Supporting Information

Asymmetric Organocatalytic Double 1,6-Addition: Rapid Access to Chiral Chromans with Molecular Complexity

Sourav Roy†, Suman Pradhan†, Krishan Kumar† and Indranil Chatterjee†*

Indian Institute of Technology Ropar Ropar, Punjab-140001, India Indranil.chatterjee@iitrpr.ac.in

Supporting Information

1. Gen	eral Information.	S4
2. List	of Substrates used.	S 5
2.1. Li	st of 2,4 dienals.	S5
2.2. Li	st of <i>p</i> -QM's.	S6
2.3. Li	st of unreacted <i>p</i> -QM's.	S6
2.4. Lis	st of amines.	S7
3. Opt	imization Table.	S8
3.1. Ta	ble 1: Additive Screening.	S 8
3.2. Ta	ble 2: Solvent Screening.	S9
3.3. Ta	ble 3: Screening of Catalyst & Other Parameters.	S10
3.4. Ta	ble 4: Miscellaneous Optimization-1.	S11
3.5. Ta	ble 5: Miscellaneous Optimization-2.	S12
4. Asy	mmetric Organocatalytic Double 1,6-Addition: Synthesis of Chiral Chromans.	S13
4.1. Ge	eneral Procedure for formation of chroman derivatives from linear 2,4 dienals (GP-1).	S13
4.2. Ge	eneral Procedure for formation of chroman derivatives from branched 2,4 dienals (GP-2).	S13
4.4. Go (4a) (C	eneral Procedure for asymmetric synthesis of cyclopropane derivative from α , β -unsaturated Alde GP-4)	hyde S14
4.4. Ge	eneral Procedure for Corey-Chaykovsky reaction of α , β -unsaturated Aldehyde (4a) (GP-5).	S15
4.5. Ge	eneral Procedure for formation of epoxide ring from α , β -unsaturated Aldehyde (4a) (GP-6)	S16
5. Rest	ult & Characterization.	S17
5.1. (E)-3-((2R,3S,4R)-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)acrylaldehyde (4a).	S17
5.2.	(E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethyl - 6 - methylchroman - 3 - yl) a crylalder (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethyl - 6 - methylchroman - 3 - yl) a crylalder (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethyl - 6 - methylchroman - 3 - yl) a crylalder (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethyl - 6 - methylchroman - 3 - yl) a crylalder (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethyl - 6 - methylchroman - 3 - yl) a crylalder (E) - 3 - (12R, 3S, 4R) - 4 - (12R, 3R) - 4 - (12R, 3S, 4R) - (12R, 3R) - (12	hyde
(4b). 5.3. (E)-3-((2R,3S,4R)-6-bromo-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)acrylaldehyde	S18 (4c). S19
5.4. (E) - 3 - ((2R, 3S, 4R) - 6 - chloro - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethylchroman - 3 - yl) a crylaldehyde (2R, 3S, 4R) - 6 - chloro - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethylchroman - 3 - yl) a crylaldehyde (3R, 3S, 4R) - 6 - chloro - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethylchroman - 3 - yl) a crylaldehyde (3R, 3S, 4R) - 6 - chloro - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethylchroman - 3 - yl) a crylaldehyde (3R, 3S, 4R) - 6 - chloro - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - ethylchroman - 3 - yl) a crylaldehyde (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3S, 4R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - 6 - chloro - 4 - (3R, 3R) - (3R, 3R	(4d).
5.5. (E_{A}))-3-((2R,3S,4R)-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-ethyl-6-methoxychroman-3-yl)acrylaldehyd	le
(4e). 5.6. (E)-3-((2R,3S,4R)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-ethyl-8-methoxychroman-3-yl)acrylaldehyd	sz i le
(4f). 5.7. (<i>E</i>)-3-((2R,3S,4R)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-ethyl-8-methylchroman-3-yl)acrylaldehyde	S22
(4g). 5.8. (<i>E</i>)-3-((2R,3S,4R)-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-methylchroman-3-yl)acrylaldehyde (4h)	S23 S24
5.9. (E)-3-((2R,3S,4R)-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-pentylchroman-3-yl)acrylaldehyde (4i).	S25
5.10.	2,6-di-tert-butyl-4-((2R,3S,4R)-3-((E)-3-hydroxyprop-1-en-1-yl)-2-pentylchroman-4-yl)phenol	4i-1). S26
5.11.	(E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 2 - phenethylchroman - 3 - yl) a crylaldehyde (E) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 3 - ((2R, 3S, 4R) - 4 - (3, 5 - di - tert - butyl - 4 - hydroxyphenyl) - 3 - ((3R, 3R) - 4 - (3R) - ((4j). S27

5.12. (E)-3-((2R,3S,4R)-2-cyclohexyl-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)chroman-3-yl)acrylaldehyde (4 Sź	4k). 28
5.13. (E) -3-((2S,3S,4R)-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-(2-nitrophenyl)chroman-3-yl)acrylaldehy (4). S2	yde 29
5.14. (E) -3- $((1R,2S,3R)$ -1- $(3,5$ -di- <i>tert</i> -butyl-4-hydroxyphenyl)-3-ethyl-2,3-dihydro-1 H -benzo[f]chromen yl)acrylaldehyde (4m).	1-2- 30
5.15. 2,6-di- <i>tert</i> -butyl-4-((2R,3S,4R)-3-((Z)-3-hydroxy-1-phenylprop-1-en-1-yl)-2-phenylchroman-4-yl)phen (4n).	enol 31
5.16. 2,6-di- <i>tert</i> -butyl-4-((2R,3S,4R)-3-((Z)-3-hydroxy-1-(4-methoxyphenyl)prop-1-en-1-yl)-2-phenylchroma 4-yl)phenol (40).	an- 32
5.17. 2,6-di- <i>tert</i> -butyl-4-((2R,3S,4R)-2-(4-chlorophenyl)-3-((Z)-3-hydroxy-1-phenylprop-1-en-1-yl)chroman yl)phenol (4p).	1-4- 33
5.18.(2S,3S)-diethyl2-((2R,4R)-4-(3,5-di- <i>tert</i> -butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)formylcyclopropane-1,1-dicarboxylate (5).S2)-3- 34
5.19. 2,6-di- <i>tert</i> -butyl-4-((2R,4R)-2-ethyl-3-((E)-2-((S)-oxiran-2-yl)vinyl)chroman-4-yl)phenol (6). Since the set of	35
5.20. 2,6-di- <i>tert</i> -butyl-4-($(2R,4R)$ -2-ethyl-3-($(2S,3S)$ -3-(hydroxymethyl)oxiran-2-yl)chroman-4-yl)phenol (Single Constraints) (Sin	(7). 36
6. X-ray data of 4d & 4p. Si	37
7. References. S4	40
8. Experimental NMR spectra. S4	42
9. HPLC Traces. St	82

1. General Information:

All reactions were performed in flame-dried glassware under argon atmosphere unless otherwise stated. Liquids and solutions were transferred with syringes. Solvents used were dried and purified by following standard procedures.

Technical grade solvents for extraction or chromatography (ethyl acetate, and petroleum ether) were distilled prior to use. CDCl₃ was stored over 4A° molecular sieves. Used chemicals were purchased from Sigma-Aldrich, TCI, Alfa-Aesar and Sisco Research Laboratories (SRL) used without further purification. All the liquid chemicals distilled freshly prior to use.

Analytical thin-layer chromatography (TLC) was performed on using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by UV radiation, basic aqueous potassium permangante (KMnO₄), *p*-anisaldehyde stains and heat as developing agents. Flash column chromatography was performed on silica gel 60 (40–63 μ m, 230–400 mesh, ASTM) from Merck using the indicated solvents. Organic solutions were concentrated under reduced pressure on Heidolph rotary evaporator.

NMR spectra were acquired on a JEOL JNM ECS-400 instrument running at 400 MHz for ¹H, 101 MHz ¹³C and 376 MHz for ¹⁹F respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.0 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (br = broad singlet, s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, ddd = doublet of doublet of doublet, td = triplet of doublet, m = multiplet), coupling constants (Hz), and integration.

1,2-Dibromomethane was used as an internal standard to calculate NMR yields & diastereomeric ratio (dr) of products by ¹H NMR analysis of the crude mixture.

Optical rotations were measured on a Anton Paar MCP 200, $[\alpha]_D$ values are given in deg·cm³·g⁻¹·dm⁻¹; concentration (c) in g (100 mL)⁻¹.

The enantiomeric excess (*ee*) of products was determined by High Performance liquid Chromatography (Waters modular system.) using Daicel Chiralpak IA, IB, IC, ODH, and ADH columns as chiral stationary phases. All the HRMS data were recorded on XEVO G2-XS QTOF. All the X-ray data were recorded on Bruker D8 venture instrument.

Dienals 1a, 1b, 1c and amines 3a, 3b, 3g has been obtained from commercial sources. Dienals 1d-1f^[S1], 1g-1i^[S2], *p*-QM's 2a-2k^[S3] and Amines 3c-3f^[S4-S7] were synthesized according to the procedure in the literature.

2. List of Substrates used.

The list of substrates for GP-1 and GP-2 are given bellow.

2.1. List of 2,4 dienals.

1e

1g

1h

1i

2.2 List of *p*-QM's.

2.3 List of unreacted *p*-QM's.

Following substrates remains un-reacted according to GP-1 and GP-2.

