Supporting Information available

TFA/TBHP-Promoted Oxidative Cyclisation for the

Construction of Tetracyclic Quinazolinones and Rutaecarpine

Feng-Cheng Jia,*^a Tian-Zhi Chen,^a and Xiao-Qiang Hu*^b

^aSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.

E-mail: fengcheng-jia@wit.edu.cn.

^bKey Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China. E-mail: huxiaoqiang@mail.scuec.edu.cn

Table of Contents

Pages

General	. S2
Experimental procedures	S2-S3
Spectral data of compound 3aa-3ad, Rutaecarpine, 5a-5b	S4-S10
Reference	S10
Appendix: spectral copies of ¹ H NMR, and ¹³ C NMR	S11-S32
	General Experimental procedures Spectral data of compound 3aa-3ad, Rutaecarpine, 5a-5b Reference Appendix: spectral copies of ¹ H NMR, and ¹³ C NMR

1. General

1. All isatins (1a-1o), 1,2,3,4-tetrahydroisoquinolines (2a-2e) and other reagents were obtained from commercial suppliers and used without further purification. Compound 7^1 is obtained by removing hydrochloric acid from commercially purchased 6,7-dimethoxy-3,4dihydroisoquinoline, hydrochloride (CAS: 20232-39-7) with sodium hydroxide solution. Compound 8^2 was prepared from according to the reported methods. TLC analysis was performed using pre-coated glass plates. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR spectra were recorded on a Varian Mercury 400 or 600 MHz spectrometer Chemical shifts are reported in ppm, relative to the internal standard of tetramethylsilane (TMS). HRMS were obtained on an Apex-Ultra MS equipped with an electrospray source. Melting points were determined using XT-4 apparatus and not corrected.

2. Experimental procedures

1. General procedure for preparation of 3 (3aa as an example)

General procedure: A sealed tube was charged with isatin **1a** (74 mg, 0.5 mmol) , 1,2,3,4tetrahydroisoquinoline **2a** (67 mg, 0.5 mmol), TBHP (tert-Butyl hydroperoxide, 70% solution in water, 192 mg, 1.5 mmol) and TFA (17 mg, 0.15 mmol) at room temperature, and then dried solvent Tol(4 mL) was added. The resulting mixture was stirred at 120 °C in a sealed vessel under air, after disappearance of the reactant (monitored by TLC), then added 50mL water to the mixture, extracted with EtOAc 3 times (3×50 mL). The extract was washed with 30% NaCl solution (V/V), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Petroleum ether / ethyl acetate = 10:1) to yield the desired product **3aa** as a white solid (75% yield).

2.Further Functionalization of product 5la

An oven dried Schlenk tube of 10 mL equipped with a magnetic stir bar was charged with **3la** (0.3 mmol), phenylboronic acid (1.5 equiv, 0.45 mmol) Pd(PPh₃)₄ (10 mol%) and K₂CO₃ (2 equiv, 0.6 mmol). and THF (3 mL) was added under nitrogen atmosphere, and the mixture was refluxed for 12 h. After cooling down to room temperature, the precipitate was removed by filtration and washed with EtOAc, and the filtrate was washed with brine, dried over Na₂SO₄ and then concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford a white solid **5a** in 89 % yield (86 mg).

1 equiv 0.3 mmol

An oven dried Schlenk tube of 10 mL equipped with a magnetic stir bar was charged with **3la** (0.3 mmol), Pd(PPh₃)₂Cl₂ (10 mol %) and CuI (5 mol %). After charging nitrogen for three times, phenylacetylene (0.39 mmol, 1.3 eq.), Et₃N (0.6 mmol, 2 equiv.) and THF (3 mL) was added under nitrogen atmosphere, and the mixture was refluxed for 12 h. After cooling down to room temperature, the precipitate was removed by filtration and washed with EtOAc, and the filtrate was washed with brine, dried over anhydrous Na₂SO₄ and then concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford a white solid **5b** in 88% yield (92 mg).

3. Spectral data of compound 3aa-3ad, Rutaecarpine

5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3aa)³

¹H NMR (400 MHz, CDCl₃) δ = 8.50 (d, *J* = 7.6 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 7.84–7.69 (m, 2H), 7.53–7.39 (m, 3H), 7.28 (d, *J* = 7.2 Hz, 1H), 4.41 (t, *J* = 6.4 Hz, 2H), 3.10 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.6, 149.2, 147.7, 136.9, 134.1, 131.6, 129.4, 127.9, 127.49, 127.47, 127.4, 126.7, 126.4, 120.6, 39.5, 27.3.

