Supporting Information

Ligand-controlled palladium catalysis enables switch between mono- and

di-arylation of primary aromatic amines with 2-halobenzothiazoles

Yan-Qiu Zhu^{*a*}, Rui Zhang^{*a*}, Wei Sang^{*b*}, Hua-Jing Wang^{*b*}, Yuan Wu^{*c*}, Bao-Yi Yu^{*d*}, Jun-Chao Zhang^{*a*}, Hua Cheng^{*a} and Cheng Chen^{*b}

^{*a*} Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang 441053, P. R. China;

^{*b*} State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China;

^{*c*} Key Laboratory of Pesticide & Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China;

^{*d*} Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beinong Road 7, Beijing 102206, P. R. China

Contents:

1. Supplementary information	
2. Characterization data for compounds 3 , 4 , 6 , 7 and 9	S9-S19
3. Original NMR and HRMS spectra for 3 , 4 , 6 , 7 and 9	

<u>1. Supplementary information</u>

Figure S1. Synthesis of 2-aminoarylbenzothiazoles via construction of the benzothiazole ring.

$ \begin{array}{c} S \\ N \\ $	[Pd] (0.025 mmol) L15 (y mmol) base (z mmol) toluene, reflux, 12 h	$ \begin{array}{c} $	+ N
			$\mathbf{V}_{i-1}^{i-1} = \langle 0 \rangle h$

Table S1. Optimization of L15-based catalytic systems^a

Entmy	(D4)	$\mathbf{D}_{acc}(\mathbf{r})$	N/		Yields $(\%)^{\circ}$		
Enuy	[Fu]	Dase (Z)	Х	У	3a	4 a	1a
1	Pd(OAc) ₂	NaH (1.00)	1.00	0.025	-	94	-
2	Pd(OAc) ₂	NaOtBu (1.00)	1.00	0.025	-	80	18
3	Pd(OAc) ₂	Cs ₂ CO ₃ (1.00)	1.00	0.025	3	18	66
4	Pd(OAc) ₂	NaH (1.50)	1.00	0.025	3	79	-
5	Pd(OAc) ₂	NaH (2.00)	1.00	0.025	31	61	-
6	Pd(OAc) ₂	NaH (1.00)	1.00	0.050	-	72	18
7	Pd(OAc) ₂	NaH (1.00)	1.00	0.075	-	70	22
8	PdCl ₂	NaH (1.00)	1.00	0.025	-	55	33
9	Pd ₂ (dba) ₃	NaH (1.00)	1.00	0.025	3	51	26
10	Pd(OAc) ₂	NaH (1.00)	0.50	0.025	-	71	18
11	Pd(OAc) ₂	NaH (1.00)	2.00	0.025	1	92	-
12^c	Pd(OAc) ₂	NaH (1.00)	1.00	0.025	-	75	19

^[a] **Conditions:** (1) [Pd] (0.025 mmol), **L15** (y mmol), base (z mmol) and toluene (2.5 mL) were heated at reflux under argon for 30 min; (2) **1a** (1.00 mmol) and **2a** (x mmol) were added and the mixture was heated at the same temperature for 12 h. ^[b] NMR yields using 1,3,5-trimethoxybenzene as an internal standard (average of two consistent runs); ^[c] Pd(OAc)₂ (0.0125 mmol) and **L15** (0.0125 mmol) were used.

1a (1.0)	$\sum_{N=1}^{S} CI + \sum_{N=1}^{I} I$ mmol) 2a (x mmo	[Pd] (0.025 mmo Xantphos (y mm base (z mmol) toluene, reflux, 1	l) hol) 2 h		+	N S 4a	s N N
Entry	[Pd]	Base (7)	v	V		Yields (%	$(6)^{b}$
Enuy	լլով	Dase (Z)	Λ	у	3 a	4 a	1a
1	Pd(OAc) ₂	NaH (1.00)	1.00	0.025	83	11	-
2	Pd(OAc) ₂	NaOtBu (1.00)	1.00	0.025	71	19	8
3	Pd(OAc) ₂	Cs ₂ CO ₃ (1.00)	1.00	0.025	45	52	-
4	Pd(OAc) ₂	NaH (1.50)	1.00	0.025	81	15	-
5	Pd(OAc) ₂	NaH (2.00)	1.00	0.025	86	10	-
6	PdCl ₂	NaH (1.00)	1.00	0.025	76	12	-
7	Pd ₂ (dba) ₃	NaH (1.00)	1.00	0.025	81	11	-
8	Pd(OAc) ₂	NaH (1.00)	1.00	0.050	92	5	-
9	Pd(OAc) ₂	NaH (1.00)	1.00	0.075	93	5	-
10	Pd(OAc) ₂	NaH (1.00)	0.50	0.005	86	8	17
11	Pd(OAc) ₂	NaH (1.00)	2.00	0.050	93	5	-
12	Pd(OAc) ₂	NaH (1.00)	3.00	0.050	94	4	-
13 ^c	Pd(OAc) ₂	NaH (1.00)	1.00	0.025	72	19	-

Table S2. Optimization of Xantphos-based catalytic systems^a

^[a] [Pd] (0.025 mmol), Xantphos (y mmol), base (z mmol), **1a** (1.00 mmol), **2a** (x mmol) and toluene (2.5 mL) were heated at reflux under argon for 12 h.^[b] NMR yields using 1,3,5-trimethoxybenzene as an internal standard (average of two consistent runs); ^[c] Pd(OAc)₂ (0.0125 mmol) and Xantphos (0.025 mmol) were used.

la (w n	-S -N nmol) 21	NH ₂ N	Pd(OAc) ₂ (y L15 (z mm base (1.00 r solvent, reflu	nol) mmol) x, 12 h	$ \begin{array}{c} $	N S 4h	
Entry	W 7	v	V	7	solvent	Yiel	ds (%) ^{<i>a</i>}
Lifti y	w	Λ	у	L	sorvent	3h	4h
1	1.00	1.00	0.025	0.025	toluene	70	-
2	1.00	0.50	0.025	0.025	toluene	64	-
3	2.00	0.50	0.025	0.025	toluene	58	-
4	2.00	1.00	0.025	0.025	toluene	46	-
5	1.00	1.00	0.050	0.050	toluene	67	-
6	1.00	1.00	0.025	0.025	<i>m</i> -xylene	48	-

Table S3. The reactions of 2-chlorobenzothiazole (1a) and 2-aminoaniline (2h) applying the L15-based systems^a

^[a] NMR yields using 1,3,5-trimethoxybenzene as an internal standard (average of two consistent runs).