2.4 List of amines.

3g

Supporting Information

3. Optimization Table.

3.1. Table 1: Additive Screening.^[a]

Р	<i>t</i> Bu <i>t</i> Bu	<i>t</i> Bu H OTMS (20 mol%)	OH <i>t</i> Bu
N	Ле	additive (mol%) toluene (0.5 M) 45 °C, 40 h	Me
1a	2a		4a

Entry	1a/2a	Additive (mol%)	Yield (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
1	1/2	PhCO ₂ H (20)	42	2:1	-
2	1/1.2	PhCO ₂ H (20)	23	2:1	71
3	2/1	PhCO ₂ H (20)	28	2.5:1	67
4	2/1	4-NO ₂ -BA (20)	24	3:1	-
5	1/2	DABCO (20)	39	1.5:1	70
6	2/1	DABCO (20)	23	1.2:1	65
7	2/1	DABCO (40)	47	2:1	-
8	2/1	DIPEA (20)	58	1.2:1	71
9	1/1	DIPEA (40)	60	1:1	64
10	1/1.2	DIPEA (40)	53	1.1:1	61
11	1/1.5	DBU (20)	52	1.2:1	-
12	1/1.5	DBU (40)	60	1.5:1	62
13	1/1	DBU (40)	27	1.6:1	67
14	2/1	Et ₃ N (20)	44	1.4:1	60
15	1/1	Et ₃ N (40)	60	1.2:1	81
16	1/1	Et ₃ N (20)	68	1.2:1	-
17	1/1.5	Et ₃ N (40)	98	1:1:1	-
18	2/1	Et ₃ N (40)	52	1.4:1	81
19	1/1	Et ₃ N (100)	54	1:1	-

[a] unless untill mentioned all reactions were carried out in a 0.1 mmol scale by taking 1a (2.0 equiv) & 2a (1.0 equiv). [b] yield was measured by ¹H-NMR analysis of the crude reaction mixture. [c] diastereomeric mixture measured by ¹H-NMR analysis of the crude reaction mixture. [d] enantiomeric excess was measured by HPLC on a chiral stationary phase.

3.2. Table 2: Solvent Screening.^[a]

Entry	Solvent (M)	Yield (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
1	toluene (0.5)	69	3:1	85
2	$CH_2CI_2(0.5)$	54	3.5:1	94
3	CHCl ₃ (0.5)	60	2.5:1	85
4	CH ₃ CN (0.5)	42	1.2:1	-
5	THF (0.5)	63	1.8:1	92
6	Et ₂ O (0.5)	23	2.2:1	92
7	IPA (0.5)	21	4:1	-
8	benzene (0.5)	68	3:1	94
9	<i>p</i> -xylene (0.5)	74	2.5:1	92
10	<i>m</i> -xylene (0.5)	71	2.4:1	-
11	mesitylene (0.5)	69	2.5:1	-
12	o-xylene (0.5)	63	4.5:1	94
13	<i>o</i> -xylene (0.25)	69	3:1	85
14	<i>o</i> -xylene (0.1)	68	3:1	85
15	<i>o</i> -xylene (0.5) brine (3 equiv.)	67	3.5:1	90

[a] unless untill mentioned all reactions were carried out in a 0.1 mmol scale by taking 1a (2.0 equiv) & 2a (1.0 equiv). [b] yield was measured by ¹H-NMR analysis of the crude reaction mixture. [c] diastereomeric mixture measured by ¹H-NMR analysis of the crude reaction mixture. [d] enantiomeric excess was measured by HPLC on a chiral stationary phase.

3.3. Table 3: Screening of Catalyst & Other Parameters.^[a]

Entry	catalyst (mol%)	Temp. (^o C)	Time (h)	Yield (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
1	3c (20)	rt	40	67	2.5:1	88
2	3c (10)	10	40	68	2:1	93
3 ^[e]	3c (10)	10	40	57	3.5:1	85
4	3c (20)	10	24	62	2.5:1	85
5	3c (20)	10	14	56	3:1	87
6	3a (20)	10	48	90	1.1:1	67
7 ^[f]	3b (20)	10	48	36	-	-
8	3c (20)	10	48	92(84)	8:1	98
9	3d (20)	10	48	73	1.3:1	75
10	3e (20)	10	48	n.r	-	-
11	3f (20)	10	48	n.r	-	-
12	3c (20)	10	40	72	5:1	94
13	3c + 3e (20+30)	10	48	14	1:1	-

[a] unless untill mentioned all reactions were carried out in a 0.1 mmol scale by taking 1a (2.0 equiv) & 2a (1.0 equiv). [b] yield was measured by ¹H-NMR analysis of the crude reaction mixture, isolated yield in parentheses. [c] diastereomeric mixture measured by ¹H-NMR analysis of the crude reaction mixture. [d] enantiomeric excess was measured by HPLC on a chiral stationary phase. [e] 20 mol% Et₃N was used as an additive. [f] mixture of several isomers were found from ¹H NMR analysis of crude reaction mixture.

3.4. Table 4: Miscellaneous Optimization-1.^[a]

Entry	1g/2a	Additive . (mol%)	Temp. (°C) Time (h)	Yield (%) ^{[b}	[]] d.r. ^[c]	ee (%) ^[d]
1 [g]	2/1	Et ₃ N (20)	rt	12	64	5:1	82
2	2/1	PhCO ₂ H (20)) rt	12	20	9:1	81
3	2/1	Et ₃ N (20)	rt	12	70	6:1	83
4	2/1	NaOAc (20)	rt	12	54	10:1	75
5	2/1	DIPEA (20)	rt	12	67	5:1	79
6	2/1	K ₂ CO ₃ (20)	rt	12	40	5:1	55
7 ^[h]	2/1	Et ₃ N (20)	rt	12	69	90:1	76
8	2/1	Et ₃ N (20)	rt	40	45	30:1	70
9	2/1	Et ₃ N (20)	80	12	37	10:1	33
10	1/1	Et ₃ N (20)	rt	12	47	46:1	-
11	1/1.5	Et ₃ N (20)	rt	12	44	20:1	-
12	4/1	Et ₃ N (20)	rt	12	71	10:1	63
13	2/1	Et ₃ N (40)	rt	12	92(83)	45:1	90

[a] unless untill mentioned all reactions were carried out in a 0.1 mmol scale by taking 1g (2.0 equiv) & 2a (1.0 equiv).
[b] yield was measured by ¹H-NMR analysis of the crude reaction mixture, isolated yield in parentheses.
[c] diastereomeric mixture measured by ¹H-NMR analysis of the crude reaction mixture.
[d] enantiomeric excess was measured by HPLC on a chiral stationary phase.
[g] reaction performed without brine.
[h] reaction carried out by taking 3c instead of 3a.

3.5. Table 5: Miscellaneous Optimization-2.^[a]

Entry	1f/2a	Solvent (M)	Temp. (°C)	Time	Conv. (%) ^[b]	d.r. ^[c]	ee (%) ^[d]
1	2/1	o-xylene	10	48h	n.r	-	-
2	1/1	o-xylene	45	40h	n.r	-	-
3	1/1	CHCI ₃	10	48h	15	5:1	-
4	1/1	CH_2CI_2	45	40h	24	2:1	60
5	1/1	toluene	45	40h	7	-	-
6	1/2	CHCI ₃	45	5d	40	2:1	-
7	1/2	CHCl ₃ (0.5)	45	5d	27	2:1	-
8	1/2	CHCI ₃	60	5d	47	2.5:1	-
9	1/1	CHCl ₃ /o-xylene (1:2)	60	5d	12	-	-
10	1/2	CHCI ₃	80	4d	6	-	-
11	1/4	CHCl ₃ (0.1)	45	7d	54(36)	3:1	76
12 ^[i]	1/2	CHCI ₃	10	4d	12	2:1	-
13 ^[i]	1/2	CHCI ₃	45	10d	41	3:1	-

[a] unless untill mentioned all reactions were carried out in a 0.1 mmol scale. [b] conversion was measured by ¹H-NMR analysis of the crude reaction mixture, isolated yield in parentheses. [c] diastereomeric mixture measured by ¹H-NMR analysis of the crude reaction mixture. [d] enantiomeric excess was measured by HPLC on a chiral stationary phase. [i] 1.0 equiv Et₃N was used as an additive.

4. Asymmetric Organocatalytic Double 1,6-Addition: Synthesis of Chiral Chromans.

4.1. General Procedure for formation of chroman derivatives from linear 2,4 dienals (GP-1)

All the reactions were carried out in *o*-xylene (synthesis grade, >98%), without any precaution to exclude air and moisture (open air chemistry on the benchtop). An ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap was charged with amine **3c** (0.02 mmol, 10.2 mg, 0.2 equiv). Then *o*-xylene (0.2 mL, 0.5 M) and the additive triethylamine (0.04 mmol, 6.0 μ L, 0.4 equiv) were sequentially added. The reaction mixture was stirred in a cooling bath maintained at 10 °C (or 45 °C) for 5 minutes to let the mixture reaching a uniform temperature. The reaction was started by the addition of α , β , γ , δ -unsaturated aldehyde (2.0 equiv, 0.2 mmol) and the reaction mixture was stirred at 10 °C (or 45 °C) for 15 min. After that, *p*-QM derivative (1.0 equiv, 0.1 mmol) was added and purged with argon then the vial was sealed and immerged in the cooling bath again maintained at 10 °C (or 45 °C). Stirring was continued over 48 h.

The progress of the reaction was monitored by TLC and by ${}^{1}H$ NMR analysis of the aliquot taken from the crude mixture using CH₂Br₂ as internal standard. The analytically pure product is obtained by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

Racemic samples were prepared according to **GP-1** by using mixture of amine **3a** (0.010 mmol, 3.4 mg, 0.1 equiv) and amine **3g** (0.010 mmol, 3.4 mg, 0.1 equiv) instead of amine **3c**.

