.36	0.11
12	3.84	3.98	0.14	3.72	0.12	3.78	0.06	3.92	0.08
13α	1.55	1.40	0.19	1.39	0.16	1.37	0.18	1.43	0.12
13 <i>β</i>	1.55	1.50	0.02	1.54	0.01	1.59	0.04	1.54	0.01
14	1.49	1.58	0.11	1.85	0.36	2.18	0.69	1.62	0.13
16 <i>α</i>	1.57	1.54	0.01	1.54	0.03	1.55	0.02	1.67	0.10
16 <i>β</i>	1.45	1.55	0.05	1.66	0.21	1.68	0.23	1.57	0.12
17α	1.45	1.55	0.05	1.59	0.14	1.50	0.05	1.52	0.07
17β	1.45	1.43	0.04	1.34	0.11	1.25	0.20	1.39	0.06
18	1.40	1.33	0.05	1.83	0.43	2.13	0.73	1.54	0.14
20	0.99	1.06	0.06	0.93	0.06	1.20	0.21	0.89	0.10
21	1.16	1.23	0.07	1.08	0.08	1.12	0.04	1.21	0.05
22	0.98	0.90	0.07	1.23	0.25	1.17	0.19	0.93	0.05
23	1.28	1.32	0.05	1.15	0.13	1.13	0.15	1.30	0.02
24	1.02	1.01	0.01	1.01	0.01	1.01	0.01	1.04	0.02
25	0.90	0.99	0.10	1.02	0.12	0.90	0.00	0.99	0.09
26	3.29	3.29	0.00	2.50	0.79	2.81	0.48	3.39	0.10
TAD			2.88		7.29		6.58		4.60
MAE			0.11		0.28		0.25		0.18

Table S3. Calculated (calc.) and experimental (exp.) ¹H NMR chemical shift values of **a-d** at the mPW1PW91/6-311+G(d,p) level in chloroform and total absolute deviation (TAD) and mean absolute error (MAE).

Figure S3. ¹H NMR spectrum (CDCl₃, 600 MHz) of roquefornine A (1).

Figure S4. ¹³C NMR spectrum (CDCl₃, 150 MHz) of roquefornine A (1).

Figure S5. ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of roquefornine A (1).

Figure S6. Enlarged ¹H-¹H COSY spectrum (CDCl₃, 600 MHz) of roquefornine A (**1**).

Figure S7. HMBC spectrum (CDCl₃, 600 MHz) of roquefornine A (1).

Figure S8. Enlarged HMBC spectrum (CDCl₃, 600 MHz) of roquefornine A (1).

Figure S9. HSQC spectrum (CDCl₃, 600 MHz) of roquefornine A (1).

Figure S10. NOESY spectrum (CDCl₃, 600 MHz) of roquefornine A (1).

Figure S11. (+)-HR-ESI-MS $[M + Na]^+$ of roque formine A (1).