Inhibitory activity of compounds **6** and **7** was tested against SCR, with an initial concentration of 10 μ M for preliminary studies (as listed in Table S4). For compounds possessing inhibitory percentages no less than 50%, their IC₅₀ values were further determined (as listed in Table S3). The bioassays revealed that the mono-arylated products generally demonstrated certain inhibitory activity against SCR (entries 1-11). Especially, compounds **6d-6g** and **6i** exhibited high potency with their IC₅₀ values ranging from 0.13 μ M to 0.51 μ M (entries 4-7, 9), which was comparable with the commercial SCR inhibitor, azoxystrobin (entry 23). Unfortunately, all the di-arylated target compounds were unsuitable for the bioassay tests due to the poor solubility of these compounds in DMSO or DMSO/H₂O (entries 12-22).

Table S4. Inhibitory	activity	of compound	is 6 and 7	against SCR
----------------------	----------	-------------	-------------------	-------------

	$ \begin{array}{c c} R_1 & R_2 & H \\ & & N & S \\ & & & N & S \\ & & & & N & S \\ & & & & & & N & S \\ & & & & & & & & \\ & & & & & & & & \\ & & & &$	$R_1 R_2 N S N$
--	---	-----------------

Entry	Compound No.	IC50 (µM)	Entry	Compound No.	IC ₅₀ (µM)
1	6a	>10	12	7a	_a
2	6b	>10	13	7b	_a
3	6c	>10	14	7c	_a
4	6d	0.49 ± 0.04	15	7d	_a
5	6e	0.13 ± 0.01	16	7e	_a
6	6f	0.51 ± 0.04	17	7f	_a
7	6g	0.29 ± 0.03	18	7g	_a
8	6h	>10	19	7h	_a
9	6i	0.48 ± 0.02	20	7i	_a
10	6j	>10	21	7j	_a
11	6k	>10	22	7k	_a
23		Azoxyst	robin		0.31 ± 0.02

^a IC₅₀ values cannot be determined due to the poor solubility of these compounds in DMSO or DMSO/H₂O.

1,3-Dimethyl-1 <i>H</i> -benzo[<i>d</i>]imidazol-3-ium	iodide	(L1), ^[1]
3-ethyl-1-methyl-1 <i>H</i> -benzo[d]imidazol-3-ium	iodide	(L2), ^[2]
3-isopropyl-1-methyl-1 <i>H</i> -benzo[<i>d</i>]imidazol-3-i	um iodide	(L3), ^[2]
1,3,5,6-tetramethyl-1 <i>H</i> -benzo[<i>d</i>]imidazol-3-iun	n iodide	(L4), ^[1]
5,6-dichloro-1,3-dimethyl-1H-benzo[d]imidazo	1-3-ium iodide	(L5), ^[2]
3-methyl-1-phenyl-1H-benzo[d]imidazol-3-ium	i iodide	(L6), ^[3]
3-methyl-1-(o-tolyl)-1H-benzo[d]imidazol-3-iu	m iodide	(L7), ^[3]
3-methyl-1-(<i>m</i> -tolyl)-1 <i>H</i> -benzo[<i>d</i>]imidazol-3-iu	ım iodide	(L8), ^[3]
3-methyl-1-(p-tolyl)-1H-benzo[d]imidazol-3-iu	m iodide	(L9), ^[3]
3-methyl-1-(4-nitrophenyl)-1 <i>H</i> -benzo[<i>d</i>]imidaz	ol-3-ium iodide	(L10), ^[3]
1-(4-ethylphenyl)-3-methyl-1 <i>H</i> -benzo[<i>d</i>]imidaz	zol-3-ium iodide	(L11), ^[3]
3-ethyl-1-(4-ethylphenyl)-1 <i>H</i> -benzo[<i>d</i>]imidazol	l-3-ium iodide	(L12), ^[3]
1-(4-ethylphenyl)-3-isopropyl-1 <i>H</i> -benzo[<i>d</i>]imid	lazol-3-ium iodide	(L13), ^[3]
2-(1-methyl-1 <i>H</i> -benzo[<i>d</i>]imidazol-3-ium-3-yl)a	icetate	(L14), ^[4]
3-methyl-1-(pyridin-2-yl)-1 <i>H</i> -benzo[<i>d</i>]imidazo	l-3-ium iodide	(L15), ^[5]
2-(4-aminophenoxy)benzonitrile (5b), ^[6] 4-	(2,4-dichlorophenoxy)ani	line $(5c)$, ^[6]
3-chloro-4-(2,4-dichlorophenoxy)aniline		(5d), ^[6]
3-chloro-4-(2-chloro-4-(trifluoromethyl)phenox	xy)aniline	(5e), ^[6]
3,5-dichloro-4-(2,4-dichlorophenoxy)aniline		(5f), ^[6]
3-chloro-4-(2,4,6-trichlorophenoxy)aniline		(5g), ^[6]
3-fluoro-4-(2,4,6-trichlorophenoxy)aniline		(5h), ^[6]
3,5-dichloro-4-(2,4,6-trichlorophenoxy)aniline	(5i), ^[6] 4-(naphthalen-2-	yloxy)aniline
(5j) ^[7] were synthesized using the literature proc	cedures.	

References

 H. Cheng, M. Q. Xiong, C. X. Cheng, H. J. Wang, Q. Lu, H. F. Liu, F. B. Yao,
 C. Chen and F. Verpoort, In situ Generated Ruthenium Catalyst Systems Bearing Diverse *N*-Heterocyclic Carbene Precursors for Atom-Economic Amide Synthesis from Alcohols and Amines. *Chem. Asian J.*, 2018, 13, 440-448.