4.2. General Procedure for formation of chroman derivatives from branched 2,4 dienals (GP-2).

Supporting Information

All the reactions were carried out in toluene (HPLC grade, >98%), without any precaution to exclude air and moisture (open air chemistry on the benchtop). An ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap was charged with amine **3a** (0.02 mmol, 6.5 mg, 0.2 equiv). Then toluene (0.2 mL, 0.5 M), the additive triethylamine (0.04 mmol, 6.0 μ L, 0.4 equiv) and brine (0.6 mmol, 3.0 equiv) were sequentially added. The reaction mixture was stirred at room temperature for 5 minutes to let the mixture reaching a uniform temperature. The reaction was started by the addition of α , β , γ , δ -unsaturated aldehyde (2.0 equiv, 0.2 mmol) and the reaction mixture was stirred at room temperature for 15 min. After that, *p*-QM derivative (1.0 equiv, 0.1 mmol) was added and purged with argon then the vial was sealed and kept at room temperature. Stirring was continued over 12 h. Upon completion of the reaction the reaction mixture was diluted with 1.0 mL of ethanol and solid NaBH₄ (0.4 mmol, 4.0 equiv) were added and kept at 0 °C for 60 minutes. The reaction was quenched by adding few drops of water. Brine (5 mL) was added and resulted mixture was extracted with DCM (3 X 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*.

The progress of the reaction was monitored by TLC and by ${}^{1}H$ NMR analysis of the aliquot taken from the crude mixture using CH₂Br₂ as internal standard. The analytically pure product is obtained by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

Racemic samples were prepared according to **GP-2** by using mixture of amine **3a** (0.010 mmol, 3.4 mg, 0.1 equiv) and amine **3g** (0.010 mmol, 3.4 mg, 0.1 equiv) instead of amine **3a**.

4.3. General Procedure for asymmetric synthesis of cyclopropane derivative from α,β -unsaturated Aldehyde (4a) (GP-3).^[S8]

All the reactions were carried out in chloroform (HPLC grade, >98%), without any precaution to exclude air and moisture (open air chemistry on the benchtop). An ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap was charged with amine **3a** (0.02 mmol, 6.5 mg, 0.2 equiv). Then chloroform (0.4 mL, 0.25 M) and the additive triethylamine (0.1 mmol, 14.0 μ L, 1.0 equiv) were sequentially added. The reaction mixture was stirred in a heating bath maintained at 45 °C for 5 minutes to let the mixture reaching a uniform temperature. The reaction was started by the addition of α , β -unsaturated aldehyde (0.1 mmol, 42.0 mg, 1.0 equiv) and the reaction mixture was stirred at 45 °C for 15 min. After that, diethyl bromomalonate (0.2 mmol, 35.0 μ L, 2.0 equiv) was added and purged with argon then the vial was sealed and immerged in the heating bath again 45 °C. Stirring was continued over 40 h.

The progress of the reaction was monitored by TLC and by ¹H NMR analysis of the aliquot taken from the crude mixture using CH₂Br₂ as internal standard. The analytically pure product is obtained by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

Racemic samples were prepared according to **GP-3** by using mixture of amine **3a** (0.010 mmol, 3.4 mg, 0.1equiv) and amine **3g** (0.010 mmol, 3.4 mg, 0.1 equiv) instead of amine **3a**.

4.4. General Procedure for Corey-Chaykovsky reaction of α,β-unsaturated Aldehyde (4a) (GP-4).^[S9]

A 5 mL oven-dried Schlenk flask was charged with NaH (60 % dispersion in oil, washed hexanes (5 x 5 mL) and dried under vacuum, 12.0 mg, 0.31 mmol, 3.1 equiv). Dry THF (0.15 mL) and DMSO (0.15 mL) were added to the flask and the resulting slurry solution was cooled to 0 °C. Trimethylsulfonium iodide (61.0 mg, 0.3 mmol, 3.0 equiv) and DMSO (0.25 mL) were added to a separate oven-dried Schlenk flask. The solution was transferred slowly to the NaH solution via cannula. After the transfer was complete, α , β -unsaturated aldehyde **4a** (0.1 mmol, 42.0 mg, 1.0 equiv) was then added to the reaction mixture in one portion. The resulting mixture was stirred at 0 °C for 1 h, then at room temperature for another 1 h and quenched with distilled water (1 mL). The resulting mixture was then diluted with diethyl ether (5 mL) and brine (10 mL). The two layers were separated, and the aqueous layer was back extracted with diethyl ether (2 X 20 mL). The combined organic layer was dried with MgSO₄, filtered, and concentrated *in vacuo*.

The progress of the reaction was monitored by TLC and by ¹H NMR analysis of the aliquot taken from the crude mixture using CH₂Br₂ as internal standard. The analytically pure product is obtained by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

Racemic sample was prepared according to GP-4 by taking rac-4a instead of 4a.

4.5. General Procedure for formation of epoxide ring from α,β-unsaturated aldehyde (GP-5).^[S2]

In an oven dried ordinary vial equipped with a Teflon-coated stir bar and a plastic screw cap α,β -unsaturated aldehyde **4a** (0.1 mmol, 42.0 mg, 1.0 equiv) was taken and diluted with 1.0 mL of ethanol. Then to this mixture solid NaBH₄ (0.4 mmol, 4.0 equiv) were added and kept at 0 °C for 60 minutes. The reaction was quenched by adding few drops of water. Brine (5 mL) was added and resulted mixture was extracted with DCM (3 X 10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*.

The analytically pure product was obtained by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

Allyllic alcohol (36.0 mg, 0.085 mmol) obtained from above procedure was placed in a round bottom flask and dissolved in DCM (0.2 mL) at 0 °C. *meta*-Chloroperoxybenzoic acid (*m*CPBA, 1.3 equiv, 0.11 mmol) was added and the reaction mixture stirred for 3 h. Then the reaction was diluted with 10 mL of DCM and washed with NaHCO₃ solution (2 times) and brine. The organic phase was dried over Na₂SO₄ and filtered. Solvent was evaporated in vacuo and the crude reaction mixture purified by column chromatography on silica gel using petroleum ether and ethyl acetate as eluent.

Racemic sample was prepared according to GP-5 by taking rac-4a instead of 4a.

5. Results & Characterization.

5.1. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)acrylaldehyde (4a).

According to GP-1 compound (4a) was prepared by using 1a (22.0 μ L, 0.2 mmol, 2.0 equiv) 2a (31.0 mg, 0.1 mmol, 1.0 equiv), triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and Amine 3c (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4a** (major diastereomer) as pale yellow solid (35.5 mg, 84%).

Melting Point: 108-110 °C

 $[\alpha]_D^{20} = +16.0 (c = 0.4, CH_2Cl_2).$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/*i*PrOH = 200/1; flow rate = 0.2 mL/min; T = 25 °C; retention time: 46.24 min (major), 52.66 min (minor), *ee*: 98 %.

HRMS (ESI): *m*/*z* [M-H]⁺ Calculated for C₂₈H₃₅O₃⁺: 419.2586; Found 419.2588.

¹H NMR (400 MHz, CDCl₃) : δ 9.41 (d, J = 7.8 Hz, 1H), 7.13-70.9 (m, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.77 (d, J = 4.0 Hz, 2H), 6.74 (s, 2H), 6.52 (dd, J = 15.7, 9.8 Hz, 1H), 5.69 (dd, J = 15.7, 7.8 Hz, 1H), 5.08 (s, 1H), 4.03 (ddd, J = 10.6, 8.0, 2.9 Hz, 1H), 3.92 (d, J = 10.8 Hz, 1H), 2.76 (q, J = 10.1 Hz, 1H), 1.77 ((dqd, J = 14.4, 7.5, 7.0, 3.2 Hz, 1H), 1.64-1.60 (m, 1H), 1.34 (s, 18H), 1.08 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 193.1, 155.7, 154.7, 152.7, 135.9, 135.2, 132.4, 130.2, 127.8, 125.6, 125.0, 120.7, 116.5, 78.7, 50.1, 48.6, 34.4, 30.5, 27.2, 9.2. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.1, 155.8, 135.2, 130.2, 127.8, 125.6, 120.7, 116.5, 78.7, 50.1, 48.6, 30.5, 27.2, 9.2.

5.2. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-6-methylchroman-3-yl)acrylaldehyde (4b).

According to **GP-1** compound **(4b)** was prepared by using **1a** (22.0 μ L, 0.2 mmol, 2.0 equiv) **2b** (32.5 mg, 0.1 mmol, 1.0 equiv), triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4b** (major diastereomer) as pale yellow solid (35.0 mg, 80 %).

Melting Point: 128-130 °C

 $[\alpha]_D^{20} = +60.1.$ (c = 0.2, EtOH).

HPLC: Daicel CHIRALPAK ODH column; *n*-hexane/ *i*PrOH = 400/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 12.73 min (major), 17.58 min (minor) ee: > 99 %.

HRMS (ESI): m/z [M+H]⁺ Calculated for C₂₉H₃₉O₃⁺: 435.2899; Found 435.2882

¹H NMR (400 MHz, CDCl₃): δ 9.41 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.73 (s, 2H), 6.58 (s, 1H), 6.51 (dd, J = 15.6, 9.8 Hz, 1H), 5.66 (dd, J = 15.5, 7.9 Hz, 1H), 5.08 (s, 1H), 3.97 (ddd, J = 10.2, 8.7, 2.7 Hz, 1H). , 3.87 (d, J = 10.8 Hz, 1H), 2.72 (q, J = 10.1 Hz, 1H), 2.13 (s, 3H), 1.74 (dqd, J = 14.7, 7.5, 2.9 Hz, 1H), 1.63-1.59 (m, 1H), 1.34 (s, 18H), 1.06 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 193.1, 156.0, 152.7, 152.6, 135.8, 135.1, 132.5, 130.3, 129.9, 128.5, 125.6, 124.6, 116.2, 78.7, 50.6, 48.5, 34.4, 30.5, 27.2, 20.7, 9.2. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.1, 156.0, 135.1, 130.3, 128.5, 125.6, 116.2, 78.7, 50.6, 48.5, 30.5, 27.2, 20.7, 9.2.

