Supporting Information available

TFA/TBHP-Promoted Oxidative Cyclisation for the Construction of Tetracyclic Quinazolinones and Rutaecarpine

Feng-Cheng Jia,*a Tian-Zhi Chen, ${ }^{\text {a }}$ and Xiao-Qiang Hu*b

${ }^{a}$ School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan
430073, China.
E-mail: fengcheng-jia@wit.edu.cn.
${ }^{b}$ Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education \& Hubei
Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science,
South-Central University for Nationalities, Wuhan 430074, China.
E-mail: huxiaoqiang@mail.scuec.edu.cn
Table of Contents Pages

1. General S2
2. Experimental procedures S2-S3
3. Spectral data of compound 3aa-3ad, Rutaecarpine, 5a-5b S4-S10
4. Reference S10
5. Appendix: spectral copies of ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR S11-S32

1. General

1. All isatins (1a-10), 1,2,3,4-tetrahydroisoquinolines ($\mathbf{2 a} \mathbf{- 2 e}$) and other reagents were obtained from commercial suppliers and used without further purification. Compound $\mathbf{7}^{\mathbf{1}}$ is obtained by removing hydrochloric acid from commercially purchased 6,7-dimethoxy-3,4dihydroisoquinoline, hydrochloride (CAS: 20232-39-7) with sodium hydroxide solution. Compound $\mathbf{8}^{2}$ was prepared from according to the reported methods. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury 400 or 600 MHz spectrometer Chemical shifts are reported in ppm, relative to the internal standard of tetramethylsilane (TMS). HRMS were obtained on an Apex-Ultra MS equipped with an electrospray source. Melting points were determined using XT-4 apparatus and not corrected.

2. Experimental procedures

1. General procedure for preparation of 3 (3aa as an example)

General procedure: A sealed tube was charged with isatin $1 \mathbf{1 a}$ ($74 \mathrm{mg}, 0.5 \mathrm{mmol}$) , 1, 2, 3, 4tetrahydroisoquinoline $\mathbf{2 a}$ ($67 \mathrm{mg}, 0.5 \mathrm{mmol}$), TBHP (tert-Butyl hydroperoxide, 70% solution in water, $192 \mathrm{mg}, 1.5 \mathrm{mmol}$) and TFA ($17 \mathrm{mg}, 0.15 \mathrm{mmol}$) at room temperature, and then dried solvent $\mathrm{Tol}(4 \mathrm{~mL})$ was added. The resulting mixture was stirred at $120^{\circ} \mathrm{C}$ in a sealed vessel under air, after disappearance of the reactant (monitored by TLC), then added 50 mL water to the mixture, extracted with EtOAc 3 times ($3 \times 50 \mathrm{~mL}$). The extract was washed with 30% NaCl solution (V/V), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Petroleum ether / ethyl acetate $=10: 1)$ to yield the desired product $\mathbf{3 a a}$ as a white solid (75% yield).
2.Further Functionalization of product 5la

5a, 89 \%

An oven dried Schlenk tube of 10 mL equipped with a magnetic stir bar was charged with 3la (0.3 mmol), phenylboronic acid (1.5 equiv, 0.45 mmol) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv, 0.6 mmol). and THF (3 mL) was added under nitrogen atmosphere, and the mixture was refluxed for 12 h . After cooling down to room temperature, the precipitate was removed by filtration and washed with EtOAc, and the filtrate was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford a white solid $\mathbf{5 a}$ in 89% yield (86 mg).

3la

1.3 equiv

5b, 88\%

1 equiv 0.3 mmol
An oven dried Schlenk tube of 10 mL equipped with a magnetic stir bar was charged with 3la (0.3 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%)$ and $\mathrm{CuI}(5 \mathrm{~mol} \%)$. After charging nitrogen for three times, phenylacetylene ($0.39 \mathrm{mmol}, 1.3$ eq. $), \mathrm{Et} 3 \mathrm{~N}(0.6 \mathrm{mmol}, 2$ equiv. $)$ and THF (3 mL) was added under nitrogen atmosphere, and the mixture was refluxed for 12 h . After cooling down to room temperature, the precipitate was removed by filtration and washed with EtOAc, and the filtrate was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford a white solid $\mathbf{5 b}$ in 88% yield (92 mg).