- [2] H. Cheng, M. Q. Xiong, N. Zhang, H. J. Wang, Y. Miao, W. Su, Y. Yuan, C. Chen and F. Verpoort, Efficient *N*-Heterocyclic Carbene/Ruthenium Catalytic Systems for the Alcohol Amidation with Amines: Involvement of Poly-Carbene Complexes? *ChemCatChem*, 2018, **10**, 4338-4345.
- [3] X. J. Wu, H. J. Wang, Z. Q. Yang, X. S. Tang, Y. Yuan, W. Su, C. Chen and F. Verpoort, Efficient and Phosphine-Free Bidentate *N*-heterocyclic Carbene/Ruthenium Catalytic Systems for the Dehydrogenative Amidation of Alcohols and Amines, *Org. Chem. Front.*, 2019, 6, 563-570.
- [4] A. Allegue, M. Albert-Soriano and I. M. Pastor, A Comparative Study of Hydroxyl-and Carboxylate-functionalized Imidazolium and Benzimidazolium Salts as Precursors for N-heterocyclic Carbene Ligands, *Appl. Organomet. Chem.*, 2015, 29, 624-632.
- [5] C. J. Stanton III, C. W. Machan, J. E. Vandezande, T. Jin, G. F. Majetich, H. F. Schaefer III, C. P. Kubiak, G. Li and J. Agarwal, Re(I) NHC Complexes for Electrocatalytic Conversion of CO₂, *Inorg. Chem.*, 2016, 55, 3136-3144.
- [6] H. Cheng, Y. Q. Shen, X. Y. Pan, Y. P. Hou, Q. Y. Wu and G. F. Yang, Discovery of 1,2,4-triazole-1,3-disulfonamides as Dual Inhibitors of Mitochondrial Complex II and Complex III. *New J. Chem.*, 2015, **39**, 7281-7292.
- [7] Q. F. Liu, F. B. Huang, X. J. Yuan, K. Wang, Y. Zou, J. H. Shen and Y. C. Xu, Structure-Guided Discovery of Novel, Potent, and Orally Bioavailable Inhibitors of Lipoprotein-Associated Phospholipase A2. *J. Med. Chem.*, 2017, 60, 10231-10244.

2. Characterization data for compounds 3, 4, 6, 7 and 9

N-phenylbenzo[d]thiazol-2-amine (*3a*). White solid, m.p. 159.5-160.3°C. Isolated yield: 86%. ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 1H), 7.63 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.57 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.44 – 7.37 (m, 2H), 7.32 (ddd, *J* = 8.2, 7.3, 1.3 Hz, 1H), 7.23 – 7.11 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 151.5, 139.8, 130.0, 129.5, 126.1, 124.3, 122.4, 120.8, 120.1, 119.5. HRMS (ESI): calculated for C₁₃H₁₁N₂S [M+H]⁺: 227.06375; Found: 227.06369.

N-(*p*-tolyl)benzo[d]thiazol-2-amine (**3b**). White solid, m.p. 182.1-182.6°C. Isolated yield: 88%. ¹H NMR (500 MHz, CDCl₃) δ 8.39 (s, 1H), 7.61 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 151.6, 137.3, 134.5, 130.1, 130.0, 126.1, 122.2, 120.9, 120.8, 119.3, 20.9. HRMS (ESI): calculated for C₁₄H₁₃N₂S [M+H]⁺: 241.07940; Found: 241.07929.

N-(*4*-(*tert-butyl*)*phenyl*)*benzo*[*d*]*thiazol-2-amine* (**3***c*). White solid, m.p. 136.3-137.1°C. Isolated yield: 85%. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (s, 1H), 7.62 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.59 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.41 (s, 4H), 7.33 (ddd, *J* = 8.3, 7.3, 1.2 Hz, 1H), 7.14 (td, *J* = 7.6, 1.2 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 151.6, 147.5, 137.1, 130.0, 126.4, 126.1, 122.2, 120.8, 120.1, 119.3, 34.4, 31.4. HRMS (ESI): calculated for C₁₇H₁₉N₂S [M+H]⁺: 283.12635; Found: 283.12622.

N-(*4-fluorophenyl*)*benzo*[*d*]*thiazol-2-amine* (*3d*). White solid, m.p. 201.2-202.0 °C. Isolated yield: 80%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 7.82 (dd, *J* = 9.5, 5.7 Hz, 3H), 7.60 (d, *J* = 8.1 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.22 (t, *J* = 8.7 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.1, 157.8 (d, *J* = 238.7 Hz), 152.5, 137.6, 130.4, 126.3, 122.7, 121.5, 119.8 (d, *J* = 7.6 Hz), 119.6, 116.0 (d, *J* = 22.3 Hz). HRMS (ESI): calculated for C₁₃H₁₀FN₂S [M+H]⁺: 245.05432; Found: 245.05421.

N-(4-(trifluoromethyl)phenyl)benzo[d]thiazol-2-amine (*3e*). White solid, m.p. 191.8-192.4°C. Isolated yield: 56%. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.77

-7.59 (m, 6H), 7.40 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 151.0, 142.6, 130.0, 126.7 (q, J = 3.7 Hz), 126.5, 125.2 (q, J = 32.8 Hz), 124.1 (d, J = 271.6 Hz), 123.3, 120.9, 120.1, 118.2. HRMS (ESI): calculated for C₁₄H₁₀F₃N₂S [M+H]⁺: 295.05113; Found: 295.05095.

N-(*m*-tolyl)benzo[d]thiazol-2-amine (**3***f*). White solid, m.p. 122.4-123.2°C. Isolated yield: 81%. ¹H NMR (500 MHz, CDCl₃) δ 8.98 (s, 1H), 7.62 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.56 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.37 – 7.25 (m, 4H), 7.14 (td, *J* = 7.6, 1.2 Hz, 1H), 6.99 (d, *J* = 6.0 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 151.3, 139.8, 139.6, 129.9, 129.4, 126.1, 125.3, 122.2, 121.1, 120.8, 119.2, 117.4, 21.5. HRMS (ESI): calculated for C₁₄H₁₃N₂S [M+H]⁺: 241.07940; Found: 241.07928.

N-(*o*-tolyl)benzo[d]thiazol-2-amine (**3**g). White solid, m.p. 119.4-120.0°C. Isolated yield: 55%. ¹H NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 7.65 (dd, *J* = 7.2, 2.0 Hz, 1H), 7.57 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.45 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.32 – 7.26 (m, 3H), 7.20 (td, *J* = 7.3, 1.3 Hz, 1H), 7.11 (td, *J* = 7.6, 1.2 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 151.7, 138.2, 132.2, 131.2, 130.2, 127.3, 126.3, 126.0, 124.0, 122.0, 120.8, 118.9, 17.9. HRMS (ESI): calculated for C₁₄H₁₃N₂S [M+H]⁺: 241.07940; Found: 241.07932.

N-(*pyridin-2-yl*)*benzo*[*d*]*thiazol-2-amine* (*3h*). White solid, m.p. 239.1-239.9°C. Isolated yields: 41% for Condition A and 70% for Condition B. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.57 (s, 1H), 8.36 (d, *J* = 5.0 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.71 (m, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.28 – 7.11 (m, 2H), 7.01 (dd, *J* = 7.2, 5.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 159.8, 152.1, 149.9, 147.0, 138.8, 132.1, 126.2, 122.5, 121.6, 119.6, 117.3, 111.7. HRMS (ESI): calculated for C₁₂H₁₀N₃S [M+H]⁺: 228.05899; Found: 228.05891.