10-methyl-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ba)³

¹H NMR (400 MHz, CDCl₃) δ = 8.49 (d, *J* = 7.2 Hz, 1H), 8.10 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 8.0, 1H), 7.50–7.39 (m, 2H), 7.28 (d, *J* = 7.6 Hz, 1H), 4.41 (t, *J* = 6.4 Hz, 2H), 3.10 (t, *J* = 6.4 Hz, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.6, 148.5, 145.7, 136.8, 136.6, 135.7, 131.4, 129.5, 127.8, 127.5, 127.4, 127.3, 126.2, 120.3, 39.5, 27.4, 21.3.

10-methoxy-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ca)³

¹H NMR (600 MHz, CDCl₃) δ = 8.37 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 1H), 7.59 (s, 1H), 7.45–7.32 (m, 2H), 7.32–7.25 (m, 1H), 7.20 (d, *J* = 6.6 Hz, 1H), 4.36 (t, *J* = 6.6 Hz, 2H), 3.88 (s, 3H), 3.04 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.1, 158.0, 147.0, 142.2, 136.4, 131.0, 129.4, 128.9, 127.4, 127.3, 127.2, 124.3, 121.2, 105.9, 55.6, 39.5, 27.2.

10-(trifluoromethoxy)-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3da) white solid. m.p.:194-195 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.45 (d, *J* = 7.6 Hz, 1H), 8.12 (s, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.58-7.54 (m, 1H), 7.50–7.40 (m, 2H), 7.28(d, J = 7.2 Hz, 1H), 4.40 (t, J = 6.8 Hz, 2H), 3.10 (t, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.9$, 149.7, 147.0, 146.3, 137.0, 132.0, 129.6, 129.1, 128.0, 127.7, 127.5, 121.7, 121.5, 119.2, 118.1, 39.7, 27.3. HRMS (ESI) calcd for C₁₇H₁₂F₃N₂O₂ (M+H)⁺ 333.0851, found 333.0852.

10-fluoro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ea)²

¹H NMR (600 MHz, CDCl₃) δ = 8.44 (*d*, *J* = 7.8 Hz, 1H), 7.94-7.90 (m, 1H), 7.78-7.74 (m, *J* = 9.0, 4.8 Hz, 1H), 7.49-7.40 (m, 3H), 7.28 (d, *J* = 7.8 Hz, 1H), 4.40 (t, *J* = 6.6 Hz, 2H), 3.10 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.5, 161.0, 159.9, 148.7, 144.4, 136.9, 131.8, 129.94, 129.88, 129.2, 127.9, 127.6, 127.5, 122.9, 122.8, 121.8, 111.7, 111.5, 39.7, 27.3.

10-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3fa)³

¹H NMR (600 MHz, CDCl₃) δ = 8.44 (d, *J* = 7.8 Hz, 1H), 8.24 (s, 1H), 7.71-7.64 (m, 2H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 4.39 (t, *J* = 6.6 Hz, 2H), 3.10 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 160.6, 149.6, 146.2, 137.0, 134.6, 132.1, 131.9, 129.2, 129.1, 128.0, 127.6, 127.5, 126.1, 121.6, 39.7, 27.3.

10-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ga)³

¹H NMR (600 MHz, CDCl₃) δ = 8.44 (d, *J* = 7.8 Hz, 1H), 8.41 (s, 1H), 7.83–7.75 (m, 1H), 7.62 (d, *J* = 9.0 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 4.39 (t, *J* = 6.6 Hz, 2H), 3.10 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 160.5, 149.7, 146.5, 137.3, 137.0, 131.9, 129.3, 129.2, 128.0, 127.7, 127.5, 122.0, 119.9, 39.7, 27.3.

10-iodo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ha)

Brown solid. m.p.:188-189 °C.¹H NMR (600 MHz, CDCl3) δ = 8.61 (s, 1H), 8.43 (d, *J* = 7.2 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 6.6 Hz, 1H), 4.38 (t, *J* = 6.6 Hz, 2H), 3.09 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 160.2, 149.9, 146.9, 142.9, 137.0, 135.6, 132.0, 129.3, 129.1, 128.0, 127.6, 127.5, 122.2, 90.8, 39.7, 27.3. HRMS (ESI) calcd for C₁₆H₁₂IN₂O (M+H)⁺ 374.9989, found 374.9996.

9-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ia) ⁴

¹H NMR (600 MHz, CDCl₃) δ = 8.41 (d, *J* = 7.2 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.49-7.36 (m, 3H), 7.24 (d, *J* = 6.6 Hz, 1H), 4.33 (d, *J* = 6.0 Hz, 2H), 3.07 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 159.7, 150.0, 149.8, 137.1, 134.0, 133.5, 132.0, 129.1, 128.9, 127.9, 127.54, 127.47, 126.8, 117.8, 39.5, 27.3.