3. Spectral data of compound 3aa-3ad, Rutaecarpine

5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3aa) ${ }^{3}$
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.6,149.2,147.7$, 136.9, 134.1, 131.6, 129.4, 127.9, 127.49, 127.47, 127.4, 126.7, 126.4, 120.6, 39.5, 27.3.

10-methyl-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ba) ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 161.6, 148.5, 145.7, 136.8, 136.6, 135.7, 131.4, 129.5, 127.8, 127.5, 127.4, 127.3, 126.2, 120.3, 39.5, 27.4, 21.3.

10-methoxy-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ca) ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=161.1,158.0,147.0,142.2,136.4,131.0,129.4,128.9,127.4,127.3,127.2,124.3$, 121.2, 105.9, 55.6, 39.5, 27.2 .

10-(trifluoromethoxy)-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3da) white solid. m.p.: 194-195 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.12(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=160.9,149.7,147.0,146.3,137.0,132.0,129.6,129.1,128.0,127.7,127.5$, $121.7,121.5,119.2,118.1,39.7,27.3$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 333.0851 , found 333.0852 .

10-fluoro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ea) ${ }^{2}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.44(d, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.74$ $(\mathrm{m}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.5,161.0,159.9$, $148.7,144.4,136.9,131.8,129.94,129.88,129.2,127.9,127.6,127.5,122.9,122.8$, $121.8,111.7,111.5,39.7,27.3$.

10-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3fa) ${ }^{3}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.6,149.6$, $146.2,137.0,134.6,132.1,131.9,129.2,129.1,128.0,127.6,127.5,126.1,121.6,39.7$, 27.3.

10-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ga) ${ }^{3}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=160.5,149.7,146.5,137.3,137.0,131.9,129.3,129.2,128.0,127.7,127.5$, 122.0, 119.9, 39.7, 27.3.

10-iodo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ha)
Brown solid. m.p.: 188-189 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta=8.61$ (s, 1H), 8.43 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=160.2,149.9,146.9,142.9,137.0,135.6,132.0,129.3$, 129.1, 128.0, 127.6, 127.5, 122.2, 90.8, 39.7, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{IN}_{2} \mathrm{O}$ $(\mathrm{M}+\mathrm{H})^{+} 374.9989$, found 374.9996 .

9-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ia) ${ }^{4}$
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 2 H), 3.07 ($\mathrm{s}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.7,150.0,149.8,137.1,134.0$, 133.5, 132.0, 129.1, 128.9, 127.9, 127.54, 127.47, 126.8, 117.8, 39.5, 27.3.

9-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ja)
Brown solid. m.p.: $223-225^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.71 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52-7.45 (m, 2H), $7.42(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.8,149.9,149.7,137.1,133.8,132.9,132.0,128.9$, 127.9, 127.61, 127.57, 127.5, 121.4, 118.7, 39.7, 27.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 327.0127$, found 327.0132.

11-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ka) ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$
(s, 1H), $7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.0,150.5,148.5,140.4,137.1,132.1,129.0,128.3,128.2,127.7$, 127.5, 127.1, 126.9, 119.1, 39.6, 27.3.

11-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3la) ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ $(\mathrm{s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.1,150.4,148.7,137.0,132.0,130.1,129.7,129.1,128.8,128.3$, 128.1, 127.6, 127.5, 119.4, 39.5, 27.2.

12-fluoro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ma) ${ }^{\mathbf{3}}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=160.8,160.7,158.4,155.9,149.8,137.4$, 137.3, 136.9, 132.0, 129.2, 128.3, 127.7, 127.4, 126.33, 126.25, 122.5, 122.30, 122.26, 119.5, 119.3, 39.7, 27.2 .

12-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3na) ${ }^{4}$ ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=161.1,149.8,144.4,136.9,134.4,132.02,131.99,129.2,128.4,127.7,127.4,126.3$, 125.6, 122.1, 39.7, 27.2.