6-*Methyl-N-phenylbenzo*[*d*]*thiazol-2-amine* (*3i*). White solid, m.p. 166.1-167.0°C. Isolated yield: 91%. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (s, 1H), 7.52 – 7.46 (m, 3H), 7.43 (s, 1H), 7.42 – 7.36 (m, 2H), 7.14 (tt, *J* = 7.1, 1.1 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 149.4, 139.9, 132.3, 130.1, 129.5, 127.4, 124.0, 120.8, 119.7, 119.2, 21.3. HRMS (ESI): calculated for C₁₄H₁₃N₂S [M+H]⁺: 241.07940; Found: 241.07924. 6-*Methoxy-N-phenylbenzo*[*d*]*thiazol-2-amine* (**3***j*). White solid, m.p. 115.0-115.8°C. Isolated yield: 82%. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.49 (dd, *J* = 8.6, 1.1 Hz, 2H), 7.38 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.17 (d, *J* = 2.6 Hz, 1H), 7.13 (tt, *J* = 7.4, 1.2 Hz, 1H), 6.95 (dd, *J* = 8.8, 2.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 155.9, 145.9, 139.9, 131.2, 129.5, 123.8, 120.2, 119.4, 113.9, 105.1, 55.9. HRMS (ESI): calculated for C₁₄H₁₃N₂OS [M+H]⁺: 257.07431; Found: 257.07420.

6-*Chloro-N-phenylbenzo*[*d*]*thiazol-2-amine* (**3***k*). White solid, m.p. 190.9-191.7°C. Isolated yield: 77%. In addition, 10% of the di-substituted product (**4***k*) was also isolated. ¹H NMR (500 MHz, CDCl₃) δ 7.70 (s, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.49 (d, J = 7.8 Hz, 2H), 7.41 (t, J = 7.8 Hz, 2H), 7.30 (dd, J = 8.7, 2.2 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 150.3, 139.4, 131.3, 129.6, 127.7, 126.7, 124.6, 120.5, 120.2, 120.2. HRMS (ESI): calculated for C₁₃H₁₀ClN₂S [M+H]⁺: 261.02477; Found: 261.02468.

N-(*benzo*[*d*]*thiazo*1-2-*y*]*)*-*N*-*phenylbenzo*[*d*]*thiazo*1-2-*amine* (*4a*). White solid, m.p. 202.8-204.1°C. Isolated yield: 91%. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.72 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.67 – 7.59 (m, 3H), 7.58 – 7.52 (m, 2H), 7.40 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 2H), 7.27 – 7.23 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.8, 150.1, 141.7, 132.5, 130.5, 130.0, 129.3, 126.1, 123.5, 121.2, 120.7. HRMS (APCI): calculated for C₂₀H₁₄N₃S₂ [M+H]⁺: 360.06237; Found: 360.06173.

N-(*benzo*[*d*]*thiazo*1-2-*yl*)-*N*-(*p*-*tolyl*)*benzo*[*d*]*thiazo*1-2-*amine* (**4***b*). White solid, m.p. 189.5-190.3°C. Isolated yield: 95%. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 7.8 Hz, 2H), 7.43 (s, 4H), 7.39 (ddd, *J* = 8.4, 7.3, 1.2 Hz, 2H), 7.27 – 7.21 (m, 2H), 2.51 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 150.2, 140.1, 139.2, 132.5, 131.1, 129.0, 126.1, 123.4, 121.2, 120.7, 21.5. HRMS (APCI): calculated for C₂₁H₁₆N₃S₂ [M+H]⁺: 374.07802; Found: 374.07760.

N-(benzo[d]thiazol-2-yl)-N-(4-(tert-butyl)phenyl)benzo[d]thiazol-2-amine (4c). White solid, m.p. 272.5-273.6°C. Isolated yield: 93%. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.72 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.66 - 7.61 (m, 2H), 7.49 -7.43 (m, 2H), 7.40 (ddd, *J* = 8.2, 7.2, 1.3 Hz, 2H), 7.28 - 7.21 (m, 2H), 1.43 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 153.0, 150.1, 139.1, 132.5, 128.6, 127.4, 126.0, 123.4, 121.2, 120.7, 35.0, 31.4. HRMS (APCI): calculated for $C_{24}H_{22}N_3S_2$ [M+H]⁺: 416.12497; Found: 416.12451.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(4-*fluoropheny*1)*benzo*[*d*]*thiazo*1-2-*amine* (4d). White solid, m.p. 200.0-200.8 °C. Isolated yield: 90%. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.73 (dd, *J* = 7.9, 1.1 Hz, 2H), 7.58 – 7.50 (m, 2H), 7.41 (ddd, *J* = 8.3, 7.3, 1.2 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.29 – 7.22 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1 (d, *J* = 250.6 Hz), 162.7, 150.0, 137.5 (d, *J* = 3.4 Hz), 132.4, 131.4 (d, *J* = 9.0 Hz), 126.2, 123.6, 121.3, 120.8, 117.6 (d, *J* = 23.1 Hz). HRMS (APCI): calculated for C₂₀H₁₃FN₃S₂ [M+H]⁺: 378.05294; Found: 378.05236.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(4-(*trifluoromethyl*)*phenyl*)*benzo*[*d*]*thiazo*1-2-*amine* (*4e*). White solid, m.p. 230.3-231.1 °C. Isolated yield: 30%. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 2H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.74 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 2H), 7.42 (ddd, *J* = 8.4, 7.3, 1.3 Hz, 2H), 7.27 (td, *J* = 7.7, 1.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 149.9, 144.5, 132.4, 131.9 (q, *J* = 33.1 Hz), 130.1, 127.7 (q, *J* = 3.7 Hz), 126.9, 126.3, 123.7 (q, *J* = 272.6 Hz), 121.3, 120.8. HRMS (APCI): calculated for C₂₁H₁₃F₃N₃S₂ [M+H]⁺: 428.04975; Found: 428.04931.