5.3. (*E*)-3-((2R,3S,4R)-6-bromo-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)acrylaldehyde (4c).

According to **GP-1** compound (4c) was prepared by using 1a (22.0 μ L, 0.2 mmol, 2.0 equiv) 2c (39.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and Amine 3c (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4c** (major diastereomer) as yellow solid (33.0 mg, 66%).

Melting Point: 156-158 °C

 $[\alpha]_D^{20} = +25.4.$ (c = 0.6, EtOH).

HPLC: Daicel CHIRALPAK ODH column; *n*-hexane/*i*PrOH = 1000/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 16.57 min (major), 21.21 min (minor), *ee*: 96%.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₂₈H₃₄BrO₃⁺: 497.1691; Found 497.1687.

¹H NMR (400 MHz, CDCl₃): δ 9.40 (d, J = 7.7 Hz, 1H), 7.22-7.19 (m, 1H), 6.90 (dd, J = 2.4, 1.1 Hz, 1H), 6.77 (d, J = 8.7 Hz, 1H), 6.71 (s, 2H), 6.47 (dd, J = 15.7, 9.8 Hz, 1H), 5.67 (dd, J = 15.5, 7.5 Hz, 1H), 5.11 (s, 1H), 3.99 (ddd, J = 10.1, 8.0, 3.0 Hz, 1H), 3.86 (d, J = 10.8 Hz, 1H), 2.71 (q, J = 10.1 Hz, 1H), 1.76 (dqd, J = 14.9, 7.5, 3.0 Hz, 1H), 1.64-1.60 (m, 1H), 1.35 (s, 18H), 1.06 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 192.9, 155.0, 154.0, 152.9, 136.1, 135.4, 132.6, 131.5, 130.8, 127.3, 125.5, 118.5, 112.8, 79.0, 49.8, 48.4, 34.4, 30.4, 27.1, 9.1. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 192.9, 155.0, 135.4, 132.6, 130.8, 125.5, 118.5, 79.0, 49.8, 48.4, 30.4, 27.1, 9.1.

According to **GP-1** compound **(4d)** was prepared by using **1a** (22.0 μ L, 0.2 mmol, 2 equiv) **2d** (34.5 mg, 0.1 mmol, 1equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4d** (major diastereomer) as yellow solid (18.0 mg, 40 %).

Melting Point: 150-152 °C

 $[\alpha]_D^{20} = +53.7. (c = 0.6., EtOH).$

HPLC: Daicel Chiralpak ODH column; *n*-hexane/*i*PrOH = 1000/1; flow rate = 1 mL/min; T = 25 °C; retention time: 13.80 min (major), 19.63 min (minor), *ee*: 98%.

HRMS (ESI): *m*/*z* [M-H]⁺ Calculated for C₂₈H₃₄ClO₃⁺: 453.2196; Found 453.2194.

¹H NMR (400 MHz, CDCl₃): δ 9.40 (d, J = 7.7 Hz, 1H), 7.06 (dd, J = 8.6, 2.7 Hz, 1H), 6.82 (d, J = 9.0 Hz, 1H), 6.75 (d, J = 2.5 Hz, 1H), 6.72 (s, 2H), 6.47 (dd, J = 15.7, 9.8 Hz, 1H), 5.67 (dd, J = 15.7, 7.7 Hz, 1H), 5.11 (s, 1H), 3.99 (ddd, J = 10.7, 8.0, 2.9 Hz, 1H), 3.85 (d, J = 10.8 Hz, 1H), 2.72 (q, J = 10.1 Hz, 1H), 1.76 (dqd, J = 14.7, 7.3, 3.1 Hz, 1H), 1.64-1.57 (m, 1H), 1.35 (s, 18H), 1.07 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 192.9, 155.0, 153.4, 152.9, 136.1, 135.4, 131.5, 129.6, 127.9, 126.7, 125.5 (2C), 118.0, 79.1, 49.9, 48.5, 34.4, 30.5, 27.2, 9.2. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 192.9, 155.0, 135.4, 129.6, 127.9, 125.5, 118.0, 79.1, 49.9, 48.5, 30.5, 27.2, 9.2.

5.5. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-6-methoxychroman-3-yl)acrylaldehyde (4e).

According to **GP-1** compound (4e) was prepared by using 1a (22.0 μ L, 0.2 mmol, 2.0 equiv) 2f (34.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and Amine 3c (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h. at 10 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 95:5) afforded **4e** (major diastereomer) as light yellow gummy liquid (32.5 mg, 72%).

 $[\alpha]_D^{20} = +82.1 \text{ (c} = 2.0, \text{EtOH)}.$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/*i*PrOH = 95/5; flow rate = 1.0 mL/min; T = 25 °C; retention time: 26.77 min (major), 35.84 min (minor), *ee*: > 99%.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₂₉H₃₇O₄⁺: 449.2692; Found 449.2705.

¹H NMR (400 MHz, CDCl₃): δ 9.41 (d, *J* = 7.8 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 1H), 6.73 (s, 2H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.52 (dd, *J* = 15.6, 9.8 Hz, 1H), 6.29 (s, 1H), 5.70 (dd, *J* = 15.7, 7.8 Hz, 1H), 5.07 (s, 1H), 3.98-3.94 (m, 1H), 3.88 (d, *J* = 10.6 Hz, 1H), 3.60 (s, 3H), 2.75 (q, *J* = 9.9 Hz, 1H), 1.79-1.70 (m, 1H), 1.56-1.54 (m, 1H), 1.34 (s, 18H), 1.06 (t, *J* = 7.3 Hz, 3H).¹³C NMR (101 MHz, CDCl₃): δ 193.1, 155.9, 153.5, 152.7, 149.0, 135.9, 135.2, 132.1, 125.8, 125.5, 117.1, 115.0, 113.8, 78.8, 55.9, 50.2, 48.8, 34.4, 30.5, 27.2, 9.2. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.1, 155.9, 135.2, 125.5, 117.1, 115.0, 113.8, 78.8, 55.9, 50.2, 48.8, 30.5, 27.2, 9.2.

5.6. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-8-methoxychroman-3-yl)acrylaldehyde (4f).

According to GP-1compound (4f) was prepared by using 1a (22.0 μ L, 0.2 mmol, 2.0 equiv) 2g (34.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and Amine 3c (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 90:10) afforded **4f** (d.r. 5:1) as light yellow gummy liquid (32.0 mg, 71 %).

 $[\alpha]_D^{20} = +14.8 (c = 1.0, EtOH).$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/*i*PrOH = 95/5; flow rate = 0.5 mL/min; T = 25 °C; retention time: 13.71 min (major), 18.24 min (minor), *ee*: 92%.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₂₉H₃₇O₄⁺: 449.2692; Found 449.2683.

¹H NMR (400 MHz, CDCl₃): δ 9.42 (d, J = 7.8 Hz, 1H), 6.81-6.76 (m, 1H), 6.72-6.71 (m, 3H), 6.53 (dd, J = 15.7, 9.9 Hz, 1H), 6.38 (dd, J = 6.3, 3.2 Hz, 1H), 5.69 (dd, J = 15.6, 7.8 Hz, 1H), 5.07 (s, 1H), 4.03 (ddd, J = 10.6, 7.9, 3.1 Hz, 1H), 3.90 (d, J = 3.6 Hz, 1H), 3.88 (s, 3H), 2.78 (q, J = 10.1 Hz, 1H), 1.82 (dtd, J = 14.8, 7.3, 3.0 Hz, 1H), 1.69 (dq, J = 14.7, 7.4 Hz, 1H), 1.33 (s, 18H), 1.11 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 193.1, 155.7, 152.6, 148.2, 144.5, 135.8, 135.2, 132.5, 125.9, 125.5, 122.1, 120.1, 109.7, 79.1, 56.2, 50.2, 48.5, 34.4, 30.5, 27.2, 9.4. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.1, 155.7, 135.2, 125.5, 122.1, 120.1, 109.7, 79.1, 56.2, 50.2, 48.5, 30.4, 27.2, 9.4.

5.7. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-8-methylchroman-3-yl)acrylaldehyde (4g).

According to GP-1compound (4g) was prepared by using 1a (22.0 μ L, 0.2 mmol, 2.0 equiv), 2h (33.5 mg, 0.1 mmol, 1.0 equiv), triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and Amine 3c (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4g** (major diastereomer) as pale yellow solid (28.0 mg, 64 %).

Melting Point: 134-136 °C

 $[\alpha]_{D}^{20} = +10.6 (c = 0.8, EtOH).$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/ *i*PrOH = 400/1; flow rate = 0.2 mL/min; T = 25 °C; retention time: 64.66 min (major), 69.78 min (minor), *ee*: >99 %.

HRMS (ESI): *m*/*z* [M-H]⁺ Calculated for C₂₉H₃₇O₃⁺: 433.2743; Found 433.2729.