9-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ja)

Brown solid. m.p.:223-225 °C.¹H NMR (600 MHz, CDCl₃) δ = 8.44 (d, *J* = 7.2 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1 H), 7.68 (d, *J* = 7.8 Hz, 1 H), 7.52-7.45 (m, 2H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 6.6 Hz, 1H), 4.36 (t, *J* = 6.6 Hz, 2H), 3.09 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 159.8, 149.9, 149.7, 137.1, 133.8, 132.9, 132.0, 128.9, 127.9, 127.61, 127.57, 127.5, 121.4, 118.7, 39.7, 27.3. HRMS (ESI) m/z calcd for C₁₆H₁₂BrN₂O (M+H)⁺ 327.0127, found 327.0132.

11-chloro-5,6-dihydro-8H-isoquinolino[**1,2-b**]**quinazolin-8-one** (**3ka**)⁴ ¹H NMR (600 MHz, CDCl₃) δ = 8.45 (d, *J* = 7.2 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.75 (s, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 7.2 Hz, 1H), 4.39 (t, J = 6.0 Hz, 2H), 3.10 (t, J = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.0$, 150.5, 148.5, 140.4, 137.1, 132.1, 129.0, 128.3, 128.2, 127.7, 127.5, 127.1, 126.9, 119.1, 39.6, 27.3.

11-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3la)⁴

¹H NMR (600 MHz, CDCl₃) δ = 8.42 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.92 (s, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 6.6 Hz, 1H), 4.37 (t, *J* = 6.6 Hz, 2H), 3.09 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.1, 150.4, 148.7, 137.0, 132.0, 130.1, 129.7, 129.1, 128.8, 128.3, 128.1, 127.6, 127.5, 119.4, 39.5, 27.2.

12-fluoro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ma)³

¹H NMR (600 MHz, CDCl₃) δ = 8.50 (d, *J* = 7.8 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.51–7.33 (m, 4H), 7.25 (d, *J* = 7.2 Hz, 1H), 4.40 (t, *J* = 6.6 Hz, 2H), 3.10 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 160.8, 160.7, 158.4, 155.9, 149.8, 137.4, 137.3, 136.9, 132.0, 129.2, 128.3, 127.7, 127.4, 126.33, 126.25, 122.5, 122.30, 122.26, 119.5, 119.3, 39.7, 27.2.

12-chloro-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3na)⁴

¹H NMR (600 MHz, CDCl₃) δ = 8.56 (d, *J* = 7.2 Hz, 1H), 8.19 (d, *J* = 7.2 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 1H), 7.51–7.40 (m, 2H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 6.6 Hz, 1H), 4.40 (t, *J* = 6.6 Hz, 2H), 3.10 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.1, 149.8, 144.4, 136.9, 134.4, 132.02, 131.99, 129.2, 128.4, 127.7, 127.4, 126.3, 125.6, 122.1, 39.7, 27.2.

12-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3oa)

Brown solid. m.p.:233-235 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.58 (d, *J* = 6.6 Hz, 1H), 8.24 (d, *J* = 7.2 Hz, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.33–7.22 (m, 2H), 4.40 (t, *J* = 6.6 Hz, 2H), 3.10 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.2, 149.9, 145.4, 137.8, 136.9, 132.1, 129.2, 128.5, 127.8, 127.4, 126.8, 126.4, 122.8, 122.1, 39.7, 27.2. HRMS (ESI) m/z calcd forC₁₆H₁₂BrN₂O (M+H)⁺ 327.0127, found 327.0136.

10-chloro-12-methyl-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one

(3pa)

Brown solid. m.p.:195-197 °C.¹H NMR (600 MHz, CDCl₃) δ = 8.47 (d, *J* = 7.2 Hz, 1H), 8.07 (s, 1H), 7.51 (s, 1H), 7.46 (t, *J* = 6.6 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 6.6 Hz, 1H), 4.37 (t, *J* = 6.0 Hz, 2H), 3.08 (t, *J* = 6.0 Hz, 2H), 2.65 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.0, 148.2, 144.8, 138.3, 136.8, 134.7, 131.7, 131.5, 129.5, 128.0, 127.53, 127.47, 123.7, 121.5, 39.6, 27.2, 17.1. HRMS (ESI) calcd for C₁₇H₁₄ClN₂O (M+H)⁺ 297.0789, found 297.0796.