N-(*benzo*[*d*]*thiazo*1-2-*yl*)-*N*-(*m*-*to*1*yl*)*benzo*[*d*]*thiazo*1-2-*amine* (**4***f*). White solid, m.p. 194.5-195.2°C. Isolated yield: 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.72 (dd, *J* = 7.8, 1.1 Hz, 2H), 7.53 (dd, *J* = 9.0, 7.3 Hz, 1H), 7.44 – 7.37 (m, 3H), 7.37 – 7.33 (m, 2H), 7.28 – 7.21 (m, 2H), 2.47 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.9, 150.1, 141.7, 140.6, 132.5, 130.8, 130.2, 129.7, 126.2, 126.1, 123.4, 121.2, 120.7, 21.5. HRMS (APCI): C₂₁H₁₆N₃S₂ [M+H]⁺: calculated for 374.07802; Found: 374.07772.

N-(*benzo*[*d*]*thiazo*1-2-*yl*)-*N*-(*o*-*tolyl*)*benzo*[*d*]*thiazo*1-2-*amine* (**4***g*). White solid, m.p. 193.6-194.8°C. Isolated yield: 62%. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.73 (dd, *J* = 7.9, 1.2 Hz, 2H), 7.57 – 7.44 (m, 4H), 7.40 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 2H), 7.27 – 7.23 (m, 2H), 2.19 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 150.3, 140.6, 137.4, 132.5, 132.2, 130.4, 129.5, 128.1, 126.1, 123.4, 121.2, 120.8,

17.5. HRMS (APCI): calculated for $C_{21}H_{16}N_3S_2$ [M+H]⁺: 374.07802; Found: 374.07748.

6-*Methyl-N*-(6-*methylbenzo*[*d*]*thiazo*l-2-*y*])-*N*-*phenylbenzo*[*d*]*thiazo*l-2-*amine* (**4i**). White solid, m.p. 192.0-193.6°C. Isolated yield: 72%. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.3 Hz, 2H), 7.65 – 7.58 (m, 3H), 7.55 (dd, J = 6.7, 1.8 Hz, 2H), 7.50 (s, 2H), 7.20 (dd, J = 8.2, 1.7 Hz, 2H), 2.44 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 148.1, 141.8, 133.3, 132.5, 130.4, 129.8, 129.4, 127.4, 120.8, 120.6, 21.5. HRMS (APCI): calculated for C₂₂H₁₈N₃S₂ [M+H]⁺: 388.09367; Found: 388.09298.

6-*Methoxy-N*-(6-*methoxybenzo*[*d*]*thiazo*l-2-*y*l)-*N*-*phenylbenzo*[*d*]*thiazo*l-2-*amine* (*4j*). White solid, m.p. 165.7-168.4 °C. Isolated yield: 56%. In addition, 26% of the mono-substituted product (*3j*) was also obtained. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.9 Hz, 2H), 7.65 – 7.56 (m, 3H), 7.54 (dd, J = 8.2, 1.5 Hz, 2H), 7.20 (d, J = 2.6 Hz, 2H), 6.99 (dd, J = 8.9, 2.6 Hz, 2H), 3.84 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.0, 156.3, 144.4, 141.7, 133.5, 130.4, 129.8, 129.4, 121.7, 114.4, 104.3, 55.8. HRMS (APCI): calculated for C₂₂H₁₈N₃O₂S₂ [M+H]⁺: 420.08349; Found: 420.08270.

6-*Chloro-N*-(6-*chlorobenzo*[*d*]*thiazo*l-2-*y*])-*N*-*phenylbenzo*[*d*]*thiazo*l-2-*amine* (**4k**). White solid, m.p. 244.0-245.0°C. Isolated yield: 84%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.12 (d, J = 2.3 Hz, 2H), 7.75 – 7.65 (m, 7H), 7.47 (d, J = 2.2 Hz, 1H), 7.45 (d, J = 2.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.6, 148.8, 141.6, 134.0, 131.1, 130.8, 129.8, 128.1, 127.3, 122.2, 121.8. HRMS (APCI): calculated for C₂₀H₁₂Cl₂N₃S₂ [M+H]⁺: 427.98442; Found: 427.98388.

Diethyl 2,2'-(*phenylazanediyl*)*bis*(*benzo*[*d*]*thiazole-6-carboxylate*) (*4l*). White solid, m.p. 238.7-239.3°C. Isolated yields: 55% for Condition A and 75% for Condition B. ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, *J* = 1.8 Hz, 2H), 8.11 (dd, *J* = 8.5, 1.7 Hz, 2H), 7.82 (d, *J* = 8.5 Hz, 2H), 7.73 – 7.63 (m, 3H), 7.56 (dd, *J* = 7.8, 1.9 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 4H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 165.1, 153.3, 141.2, 132.4, 130.7, 130.4, 129.1, 127.7, 125.8, 123.0, 120.9, 61.1, 14.4. HRMS (APCI): calculated for C₂₆H₂₂N₃O₄S₂ [M+H]⁺: 504.10462; Found: 504.10369. *N-(4-phenoxyphenyl)benzo*[*d*]*thiazol-2-amine* (*6a*). White solid, m.p.

S13

158.8-159.4°C. Isolated yield: 88%. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (s, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.38 – 7.29 (m, 3H), 7.15 (t, *J* = 7.9 Hz, 1H), 7.11 (t, *J* = 7.3 Hz, 1H), 7.09 – 6.98 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 157.3, 154.1, 151.7, 135.2, 130.1, 129.8, 126.1, 123.3, 122.5, 122.4, 120.8, 120.0, 119.5, 118.7. HRMS (ESI): calculated for C₁₉H₁₅N₂OS [M+H]⁺: 319.08996; Found: 319.08979.

2-(4-(*Benzo[d]thiazol-2-ylamino*)*phenoxy*)*benzonitrile* (**6***b*). White solid, m.p. 174.3-174.9°C. Isolated yield: 72%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.57 (s, 1H), 7.95 – 7.86 (m, 3H), 7.82 (dd, J = 7.9, 1.2 Hz, 1H), 7.64 (ddd, J = 8.9, 7.4, 1.7 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.33 (td, J = 7.7, 1.3 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.17 (td, J = 7.6, 1.2 Hz, 1H), 6.91 (d, J = 8.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.6, 160.4, 152.8, 149.9, 138.7, 136.2, 134.9, 130.8, 126.9, 124.2, 123.3, 121.9, 121.5, 120.5, 120.1, 117.4, 117.0, 102.9. HRMS (ESI): calculated for C₂₀H₁₄N₃OS [M+H]⁺: 344.08521; Found: 344.08515.