¹**H** NMR (400 MHz, CDCl₃): δ 9.41 (d, J = 7.8 Hz, 1H), 6.97 (d, J = 7.4 Hz, 1H), 6.74 (s, 2H), 6.67 (t, J = 7.0 Hz, 1H), 6.60 (d, J = 7.5 Hz, 1H), 6.52 (dd, J = 15.7, 9.8 Hz, 1H), 5.70 (dd, J = 15.6, 7.8 Hz, 1H), 5.07 (s, 1H), 3.99 (td, J = 8.9, 2.3 Hz, 1H), 3.92 (d, J = 10.8 Hz, 1H), 2.75 (q, J = 10.2 Hz, 1H), 2.25 (s, 3H), 1.80-1.71 (m, 1H), 1.67-1.59 (m, 1H), 1.34 (s, 18H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 193.2, 156.1, 152.8, 152.6, 135.8, 135.1, 132.6, 128.8, 127.7, 125.7, 125.6, 124.5, 120.0, 78.7, 50.5, 48.8, 34.4, 30.5, 27.5, 16.1, 9.6. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.2, 156.1, 135.1, 128.8, 127.7, 125.6, 120.0, 78.7, 50.5, 48.8, 30.5, 27.5, 16.1, 9.6.

5.8. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-methylchroman-3-yl)acrylaldehyde (4h).

According to **GP-1** compound **(4h)** was prepared by using **1b** (22.0 μ L, 0.2 mmol, 2.0 equiv) **2a** (31.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 40 h. at 45 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4h** (major diastereomer) as light yellow gummy liquid (27.5 mg, 68 %).

 $[\alpha]_{D}^{20} = +52.1 \text{ (c} = 0.2, \text{ EtOH)}.$

HPLC: Daicel Chiralpak IC column; *n*-hexane/ *i*PrOH = 400/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 17.56 min (major), 23.38 min (minor), *ee*: 82 %.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₂₇H₃₃O₃⁺: 405.2430; Found 405.2425.

¹H NMR (400 MHz, CDCl₃): δ 9.42 (d, J = 7.8 Hz, 1H), 7.13-7.09 (m, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.78-6.77 (m, 2H), 6.74 (s, 2H), 6.51 (dd, J = 15.6, 9.7 Hz, 1H), 5.72 (dd, J = 15.7, 7.8 Hz, 1H), 5.08 (s, 1H), 4.23-4.16 (m, 1H), 3.92 (d, J = 10.9 Hz, 1H), 2.70 (q, J = 10.0 Hz, 1H), 1.38 (d, J = 6.3 Hz, 3H), 1.34 (s, 18H).¹³C NMR (101 MHz, CDCl₃): δ 193.1, 155.7, 154.5, 152.7, 135.9, 135.3, 132.3, 130.3, 127.8, 125.6, 125.0, 120.8, 116.4, 74.2, 52.1, 48.4, 34.4, 30.5, 20.6. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.1, 155.7, 135.3, 130.3, 127.8, 125.6, 120.8, 116.4, 74.2, 52.1, 48.4, 20.6.

Supporting Information

5.9. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-pentylchroman-3-yl)acrylaldehyde (4i).

According to **GP-1** compound **(4i)** was prepared by using **1c** (35.0 μ L, 0.2 mmol, 2.0 equiv), **2a** (31.0 mg, 0.1 mmol, 1 equiv), triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 40 h at 45 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 98:2) afforded **4i** (major diastereomer) as light yellow gummy liquid (30.5 mg, 66 %).

 $[\alpha]_{D}^{20} = +20.0 (c = 1.0, EtOH).$

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₃₁H₄₁O₃⁺: 461.3056; Found 461.3050.

¹H NMR (400 MHz, CDCl₃) : δ 9.42 (d, *J* = 7.8 Hz, 1H), 7.13-7.09 (m, 1H), 6.87 (d, *J* = 8.1 Hz, 1H), 6.77 (d, *J* = 4.2 Hz, 2H), 6.73 (s, 2H), 6.51 (dd, *J* = 15.6, 9.8 Hz, 1H), 5.68 (dd, *J* = 15.7, 7.8 Hz, 1H), 5.08 (s, 1H), 4.09-4.06 (m, 1H), 3.91 (d, *J* = 10.8 Hz, 1H), 2.75 (q, *J* = 10.1 Hz, 1H), 1.67-1.59 (m, 3H), 1.49-1.41 (m, 5H), 1.34 (s, 18H), 0.89 (t, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 193.1, 155.9, 154.7, 152.7, 135.9, 135.2, 132.4, 130.3, 127.7, 125.6, 125.0, 120.7, 116.5, 77.7, 50.6, 48.6, 34.4, 34.3, 31.8, 30.5, 24.5, 22.7, 14.2. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.1, 155.9, 135.2, 130.3, 127.7, 125.6, 120.7, 116.5, 77.7, 50.6, 48.6, 34.3, 31.8, 30.5, 24.5, 22.7, 14.2.

5.10. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-3-((*E*)-3-hydroxyprop-1-en-1-yl)-2-pentylchroman-4-yl)phenol (4i-1).

Compound (4i-1) was prepared by the reduction of 4i (30.5 mg, 0.066 mmol, 1 equiv) using NaBH₄/EtOH at 0 °C for 1 h.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 90:10) afforded **4j** as colourless gummy liquid (24.0 mg, 78 %).

 $[\alpha]_{D^{20}} = -14.0$ (c = 0.2, EtOH).

HPLC: Daicel Chiralpak IC column; *n*-hexane/ *i*PrOH = 200/1; flow rate = 1.0 mL/min; T = 25 °C; retention

time: 9.55 min (major), 10.49 min (minor), ee: 92 %.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₃₁H₄₃O₃: 463.3212; Found 463.3250.

¹H NMR (400 MHz, CDCl₃) : δ 7.09-7.05 (m, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.77-6.71 (m, 4H), 5.33 (dd, J = 15.7, 9.1 Hz, 1H), 5.23-5.16 (m, 1H), 5.04 (s, 1H), 3.97-3.91 (m, 3H), 3.75 (d, J = 10.7 Hz, 1H), 2.42 (q, J = 10.1 Hz, 1H), 1.75-1.68 (m, 1H), 1.62-1.57 (m, 1H), 1.44-1.40 (m, 1H), 1.36 (s, 18H), 1.35-1.28 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 155.0, 152.2, 135.5, 133.7, 132.3, 131.1, 130.4, 127.4, 126.1, 126.0, 120.3, 116.3, 78.7, 63.5, 49.8, 49.0, 34.4, 34.1, 32.0, 30.5, 24.6, 22.8, 14.2. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 132.3, 131.1, 130.4, 127.4, 126.0, 120.3, 116.3, 78.7, 63.5, 49.8, 49.0, 24.6, 22.8, 14.2.

5.11. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-phenethylchroman-3-yl)acrylaldehyde (4j).

According to **GP-1** compound **(4j)** was prepared by using **1d** (37.0 mg, 0.2 mmol, 2.0 equiv) **2a** (31.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 40 h. at 45 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4j** (major diastereomer) as pale yellow gummy liquid (35.5 mg, 71 %).

 $[\alpha]_D^{20} = +15.5 (c = 0.8, EtOH).$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/ *i*PrOH = 200/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 16.55 min (major), 18.26 min (minor), ee > 99%.

HRMS (ESI): *m*/*z* [M-H]⁺ Calculated for C₃₄H₃₉O₃⁺: 495.2899; Found 495.2887.

¹**H NMR** (400 MHz, CDCl₃): δ 9.38 (d, *J* = 7.8 Hz, 1H), 7.29-7.27 (m, 1H), 7.20-7.19 (m, 3H), 7.16-7.12 (m, 2H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.79-6.78 (m, 2H), 6.72 (s, 2H), 6.44 (dd, *J* = 15.6, 9.9 Hz, 1H), 5.64 (dd, *J* = 15.6, 7.8 Hz, 1H), 5.08 (s, 1H), 4.07-4.02 (m, 1H), 3.88 (d, *J* = 10.8 Hz, 1H), 3.02-2.95 (m, 1H), 2.88-2.81 (m, 1H), 2.80-2.74 (m, 1H), 1.95-1.90 (m, 2H), 1.33 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 193.0, 155.4, 154.5, 152.7, 141.6, 135.9, 135.3, 132.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.6, 125.1, 120.9, 116.5, 76.5, 50.7, 48.5, 36.2, 34.4, 31.1, 30.4. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.0, 155.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.6, 125.1, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.6, 125.1, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.6, 125.1, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.6, 125.1, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 135.4, 135.3, 130.3, 128.7, 128.6, 127.8, 126.1, 125.6, 125.1, 120.9, 116.5, 76.5, 50.7, 48.5, 36.2, 31.1, 30.4.

5.12. (*E*)-3-((2R,3S,4R)-2-cyclohexyl-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)chroman-3-yl)acrylaldehyde (4k).

According to **GP-1** compound (**4k**) was prepared by using **1e** (33.0 mg, 0.2 mmol, 2.0 equiv) **2a** (31.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 40 h. at 45 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4k** (major diastereomer) as orange solid (28.5 mg, 60%).

Melting Point: 106-108 °C

 $[\alpha]_{D}^{20} = +15.0 (c = 0.8, EtOH).$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/*i*PrOH = 200/1; flow rate = 1 mL/min; T = 25 °C; retention time: 8.60 min (minor), 10.15 min (major), *ee*: 92%.

HRMS (ESI): m/z [M+H]⁺ Calculated for C₃₂H₄₃O₃⁺: 475.3212; Found 475.3188.