12-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3oa)

Brown solid. m.p.:233-235 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.58$ (d, $J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=161.2,149.9,145.4,137.8,136.9,132.1,129.2,128.5,127.8,127.4,126.8$, 126.4, 122.8, 122.1, 39.7, 27.2. HRMS (ESI) m / z calcd forC $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 327.0127, found 327.0136.

10-chloro-12-methyl-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one

(3pa)

Brown solid. m.p.: $195-197^{\circ}{ }^{\circ} .^{1}{ }^{H} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.0,148.2,144.8,138.3,136.8,134.7,131.7,131.5,129.5$, 128.0, 127.53, 127.47, 123.7, 121.5, 39.6, 27.2, 17.1. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$297.0789, found 297.0796.

2,3-dimethoxy-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ab) ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.67(\mathrm{~m}$, 2H), 7.41 ($J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.70 ($\mathrm{s}, 1 \mathrm{H}$), 4.39 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.03 ($\mathrm{s}, 3 \mathrm{H}$), 3.95 (s, $3 \mathrm{H}), 3.02(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.7,152.1,149.2$, 148.4, 147.7, 134.0, 130.8, 127.1, 126.8, 126.0, 121.6, 120.3, 109.8, 109.5, 56.1, 56.0, 39.6, 26.9.

2-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ac) ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.64(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.73(\mathrm{~m}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=161.4,147.9$,
147.4, 135.7, 134.4, 134.3, 131.3, 130.6, 129.1, 127.6, 126.84, 126.80, 121.3, 120.7, 39.3, 26.9.

3-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ad) ${ }^{\mathbf{2}}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2 H), 3.01 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.4,148.5,147.5$, 138.7, 134.3, 130.8, 130.4, 129.6, 128.4, 127.5, 126.8, 126.7, 126.3, 120.7, 39.3, 27.1.

Rutecarpine (4aa) ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.67(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}$, $2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=161.5,147.2,145.2,138.4,134.4,127.2,126.9,126.3,126.2,125.6,125.5$, $121.0,120.5,120.0,118.6,112.2,41.1,19.6$.

11-phenyl-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (5a)
white solid. m.p.:200-202 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=161.4,149.6,148.0,146.8,139.6,136.9,131.6,129.4,128.8,128.2,127.9$, 127.5, 127.4, 127.3, 127.2, 125.5, 125.4, 119.3, 39.4, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$325.1321, found 325.1325 .

11-(phenylethynyl)-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (5b)
white solid. m.p.:187-188 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=161.2,149.8,147.6,136.9,131.8,131.7,130.4,129.3$, 129.1, 128.7, 128.3, 128.0, 127.5, 127.4, 126.8, 122.5, 120.0, 92.4, 88.5, 39.5, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 349.1321$, found 349.1325 .

4. Reference:

1. H. L. Cui, L. Jiang, H. Tan and S. Liu, Adv. Synth. Catal., 2019, 361, 4772-4780.
2. L. Xie, C. Lu, D. Jing, X. Ou and K. Zheng, Eur. J. Org. Chem., 2019, 3649-3653.
3. F. Xie, Q. H. Chen, R. Xie, H. F. Jiang and M. Zhang, ACS Catal., 2018, 8, 58695874.
4. C. Lu, Z. Su, D. Jing, S. Jin, L. Xie, L. Li and K. Zheng, Org. Lett., 2019, 21, 14381443.
5. B. A. Granger, K. Kaneda and S. F. Martin, Org. Lett., 2011, 13, 4542-4545.
6. Spectral copies of ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR

$\stackrel{\circ}{\text { ® }} \underset{\sim}{\underset{\sim}{j}}$

3aa; CDCl $_{3} ; 100 \mathrm{MHz}$

$\begin{array}{lllllllllllllll}190 & 170 & 150 & 130 & 110 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

3ka, CDCb, 600 MHz

N~~~~
$\stackrel{\sim}{0}$

3ka, CDClb $_{3}, 100 \mathrm{MHz}$

읃․․ㅇㅇㅇ

3la, CDCl_{3}

$\stackrel{\sim}{\sim}$

\circ

,

- ${ }^{\circ}{ }^{\circ}$ NべN.

3na CDCl_{3}

150 MHz
$3 \mathrm{pa}, \mathrm{CDCl}_{3}$

150 MHz