N-(*4*-(2,*4*-*dichlorophenoxy*)*phenyl*)*benzo*[*d*]*thiazol-2-amine* (*6c*). Brown solid, m.p. 184.9-186.5°C. Isolated yield: 75%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 7.88 – 7.77 (m, 3H), 7.75 (d, *J* = 2.6 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.39 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.32 (td, *J* = 7.6, 1.4 Hz, 1H), 7.15 (td, *J* = 7.7, 1.2 Hz, 1H), 7.08 (d, *J* = 9.0 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.1, 152.5, 152.4, 150.6, 137.7, 130.5, 130.5, 129.1, 128.0, 126.4, 125.1, 122.7, 121.5, 120.9, 119.9, 119.8, 119.6. HRMS (ESI): calculated for C₁₉H₁₃Cl₂N₂OS [M+H]⁺: 387.01202; Found: 387.01194.

N-(*3*-chloro-4-(2,4-dichlorophenoxy)phenyl)benzo[d]thiazol-2-amine (**6d**). White solid, m.p. 165.0-165.8°C. Isolated yield: 71%. ¹H NMR (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.79 (d, J = 2.7 Hz, 1H), 7.65 (dd, J = 7.6, 5.3 Hz, 2H), 7.48 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 8.8, 2.7 Hz, 1H), 7.40 – 7.33 (m, 1H), 7.19 (d, J = 7.7 Hz, 1H), 7.17 (dd, J = 8.8, 2.5 Hz, 1H), 6.96 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.9, 151.5, 151.4, 147.6, 137.1, 130.5, 130.0, 128.9, 127.9, 126.4, 126.4, 125.3, 123.0, 122.0, 121.1, 120.9, 119.9, 119.3, 119.1. HRMS (ESI): calculated for C₁₉H₁₂Cl₃N₂OS [M+H]⁺: 420.97304; Found: 420.97287.

N-(*3*,5-dichloro-4-(2,4-dichlorophenoxy)phenyl)benzo[d]thiazol-2-amine (6e). White solid, m.p. 192.1-193.0°C. Isolated yield: 82%. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 2.5 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.35 (s, 1H), 7.26 – 7.22 (m, 1H), 7.09 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.45 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 151.3, 151.2, 142.0, 138.4, 130.5, 130.1, 130.0, 127.8, 127.5, 126.5, 123.5, 123.4, 120.9, 120.3, 119.0, 115.0. HRMS (ESI): calculated for C₁₉H₁₁Cl₄N₂OS [M+H]⁺: 454.93407; Found: 454.93389.

N-(*3*-chloro-4-(2,4,6-trichlorophenoxy)phenyl)benzo[*d*]thiazol-2-amine (**6***f*). White solid, m.p. 201.5-202.9°C. Isolated yield: 83%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 8.20 (d, *J* = 2.6 Hz, 1H), 7.91 (s, 2H), 7.81 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.47 (dd, *J* = 9.0, 2.7 Hz, 1H), 7.34 (ddd, *J* = 8.3, 7.4, 1.3 Hz, 1H), 7.17 (td, *J* = 7.6, 1.2 Hz, 1H), 6.66 (d, *J* = 9.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.9, 152.3, 146.7, 146.0, 137.2, 131.4, 130.4, 130.0, 129.8, 126.4, 122.9, 121.6, 121.6, 119.9, 119.8, 118.2, 115.5. HRMS (ESI): calculated for $C_{19}H_{11}Cl_4N_2OS [M+H]^+$: 454.93407; Found: 454.93380.

N-(*3*-fluoro-4-(2,4,6-trichlorophenoxy)phenyl)benzo[*d*]thiazol-2-amine (**6***g*). White solid, m.p. 205.3-207.0°C. Isolated yield: 81%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.65 (s, 1H), 8.14 – 8.00 (m, 1H), 7.89 (s, 2H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 8.1 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 9.1 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.74 (t, *J* = 9.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.8, 152.3, 151.1 (d, *J* = 243.7 Hz), 146.0, 138.6 (d, *J* = 11.5 Hz), 137.2 (d, *J* = 9.8 Hz), 131.3, 130.4, 130.0, 129.8, 126.4, 122.9, 121.6, 119.8, 116.6, 114.3 (d, *J* = 3.3 Hz), 107.2 (d, *J* = 22.7 Hz). HRMS (ESI): calculated for C₁₉H₁₀Cl₃FN₂OS [M+H]⁺: 438.96362: Found: 438.96341.

N-(*3*,5-dichloro-4-(2,4,6-trichlorophenoxy)phenyl)benzo[d]thiazol-2-amine (**6**h). Brown solid, m.p. 192.5-193.1°C. Isolated yield: 80%. ¹H NMR (500 MHz, CDCl₃) δ 10.83 (s, 1H), 7.95 (s, 2H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.76 (s, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 152.0, 147.4, 142.0, 138.5, 130.4, 129.9, 129.9, 129.3, 126.6, 126.1, 123.4, 121.7, 120.3, 118.2. HRMS (ESI): calculated for $C_{19}H_{10}Cl_5N_2OS [M+H]^+$; Exact Mass: 488.89510; Found: 488.89477.

N-(*3*,5-*difluoro*-*4*-(2,*4*,6-*trichlorophenoxy*)*phenyl*)*benzo*[*d*]*thiazo*1-2-*amine* (*6i*). White solid, m.p. 227.4-228.0°C. Isolated yield: 84%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.86 (s, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.82 (s, 2H), 7.72 − 7.58 (m, 3H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.5, 153.5 (dd, *J* = 244.7, 6.7 Hz), 152.0, 148.1, 137.6 (t, *J* = 13.2 Hz), 130.4, 130.4, 129.8, 127.9, 127.0 (t, *J* = 13.7 Hz), 126.5, 123.3, 121.7, 120.2, 102.2 (dd, *J* = 20.0, 6.3 Hz). HRMS (ESI): calculated for C₁₉H₁₀Cl₃F₂N₂OS [M+H]⁺: 456.95420; Found: 456.95393.

N-(*4*-(*naphthalen-2-yloxy*)*phenyl*)*benzo*[*d*]*thiazol-2-amine* (*6j*). White solid, m.p. 173.2-173.7°C. Isolated yield: 60%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 7.96 (d, *J* = 9.4 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.8 Hz, 2H), 7.81 (d, *J* = 4.6 Hz, 1H), 7.79 (d, *J* = 4.6 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.47 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.42 (ddd, *J* = 8.0, 6.7, 1.3 Hz, 1H), 7.36 – 7.28 (m, 3H), 7.20 – 7.12 (m, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.1, 156.1, 152.6, 151.0, 137.5, 134.4, 130.5, 130.5, 129.9, 128.1, 127.4, 127.1, 126.4, 125.0, 122.7, 121.5, 120.8, 119.9, 119.7, 119.6, 112.5. HRMS (ESI): calculated for C₂₃H₁₇N₂OS [M+H]⁺: 369.10561; Found: 369.10552.