¹H NMR (400 MHz, CDCl₃): δ 9.42 (d, J = 7.7 Hz, 1H), 7.12-7.08 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.76 (d, J = 4.3 Hz, 2H), 6.73 (s, 2H), 6.53 (dd, J = 15.6, 10.0 Hz, 1H), 5.68 (dd, J = 15.6, 7.8 Hz, 1H), 5.07 (s, 1H), 3.97-3.91 (m, 2H), 2.91 (q, J = 10.1 Hz, 1H), 1.77-1.73 (m, 3H), 1.69-1.63 (m, 3H), 1.42-1.38 (m, 2H), 1.34 (s, 18H), 1.14-1.08 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 193.2, 156.0, 155.0, 135.8, 134.8, 132.3, 130.2, 127.7, 125.6, 124.9, 120.5, 116.5, 81.8, 48.8, 47.6, 40.6, 34.4, 30.5, 30.2, 26.7, 26.4, 26.2, 24.7. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 193.2, 156.0, 134.8, 130.2, 127.7, 125.6, 120.5, 116.5, 81.8, 48.8, 47.6, 40.6, 30.5, 30.2, 26.7, 26.4, 26.2, 24.7. 5.13. (*E*)-3-((2S,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-(2-nitrophenyl)chroman-3-yl)acrylaldehyde (4l).

According to GP-1 compound (41) was prepared by using 1f (21.0 mg, 0.1 mmol, 1.0 equiv) 2a (124.0 mg, 0.4 mmol, 4.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv) and Amine 3c (10.2 mg, 0.02 mmol) in chloroform (0.1 M) for 7 d. at 45 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 90:10) afforded **41** (major diastereomer) as yellow gummy liquid (18.0 mg, 35 %).

 $[\alpha]_{D}^{20} = +34.1 \text{ (c} = 0.6, \text{EtOH)}.$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/*i*PrOH = 95/5; flow rate = 1.0 mL/min; T = 25 °C; retention

time: 7.53min (major), 9.91min (minor), ee: 76 %.

HRMS (ESI): *m*/*z* [M+H]⁺ Calculated for C₃₂H₃₆NO₅⁺ : 514.2593; Found 514.2564.

¹**H** NMR (400 MHz, CDCl₃): δ 9.28 (d, J = 7.9 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.67-7.63 (m, 1H), 7.49-7.45 (m, 1H), 7.22 (d, J = 7.7 Hz, 1H), 7.03 (dd, J = 12.9, 7.8 Hz, 2H), 6.95-6.91 (m, 1H), 6.88-6.81 (m, 3H), 6.15 (d, J = 8.0 Hz, 1H), 5.27 (dd, J = 15.7, 7.8 Hz, 1H), 5.11 (s, 1H), 4.89 (d, J = 5.3 Hz, 1H), 3.35 (dd, J = 10.9, 5.4 Hz, 1H), 1.34 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 192.8, 154.6, 152.9, 152.5, 137.4, 135.7, 135.0, 133.7, 130.7, 130.5, 128.9, 128.7, 128.3, 126.2, 125.2, 123.7, 121.8, 117.0, 76.8, 49.1, 48.3, 34.4, 30.4. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 192.8, 152.5, 137.4, 133.7, 130.7, 128.9, 128.7, 128.3, 126.2, 125.2, 125.2, 121.8, 117.0, 76.8, 49.1, 48.3, 30.4.

5.14. (*E*)-3-((1R,2S,3R)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-3-ethyl-2,3-dihydro-1*H*-benzo[*f*]chromen-2-yl)acrylaldehyde (4m).

According to **GP-1** compound (**4m**) was prepared by using **1a** (22.0 μ L, 0.2 mmol, 2.0 equiv) **2e** (36.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (3.0 μ L, 0.02 mmol, 0.2 equiv) and **Amine 3c** (10.2 mg, 0.02 mmol) in *o*-xylene for 48 h at 10 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 97:3) afforded **4m** as light yellow gummy liquid (23.0 mg, 49 %).

 $[\alpha]_{D}^{20} = -32.1$ (c = 0.6, EtOH).

HPLC: Daicel Chiralpak IC column; *n*-hexane/ *i*PrOH = 95/5; flow rate = 1.0 mL/min; T = 25 °C; retention time: 7.15 min (minor), 10.53 min (major), *ee*: 58 %.

HRMS (ESI): HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₂₈H₃₇O₃⁺: 469.2743; Found 469.2739.

¹**H** NMR (400 MHz, CDCl₃) :δ 9.41 (d, J = 7.9 Hz, 1H), 7.76-7.68 (m, 2H), 7.44-7.42 (m, 1H), 7.30-7.26 (m, 2H), 7.16 (d, J = 9.0 Hz, 1H), 6.86 (s, 2H), 6.79 (dd, J = 15.7, 9.8 Hz, 1H), 6.30 (dd, J = 15.7, 7.9 Hz, 1H), 5.09 (s, 1H), 4.48-4.46 (m, 1H), 4.08 (ddd, J = 8.8, 4.9, 1.8 Hz, 1H), 2.88 (d, J = 9.7 Hz, 1H), 1.80-1.69 (m, 1H), 1.51-1.43 (m, 1H), 1.31 (s, 18H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 194.0, 156.0, 152.5, 135.9, 134.9, 134.9, 133.3, 129.6, 129.3, 128.5, 126.6, 125.1, 123.4, 123.4, 118.7, 112.5, 77.3, 73.5, 48.2, 44.2, 34.4, 30.3, 26.7, 10.1. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 194.0, 156.0, 134.9, 129.3, 128.5, 126.6, 125.1, 123.4, 118.7, 112.5, 77.3, 73.5, 48.2, 44.2, 30.3, 26.7, 10.1.

5.15. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-3-((Z)-3-hydroxy-1-phenylprop-1-en-1-yl)-2-phenylchroman-4-yl)phenol (4n).

According to GP-2 compound (4n) was prepared by using 1g (46.0 mg, 0.2 mmol, 2.0 equiv) 2a (31.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv), brine (3.0 equiv) and Amine 3a (6.7 mg, 0.02 mmol) in toluene for 12 h. at room temperature.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 85:15) afforded **4n** (major diastereomer) as white solid (45.0 mg, 83 %).

Melting Point: 166-168 °C

 $[\alpha]_{D}^{20} = -76.9$ (c = 1.0, EtOH).

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/ *i*PrOH = 200/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 13.42 min (major), 15.84 min (minor), *ee*: 90%.

HRMS (ESI): *m/z* [M+H]⁺ Calculated for C₃₈H₄₃O₃⁺: 547.3212; Found 547.3239

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.28 (m, 5H), 7.23-7.20 (m, 3H), 7.17-7.12 (m, 1H), 7.00-6.96 (m, 2H), 6.90 (s, 2H), 6.81 (td, *J* = 7.5, 1.2 Hz, 1H), 6.76-6.74 (m, 2H), 5.31 (d, *J* = 11.1 Hz, 1H), 5.15 (s, 1H), 4.57 (dd, *J* = 7.7, 6.0 Hz, 1H), 4.10 (d, *J* = 4.6 Hz, 1H), 3.73-3.62 (m, 2H), 3.39 (dd, *J* = 11.1, 4.7 Hz, 1H), 1.41 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 154.4, 152.6, 140.8, 140.3, 139.4, 135.0, 132.2, 131.1, 130.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.4, 127.3, 125.6, 120.5, 116.5, 77.9, 60.3, 50.8, 45.6, 34.4, 30.5. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 131.1, 130.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 127.4, 127.3, 120.5, 116.5, 77.9, 60.3, 50.8, 45.6, 30.5.

5.16. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-3-((Z)-3-hydroxy-1-(4-methoxyphenyl)prop-1-en-1-yl)-2-phenylchroman-4-yl)phenol (40).

According to **GP-2** compound (40) was prepared by using 1h (52.0 mg, 0.2 mmol, 2.0 equiv) 2a (31.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv), brine (3.0 equiv) and Amine 3a (6.7 mg, 0.02 mmol) in toluene for 12 h. at room temperature.

Column Chromatographic purification (petroleum ether/EtOAc 0199:1 to 85:15) afforded **40** (major diastereomer) as colourless gummy liquid (55.0 mg, 96 %).

 $[\alpha]_D^{20} = -127.8$ (c = 1.0, EtOH).

HPLC: Daicel Chiralpak IC column; *n*-hexane/ *i*PrOH = 200/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 22.78. min (major), 25.69 min (minor), *ee*: 92 %.

HRMS (ESI): *m/z* [M+H]⁺ Calculated for C₃₉H₄₅O₄⁺: 577.3318; Found 577.3289

¹**H** NMR (400 MHz, CDCl₃): δ 7.38-7.36 (m, 2H), 7.34-7.27 (m, 3H), 7.14 (ddd, J = 8.6, 7.4, 1.8 Hz, 1H), 6.98 (td, J = 7.3, 6.8, 1.1 Hz, 2H), 6.87 (s, 2H), 6.81 (td, J = 7.3, 1.1 Hz, 1H), 6.78-6.69 (m, 4H), 5.30 (d, J = 11.1 Hz, 1H), 5.14 (s, 1H), 4.54 (dd, J = 7.8, 5.9 Hz, 1H), 4.08 (d, J = 4.6 Hz, 1H), 3.76 (s, 3H), 3.69 (m, 2H), 3.39 (dd, J = 11.1, 4.7 Hz, 1H), 1.41 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 158.9, 154.4, 152.6, 140.4, 139.0, 135.0, 133.0, 132.3, 130.6, 130.5, 129.3, 128.4, 128.3, 128.0, 127.2, 125.6, 120.5, 116.5, 113.5, 77.9, 60.3, 55.4, 50.8, 45.7, 34.4, 30.5. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 130.6, 130.5, 129.3, 128.4, 128.3, 128.0, 127.2, 125.6, 130.5, 129.3, 128.4, 128.3, 128.0, 127.2, 125.6, 130.5, 129.3, 128.4, 128.3, 128.0, 127.2, 120.5, 116.5, 113.5, 77.9, 60.3, 55.4, 50.8, 45.7, 30.5.