2,3-dimethoxy-5,6-dihydro-8H-isoquinolino[**1,2-b**]**quinazolin-8-one** (**3ab**) ³ ¹H NMR (400 MHz, CDCl₃) δ = 8.27 (d, *J* = 8.0 Hz, 1H), 7.95 (s, 1H), 7.79–7.67 (m, 2H), 7.41 (t *J* = 7.2 Hz, 1H), 6.70 (s, 1H), 4.39 (t, *J* = 6.4 Hz, 2H), 4.03 (s, 3H), 3.95 (s, 3H), 3.02 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.7, 152.1, 149.2, 148.4, 147.7, 134.0, 130.8, 127.1, 126.8, 126.0, 121.6, 120.3, 109.8, 109.5, 56.1, 56.0, 39.6, 26.9.

2-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ac)⁵

¹H NMR (400 MHz, CDCl₃) δ = 8.64 (s, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 7.86–7.73 (m, 2H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 6.4 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 4.40 (t, *J* = 6.4 Hz, 2H), 3.06 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.4, 147.9,

147.4, 135.7, 134.4, 134.3, 131.3, 130.6, 129.1, 127.6, 126.84, 126.80, 121.3, 120.7, 39.3, 26.9.

3-bromo-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (3ad)²

¹H NMR (400 MHz, CDCl₃) δ = 8.30 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 7.74–7.64 (m, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.44–7.35 (m, 2H), 4.33 (t, *J* = 6.4 Hz, 2H), 3.01 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.4, 148.5, 147.5, 138.7, 134.3, 130.8, 130.4, 129.6, 128.4, 127.5, 126.8, 126.7, 126.3, 120.7, 39.3, 27.1.

Rutecarpine (4aa)²

¹H NMR (400 MHz, CDCl₃) δ = 9.67 (s, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 7.73-7.66 (m, 2H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.48–7.36 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 4.59 (t, *J* = 6.8 Hz, 2H), 3.24 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.5, 147.2, 145.2, 138.4, 134.4, 127.2, 126.9, 126.3, 126.2, 125.6, 125.5, 121.0, 120.5, 120.0, 118.6, 112.2, 41.1, 19.6.

11-phenyl-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (5a)

white solid. m.p.:200-202 °C.¹H NMR (400 MHz, CDCl₃) δ = 8.47 (d, *J* = 8.8 Hz, 1H), 8.32 (d, *J* = 8.0 Hz, 1H), 7.94 (s, 1H), 7.72-7.61 (m, 3H), 7.48-7.37 (m, 5H), 7.24 (d, *J* = 7.6 Hz, 1H), 4.37 (t, *J* = 6.8 Hz, 2H), 3.06 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.4, 149.6, 148.0, 146.8, 139.6, 136.9, 131.6, 129.4, 128.8, 128.2, 127.9, 127.5, 127.4, 127.3, 127.2, 125.5, 125.4, 119.3, 39.4, 27.3. HRMS (ESI) calcd for C₂₂H₁₇N₂O (M+H)⁺ 325.1321, found 325.1325.

11-(phenylethynyl)-5,6-dihydro-8H-isoquinolino[1,2-b]quinazolin-8-one (5b)

white solid. m.p.:187-188 °C.¹H NMR (400 MHz, CDCl₃) δ = 8.46 (d, *J* = 8.4 Hz, 1H), 8.24 (d, *J* = 8.0 Hz, 1H), 7.89 (s, 1H), 7.60-7.50 (m, 3H), 7.47-7.39 (m, 2H), 7.38-7.31 (m, 3H), 7.25 (d, *J* = 8.4 Hz, 1H), 4.37 (t, *J* = 6.4 Hz, 2H), 3.06 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 161.2, 149.8, 147.6, 136.9, 131.8, 131.7, 130.4, 129.3, 129.1, 128.7, 128.3, 128.0, 127.5, 127.4, 126.8, 122.5, 120.0, 92.4, 88.5, 39.5, 27.3. HRMS (ESI) calcd for C₂₄H₁₇N₂O (M+H)⁺ 349.1321, found 349.1325.

4. Reference:

- 1. H. L. Cui, L. Jiang, H. Tan and S. Liu, Adv. Synth. Catal., 2019, 361, 4772-4780.
- 1. L. Xie, C. Lu, D. Jing, X. Ou and K. Zheng, Eur. J. Org. Chem., 2019, 3649-3653.
- F. Xie, Q. H. Chen, R. Xie, H. F. Jiang and M. Zhang, ACS Catal., 2018, 8, 5869-5874.
- C. Lu, Z. Su, D. Jing, S. Jin, L. Xie, L. Li and K. Zheng, Org. Lett., 2019, 21, 1438-1443.
- 4. B. A. Granger, K. Kaneda and S. F. Martin, Org. Lett., 2011, 13, 4542-4545.

5. Spectral copies of ¹H NMR, and ¹³C NMR

 190
 170
 150
 130
 110
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0

10.5 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