 N_{1} -(*benzo[d]thiazol-2-yl*)- N_{4} -phenylbenzene-1,4-diamine (**6**k). Brown solid, m.p. 181.3-182.6°C. Isolated yield: 52%. ¹H NMR (500 MHz, DMSO- d_{6}) δ 10.27 (s, 1H), 8.04 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 7.9 Hz, 1H), 7.36 – 7.25 (m, 1H), 7.20 (t, J = 7.8 Hz, 2H), 7.11 (d, J = 8.3 Hz, 3H), 7.01 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_{6}) δ 162.5, 152.8, 144.7, 138.5, 134.3, 130.4, 129.6, 126.2, 122.3, 121.4, 119.9, 119.3, 119.3, 119.0, 116.0. HRMS (ESI): calculated for C₁₉H₁₆N₃S [M+H]⁺: 318.10594; Found: 318.10591.

N-(benzo[d]thiazol-2-yl)-N-(4-phenoxyphenyl)benzo[d]thiazol-2-amine (7a). White solid, m.p. 217.1-217.7°C. Isolated yield: 86%. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.47 – 7.37 (m, 4H), 7.30 - 7.24 (m, 3H), 7.24 - 7.16 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 158.8, 155.9, 150.1, 136.1, 132.5, 130.8, 130.0, 126.1, 124.4, 123.5, 121.2, 120.8, 120.1, 119.4. HRMS (APCI): calculated for C₂₆H₁₈N₃OS₂ [M+H]⁺: 452.08858; Found: 452.08744.

2-(4-(*Bis*(*benzo*[*d*]*thiazo*1-2-*y*]*)amino*)*phenoxy*)*benzonitrile* (**7b**). White solid, m.p. 205.9-208.0°C. Isolated yield: 73%. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.75 (t, *J* = 7.6 Hz, 3H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 7.29 – 7.22 (m, 3H), 7.19 (d, *J* = 8.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.8, 158.5, 156.4, 150.1, 137.9, 134.4, 134.1, 132.5, 131.3, 126.2, 124.0, 123.6, 121.3, 121.0, 120.8, 118.5, 115.6, 104.9. HRMS (ESI): calculated for C₂₇H₁₇N₄OS₂ [M+H]⁺: 477.08383; Found: 477.08349.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(4-(2,4-*dichlorophenoxy*)*pheny*1)*benzo*[*d*]*thiazo*1-2-*ami ne* (**7***c*). White solid, m.p. 174.4-175.8°C. Isolated yield: 75%. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.53 (d, *J* = 2.5 Hz, 1H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.30 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 2H), 7.20 – 7.11 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.9, 157.7, 150.3, 150.1, 136.7, 132.4, 131.0, 130.7, 130.3, 128.4, 127.4, 126.1, 123.5, 122.7, 121.2, 120.8, 118.8. HRMS (APCI): calculated for C₂₆H₁₆Cl₂N₃OS₂ [M+H]⁺: 520.01064; Found: 520.00994.

N-(*benzo[d]thiazol-2-yl*)-*N*-(*3-chloro-4-*(*2*,*4-dichlorophenoxy*)*phenyl*)*benzo[d]thia zol-2-amine* (*7d*). White solid, m.p. 215.3-216.4°C. Isolated yield: 51%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.19 (d, *J* = 2.6 Hz, 1H), 8.00 (d, *J* = 7.4 Hz, 2H), 7.90 (d, *J* = 2.6 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 2H), 7.72 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.58 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.46 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 2H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.32 (ddd, *J* = 8.2, 7.3, 1.2 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 162.9, 153.2, 149.9, 137.7, 132.7, 132.4, 131.0, 130.9, 130.3, 129.7, 126.9, 126.4, 125.9, 124.3, 124.2, 123.2, 122.1, 121.1, 119.6. HRMS (APCI): calculated for C₂₆H₁₅Cl₃N₃OS₂ [M+H]⁺: 553.97166: Found: 553.97070.

N-(benzo[d]thiazol-2-yl)-N-(3,5-dichloro-4-(2,4-dichlorophenoxy)phenyl)benzo[d]t hiazol-2-amine (7e). White solid, m.p. 216.0-216.4°C. Isolated yield: 82%. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 2H), 7.77 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.66 (s, 2H), 7.53 (d, *J* = 2.5 Hz, 1H), 7.46 (ddd, *J* = 8.2, 7.3, 1.3 Hz, 2H), 7.35 – 7.27 (m, 2H), 7.21 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.63 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 150.7, 149.8, 148.1, 139.2, 132.3, 130.9, 130.7, 130.7, 128.4, 127.8, 126.5, 124.0, 123.8, 121.4, 120.9, 115.4. HRMS (APCI): calculated for C₂₆H₁₄Cl₄N₃OS₂ [M+H]⁺: 587.93269; Found: 587.93182.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(3-*chloro*-4-(2,4,6-*trichlorophenoxy*)*pheny*1)*benzo*[*d*]*th iazo*1-2-*amine* (*7f*). White solid, m.p. 256.2-257.7°C. Isolated yield: 81%. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 7.8 Hz, 2H), 7.70 (d, *J* = 2.5 Hz, 1H), 7.48 (s, 2H), 7.46 – 7.38 (m, 2H), 7.33 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.31 – 7.25 (m, 2H), 6.69 (d, *J* = 8.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6, 152.9, 150.0, 145.9, 136.6, 132.5, 132.1, 132.0, 130.3, 129.3, 128.9, 126.3, 124.4, 123.7, 121.3, 120.8, 115.6. HRMS (APCI): calculated for C₂₆H₁₄Cl₄N₃OS₂ [M+H]⁺: 587.93269; Found: 587.93194.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(3-*fluoro*-4-(2,4,6-*trichlorophenoxy*)*pheny*1)*benzo*[*d*]*thi azo*1-2-*amine* (**7g**). White solid, m.p. 198.1-199.0°C. Isolated yield: 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.74 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.47 (s, 2H), 7.46 – 7.38 (m, 3H), 7.31 – 7.25 (m, 2H), 7.22 (dt, *J* = 8.8, 2.2 Hz, 1H), 6.80 (t, *J* = 8.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.5, 152.3 (d, *J* = 252.4 Hz), 150.0, 145.8, 145.4 (d, *J* = 10.9 Hz), 136.3 (d, *J* = 8.3 Hz), 132.5, 131.9, 130.2, 129.3, 126.3, 125.7 (d, *J* = 3.6 Hz), 123.7, 121.3, 120.8, 118.8 (d, *J* = 19.2 Hz), 116.9. HRMS (APCI): calculated for C₂₆H₁₃Cl₃FN₃OS₂ [M+H]⁺: 571.96224; Found: 571.96136.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(3,5-*dichloro*-4-(2,4,6-*trichlorophenoxy*)*pheny*1)*benzo*[*d*]*thiazo*1-2-*amine* (**7***h*). White solid, m.p. 227.8-228.7°C. Isolated yield: 78%. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 7.9 Hz, 2H), 7.55 (s, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.38 (s, 2H), 7.29 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 149.9, 149.4, 147.2, 137.5, 132.4, 130.6, 129.9, 129.2, 127.9, 127.3, 126.4, 123.9, 121.4, 120.9. HRMS (APCI): calculated for C₂₆H₁₃Cl₅N₃OS₂ [M+H]⁺: 621.89372; Found: 621.89258.