5.17. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-2-(4-chlorophenyl)-3-((Z)-3-hydroxy-1-phenylprop-1-en-1-yl)chroman-4-yl)phenol (4p).

According to GP-2 compound (4p) was prepared by using 1i (53.0 mg, 0.2 mmol, 2.0 equiv) 2a (31.0 mg, 0.1 mmol, 1.0 equiv) triethylamine (6.0 μ L, 0.04 mmol, 0.4 equiv), brine (3.0 equiv) and Amine 3a (6.7 mg, 0.02 mmol) in toluene for 12 h. at room temperature.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 85:15) afforded **4p** (major diastereomer) as white solid (54.0 mg, 93 %).

Melting Point: 160-162 °C

 $[\alpha]_D^{20} = -127.8$ (c = 1.0, EtOH).

HPLC: Daicel Chiralpak IC column; *n*-hexane/ *i*PrOH = 200/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 11.69. min (minor), 13.36 min (major), *ee*: 92 %.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₃₈H₄₀ClO₃⁺: 579.2666; Found 579.2660

¹**H** NMR (400 MHz, CDCl₃): δ 7.31-7.30 (m, 4H), 7.24-7.21 (m, 3H), 7.17-7.12 (m, 1H), 6.97 (dd, *J* = 15.5, 7.7 Hz, 2H), 6.88 (s, 2H), 6.82 (td, *J* = 7.5, 1.0 Hz, 1H), 6.74-6.72 (m, 2H), 5.28 (d, *J* = 11.2 Hz, 1H), 5.16 (s, 1H), 4.57 (dd, *J* = 7.5, 6.2 Hz, 1H), 4.10 (d, *J* = 4.5 Hz, 1H). 3.76-3.64 (m, 2H), 3.34 (dd, *J* = 11.2, 4.7 Hz, 1H), 1.41 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 154.1, 152.7, 140.6, 139.1, 139.0, 135.1, 134.0, 132.0, 131.2, 130.5, 129.7, 128.5, 128.3, 128.1, 128.0, 127.5, 127.2, 125.5, 120.7, 116.4, 77.2, 60.2, 50.8, 45.7, 34.4, 30.5. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 131.2, 130.5, 129.7, 128.5, 128.3, 128.1, 128.0, 127.5, 127.2, 120.7, 116.4, 77.2, 60.2, 50.8, 45.7, 30.5.

5.18. (2S,3S)-diethyl 2-((2R,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)-3-formylcyclopropane-1,1-dicarboxylate (5).

According to **GP-3** compound (5) was prepared by using **4a** (42.0 mg, 0.1 mmol, 1.0 equiv) **diethyl bromomalonate** (34.0 μ L, 0.2 mmol, 2.0 equiv) triethylamine (14.0 μ L, 0.1 mmol, 1 equiv) and **Amine 3a** (6.7 mg, 0.02 mmol) in chloroform for 40 h. at 45 °C.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 90:10) afforded **1a** as colourless gummy liquid (31.0 mg, 54 %).

 $[\alpha]_D^{20} = -38.1$ (c = 1.0, EtOH).

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/*i*PrOH = 95/5; flow rate = 1.0 mL/min; T = 25 °C; retention time: 10.88 min (major), 11.79 min (minor), *ee*: > 99%.

HRMS (ESI): *m/z* [M+H]⁺ Calculated for C₃₅H₄₇O₇⁺: 579.3322; Found 579.3317

¹H NMR (400 MHz, CDCl₃): δ 9.18 (d, *J* = 4.8 Hz, 1H), 7.09-7.04 (m, 1H), 6.85 (d, *J* = 9.0 Hz, 1H), 6.83 (s, 2H), 6.79-6.74 (m, 1H), 6.70 (d, *J* = 6.7 Hz, 1H), 5.04 (s, 1H), 4.22-4.09 (m, 2H), 4.03-3.98 (m, 2H), 3.89 (q, *J* = 6.4 Hz, 1H), 3.66-3.58 (m, 1H), 2.81 (dd, *J* = 7.1, 4.8 Hz, 1H), 2.42-2.30 (m, 2H), 1.62-1.58 (m, 2H), 1.33 (s, 18H), 1.20 (t, *J* = 7.2 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 196.4, 166.0, 165.8, 154.4, 152.3, 135.2, 133.9, 131.1, 127.4, 126.4, 125.5, 120.7, 116.7, 80.3, 77.3, 62.2, 62.0, 47.9, 42.2, 40.7, 40.2, 35.8, 34.4, 30.4, 26.4, 14.1, 9.7. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 196.4, 131.1, 127.4, 126.4, 120.7, 116.7, 80.3, 62.2, 62.0, 47.9, 40.7, 40.2, 35.8, 30.4, 26.4, 14.1, 9.7.

5.19. 2,6-di-*tert*-butyl-4-((2R,4R)-2-ethyl-3-((*E*)-2-((S)-oxiran-2-yl)vinyl)chroman-4-yl)phenol (6).

According to **GP-4** compound **(6)** was prepared by using **4a** (42.0 mg, 0.1 mmol, 1.0 equiv), NaH (60 % dispersion in oil, 12.0 mg, 0.31 mmol, 3.1 equiv), Trimethylsulfonium iodide (61.0 mg, 0.3 mmol, 3.0 equiv) in a mixture of dry THF & dry DMSO at 0 °C for 1 h, then at room temperature for another 1 h.

Column Chromatographic purification (petroleum ether/EtOAc 99:1 to 95:5) afforded **6** (major diastereomer) as pale yellow solid (29.0 mg, 66 %).

Melting Point: 95-97 °C

 $[\alpha]_{D}^{20} = +39.7 (c = 1.0, EtOH).$

HPLC: Daicel CHIRALPAK ODH column; *n*-hexane/ *i*PrOH = 1000/1; flow rate = 1.0 mL/min; T = 25 °C; retention time: 7.46 min (minor), 9.25 min (major), *ee*: 98%.

HRMS (ESI): *m/z* [M+H]⁺ Calculated for C₂₉H₃₉O₃⁺: 435.2899; Found 435.2881

¹H NMR (400 MHz, CDCI₃): δ 7.10-7.06 (m, 1H), 6.85 (d, J = 8.1 Hz, 1H), 6.78-6.75 (m, 2H), 6.74 (s, 2H), 5.57 (dd, J = 15.5, 9.6 Hz, 1H), 5.03 (s, 1H), 4.66 (dd, J = 15.5, 8.1 Hz, 1H), 3.91 (ddd, J = 10.5, 8.0, 3.0 Hz, 1H), 3.75 (d, J = 10.9 Hz, 1H), 3.21-3.17 (m, 1H), 2.82-2.80 (m, 1H), 2.44 (q, J = 10.1 Hz, 1H), 2.30 (dd, J = 5.3, 2.6 Hz, 1H), 1.84 (dqd, J = 14.9, 7.4, 2.8 Hz, 1H), 1.64-1.59 (m, 1H), 1.36 (s, 18H), 1.06 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCI₃): δ 155.1, 152.2, 135.4, 134.2, 133.5, 131.1, 130.4, 127.4, 126.0, 125.9, 120.3, 116.3, 79.5, 52.1, 49.7, 48.9, 48.6, 34.3, 30.5, 27.0, 9.3. ¹³C NMR DEPT-135 (101 MHz, CDCI₃): δ 134.2, 133.5, 131.1, 130.4, 127.4, 125.9, 120.3, 116.3, 79.5, 52.1, 49.7, 48.9, 48.6, 34.3, 30.5, 27.0, 9.3.

5.20. 2,6-di-*tert*-butyl-4-((2R,4R)-2-ethyl-3-((2S,3S)-3-(hydroxymethyl)oxiran-2-yl)chroman-4-yl)phenol (7).

According to **GP-4** compound (7) was prepared by the reduction of **4a** (42.0 mg, 0.1 mmol, 1.0 equiv) using NaBH₄/EtOH at 0 °C for 1 h.

Allyllic alcohol obtained from above procedure dissolved in DCM (0.2 mL) at 0 °C. *meta*-Chloroperoxybenzoic acid (*m*CPBA, 1.3 equiv, 0.11 mmol) was added and the reaction mixture stirred for 3 h

Column Chromatographic purification (petroleum ether/EtOAc 90:10 to 70:30) afforded 7 (major diastereomer) as colourless gummy liquid (26.0 mg, 60 %).

 $[\alpha]_{D}^{20} = -16.5 \text{ (c} = 0.8, \text{ EtOH)}.$

HPLC: Daicel CHIRALPAK IC column; *n*-hexane/iPrOH = 95/5; flow rate = 0.2 mL/min; T = 25 °C; retention time: 7.46 min (minor), 9.25 min (major), *ee*: >99%.

HRMS (ESI): *m/z* [M-H]⁺ Calculated for C₂₈H₃₇O₄⁺: 437.2692; Found 437.2679

¹H NMR (400 MHz, CDCl₃): δ 7.10-7.06 (m, 1H), 6.88 (s, 2H), 6.85 (d, J = 8.7 Hz, 1H), 6.78-6.77 (m, 2H), 5.07 (s, 1H), 3.99 (d, J = 8.4 Hz, 1H), 3.92 (td, J = 8.2, 3.7 Hz, 1H), 3.82 (dd, J = 12.7, 2.2 Hz, 1H), 3.55 (dd, J = 12.7, 3.8 Hz, 1H), 3.03-3.02 (m, 1H), 2.96 (dd, J = 7.2, 2.0 Hz, 1H), 2.09 (q, J = 7.8 Hz, 1H), 1.79-1.73 (m, 1H), 1.71-1.64 (m, 1H), 1.37 (s, 18H), 1.01 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 154.3, 152.3, 135.7, 134.3, 130.5, 127.5, 125.8, 125.6, 120.7, 116.6, 78.2, 61.3, 57.0, 56.8, 45.3, 45.2, 34.4, 30.5, 26.7, 9.8. ¹³C NMR DEPT-135 (101 MHz, CDCl₃): δ 130.5, 127.5, 125.6, 120.7, 116.6, 78.2, 61.3, 57.0, 56.8, 45.3, 45.2, 30.5, 26.7, 9.8.
6. X-ray data of 4d & 4p.

1. X-Ray data of 4d and 4p:

For the determination of X-ray crystal structures of **4d** and **4p** a single crystal was selected and mounted with paratone oil on a glass fiber using gum. The data was collected at 298K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC micro-focus source with graphite monochromatic Mo K α radiation ($\lambda = 0.71073$ Å) operation at 50 kV and 30 mA. For the integration of diffraction profiles SAINT program^[S10] was used. Absorption correction was done applying SADABS program.^[S11] The crystal structure was solved by SIR 92^[S12] and refined by full matrix least square method using SHELXL-97^[S13] WinGX system, Ver 1.70.01.^[S14] All the non-hydrogen atoms in the structure were located the Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX in their ideal positions and refined using riding model with isotropic thermal parameters. The crystal structure (excluding structure factor) has been deposited to Cambridge Crystallographic Data Centre and allocated deposition number: **4d: CCDC 1982963** and **4p: CCDC 1982953**.^[S15]

Crystal Data and Structure Refinement for Complex 4d (CCDC 1982963)

Atom color code: grey = carbon atom, white = hydrogen atom, green = chlorine atom and red = oxygen atom.

CCDC No.	CCDC 1982963
Formula	C28 H35 Cl O3
Formula weight	455.01
Crystal System	triclinic
Space group	P -1

a, b, c (Å)	10.335(3), 10.973(2), 14.104(3)
α, β, γ (°)	92.007(7), 109.843(8), 117.445(7)
$V(Å^3)$	1299.6(5)
Ζ	2
Calculated Density (g/cm ³)	1.163
Absorption coefficient (mm ⁻¹)	0.172
F(000)	488.0
Crystal Size (mm)	0.16 x 0.19 x 0.20
Theta range for data collection:	2.3° to 26.4°
Data set	-12: 12 ; -13: 13 ; -17: 17
R indices [I>= 2σ (I)] (all data)	R1 = 0.0548, wR2 = 0.1583
Reflection	19227
Independent refl.	5299, [R(int) = 0.072]
S	1.035
Min. and Max. Resd. Dens. (e/Å ³)	-0.20 and 0.19
Npar	289

Crystal Data and Structure Refinement for Complex 4p (CCDC 1982953)

Atom color code: grey = carbon atom, white = hydrogen atom, green = chlorine atom and red = oxygen atom.

CCDC No.	CCDC 1982953
Formula	C38 H41 Cl O3
Formula weight	581.16
Crystal System	Orthorhombic
Space group	P212121
a, b, c (Å)	10.561(2), 16.603(3), 18.352(4)
α, β, γ (°)	90, 90, 90
$V(Å^3)$	3217.9(11)
Ζ	4
Calculated Density (g/cm ³)	1.200
Absorption coefficient (mm ⁻¹)	0.154
Crystal Size (mm)	0.26 x 0.30 x 0.31
F(000)	1240
Theta range for data collection:	2.2° to 26.5°
Data set	-13: 13 ; -20: 20 ; -22: 22
R indexes [I>= 2σ (I)] (all data)	R1 = 0.0561, wR2 = 0.1641
Reflection	24944
Independent refl.	4189, [R(int) = 0.070]
S	1.04
Min. and Max. Resd. Dens. (e/Å ³)	-0.31 and 0.17
Npar	379

7. References:

[S1] H. P. Poulsen, K. S. Feu, B. M. Paz, F. Jensen, K. A. Jørgensen, Organocatalytic Asymmetric 1,6-Addition/1,4-Addition Sequence to 2,4-Dienals for the Synthesis of Chiral Chromans, *Angew. Chem., Int. Ed.* 2015, 54, 8203–8207.

[S2] I. Chatterjee, D. Bastida, P. Melchiorre, Vinylogous Organo-catalytic Triple Cascade Reaction: Forging Six Stereocenters in Complex Spiro-Oxindolic Cyclohexanes, *Adv. Synth. Catal.*, 2013, 355, 3124–3130.

[S3] K. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen, D. Enders, Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds, *Angew. Chem., Int. Ed.* 2016, 55, 12104–12108.

[S4] E. Gómez-Bengoa, A. Landa, A. Lizarraga, A. Mielgo, M. Oiarbide, C. Palomo, Catalytic Asymmetric α -Alkylation of Aldehydes via a SN^{2'}-type Addition-elimination Pathway, *Chem. Sci.*, 2011, **2**, 353–357.

[S5] M., F. Hçrmann, T. Chung, S., E. Rodriguez, M. Jakob, T. Bach, Evidence for Triplet Sensitization in the Visible-Light-Induced [2+2] Photocycloaddition of Eniminium Ions, *Angew. Chem. Int. Ed.*, 2018, **57**, 827–831.

[S6] T. Liedtke, P. Spannring, L. Riccardi, A. Gansäuer, Mechanism-Based Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry, *Angew. Chem., Int. Ed.*, 2018, 57, 5006–5010.

[S7] C. M. Holland, B. J. Metternich, C. Mu[°]ck-Lichtenfelda, R. Gilmour, Cation–p interactions in iminium ion activation: correlating quadrupole moment & enantioselectivity., *Chem. Commun.*, 2015, 51, 5322.

[S8] R. Rios, H. Sundén, J. Vesely, G. Zhao, P. Dziedzic, A. Córdova, A Simple Organocatalytic Enantioselective Cyclopropanation of α , β Unsaturated Aldehydes, *Adv. Synth. Catal.*, 2007, **349**, 1028–1032.

[S9] Q. Zhang, M. H. Nguyen, Rhodium-catalyzed Regioselective Opening of Vinyl Epoxides with Et₃N.3HF Reagent-formation of Allylic Fluorohydrins, *Chem. Sci.*, 2014, **5**, 291.

[S10] Bruker, SAINT V7.68A, Bruker AXS Inc., Madison (WI, USA), 2005.

[S11] G. M. Sheldrick, SADABS 2008/2, Göttingen, 2008.

[S12] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst., 1993, 26, 343– 350.

[S13] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Solution and Refinement; University of Göttingen, Göttingen, Germany, 1997.

[S14] L. J. Farrugia, WinGX-A Windows Program for Crystal Structure Analysis, J. Appl. Cryst., 1999, 32, 837–838.

[S15] CCDC 1982963 & CCDC 1982953 contain supplementary crystallographic data for the compound 4d & 4p respectively.

8. Experimental NMR Spectra:

8.1. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)acrylaldehyde (4a).

8.2. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-6-methylchroman-3-yl)acrylaldehyde (4b).

f1 (ppm) -10

8.3. (*E*)-3-((2R,3S,4R)-6-bromo-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3ylacrylaldehyde (4c)

8.4. (*E*)-3-((2R,3S,4R)-6-chloro-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)acrylaldehyde (4d).

140 130 120 110 100 90 f1 (ppm) 0 -1 10 200

8.5. (E)-3-((2R,3S,4R)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-ethyl-6-methoxychroman-3-

8.6. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethyl-8-methoxychroman-3-yl)acrylaldehyde (4f).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

S55

8.8. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-methylchroman-3yl)acrylaldebyde (4h)

 ^{13}C NMR, 101MHz, DEPT-135, CDCl_3

 170 160

S59

8.10. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-3-((*E*)-3-hydroxyprop-1-en-1-yl)-2-pentylchroman-4-yl)phenol (4i-1).

 ^{13}C NMR, 101MHz, DEPT-135, CDCl_3

8.11. (*E*)-3-((2R,3S,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-phenethylchroman-3-yl)acrylaldehyde (4j).

8.12. (*E*)-3-((2R,3S,4R)-2-cyclohexyl-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)chroman-3-yl)acrylaldehyde (4k).

8.15. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-3-((*Z*)-3-hydroxy-1-phenylprop-1-en-1-yl)-2-phenylchroman-4-yl)phenol (4n).

-10 90 80 f1 (ppm) Ó

8.16. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-3-((*Z*)-3-hydroxy-1-(4-methoxyphenyl)prop-1-en-1-yl)-2-phenylchroman-4-yl)phenol (40).

S73

8.17. 2,6-di-*tert*-butyl-4-((2R,3S,4R)-2-(4-chlorophenyl)-3-((Z)-3-hydroxy-1-phenylprop-1-en-1-yl)chroman-4-yl)phenol (4p).

1 10

¹³C NMR, 101MHz, DEPT-135, CDCl₃

90 80 f1 (ppm)

o

8.18. (2S,3S)-diethyl 2-((2R,4R)-4-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-2-ethylchroman-3-yl)-3-formylcyclopropane-1,1-dicarboxylate (5).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

8.19. 2,6-di-*tert*-butyl-4-((2R,4R)-2-ethyl-3-((E)-2-((S)-oxiran-2-yl)vinyl)chroman-4-yl)phenol (6).

8.20. 2,6-di-*tert*-butyl-4-((2R,4R)-2-ethyl-3-((2S,3S)-3-(hydroxymethyl)oxiran-2-yl)chroman-4-yl)phenol(7).

Supporting Information

	TXI .	Aca	7074000	nagi
1	16.574	11361230	98.24	166951
2	21.266	203891	1.76	2504

Supporting Information

Supporting Information