N-(benzo[d]thiazol-2-yl)-N-(3,5-difluoro-4-(2,4,6-trichlorophenoxy)phenyl)benzo[d

]thiazol-2-amine (7*i*). Yellow solid, m.p. 221.0-224.1°C. Isolated yield: 82%. ¹H NMR (500 MHz, DMSO- d_6) δ 8.02 (dd, J = 8.0, 1.2 Hz, 2H), 7.96 (d, J = 9.2 Hz, 2H), 7.92 (s, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 154.3 (dd, J = 252.9, 5.8 Hz), 149.9, 147.8, 136.1 (t, J = 11.4 Hz), 134.6 (t, J = 12.6 Hz), 132.4, 130.9, 129.0, 128.4, 126.4, 123.9, 121.4, 120.9, 114.6 (dd, J = 18.9, 5.0 Hz). HRMS (APCI): calculated for C₂₆H₁₂Cl₃F₂N₃OS₂ [M+H]⁺: 589.95282; Found: 589.95178.

N-(*benzo*[*d*]*thiazo*1-2-*y*1)-*N*-(4-(*naphthalen*-2-*yloxy*)*pheny*1)*benzo*[*d*]*thiazo*1-2-*amin e* (*7j*). White solid, m.p. 218.7-219.4°C. Isolated yield: 46%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.09 (d, *J* = 9.0 Hz, 1H), 7.99 (d, *J* = 7.9 Hz, 3H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.79 – 7.69 (m, 5H), 7.57 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.52 (ddd, *J* = 8.0, 6.8, 1.4 Hz, 1H), 7.48 – 7.42 (m, 3H), 7.35 – 7.27 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.2, 158.8, 153.5, 150.0, 136.7, 134.5, 132.4, 131.9, 131.0, 130.9, 128.3, 127.8, 127.3, 126.9, 125.9, 124.1, 122.1, 121.0, 120.9, 119.7, 116.4. HRMS (APCI): calculated for C₃₀H₂₀N₃OS₂ [M+H]⁺: 502.10423; Found: 502.10339.

 N_{I},N_{I} -bis(benzo[d]thiazol-2-yl)- N_{4} -phenylbenzene-1,4-diamine (7k). White solid, m.p. 202.3-203.4 °C. Isolated yield: 26%. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.44 – 7.37 (m, 4H), 7.34 (t, J = 7.8 Hz, 2H), 7.28 – 7.26 (m, 2H), 7.24 – 7.20 (m, 4H), 7.04 (t, J = 7.3 Hz, 1H), 6.13 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 150.2, 145.1, 141.6, 133.5, 132.6, 130.1, 129.5, 126.1, 123.4, 122.2, 121.1, 120.8, 119.4, 117.4. HRMS (APCI): calculated for C₂₆H₁₉N₄S₂ [M+H]⁺: 451.10456; Found: 451.10373.

N,N-diphenylbenzo[d]thiazol-2-amine (**9**). Yellow solid, m.p. 120.1-120.9 °C. Isolated yields: 80% for Condition A and 75% for Condition B. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.54 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.48 – 7.37 (m, 8H), 7.34 – 7.26 (m, 3H), 7.13 (td, *J* = 7.6, 1.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 152.2, 144.7, 131.9, 129.6, 126.5, 126.4, 125.9, 122.5, 120.4, 120.3. HRMS (APCI): calculated for C₁₉H₁₅N₂S [M+H]⁺: 303.09505; Found: 303.09460.

3. Original NMR and HRMS spectra for 3, 4, 6, 7 and 9

 \rightarrow ¹H NMR spectrum for **3a**

➢ HRMS spectrum for 3a

➢ ¹H NMR spectrum for **3b**

> 13 C NMR spectrum for **3b**

➢ HRMS spectrum for 3b

> ¹H NMR spectrum for 3c

3c

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-6000

5000

4000

-3000

2000

-1000

-0

➢ HRMS spectrum for 3c

 \rightarrow ¹H NMR spectrum for **3d**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1000

-0

➢ HRMS spectrum for 3d

 \rightarrow ¹H NMR spectrum for **3e**

> ¹³C NMR spectrum for **3e**

➢ HRMS spectrum for 3e

S29

\rightarrow ¹H NMR spectrum for **3f**

> ¹³C NMR spectrum for **3f**

➢ HRMS spectrum for 3f

\rightarrow ¹H NMR spectrum for **3g**

> 13 C NMR spectrum for **3g**

➢ HRMS spectrum for 3g

\rightarrow ¹H NMR spectrum for **3h**

➢ HRMS spectrum for 3h

\rightarrow ¹H NMR spectrum for **3i**

 \rightarrow ¹³C NMR spectrum for **3i**

➢ HRMS spectrum for 3i

> 13 C NMR spectrum for **3**j

➢ HRMS spectrum for 3j

S39

 \rightarrow ¹H NMR spectrum for **3k**

➢ HRMS spectrum for 3k

\rightarrow ¹H NMR spectrum for **4a**

► HRMS spectrum for 4a

\rightarrow ¹H NMR spectrum for **4b**

> ¹³C NMR spectrum for **4b**

➢ HRMS spectrum for 4b

\rightarrow ¹H NMR spectrum for **4**c

> ¹³C NMR spectrum for **4c**

➢ HRMS spectrum for 4c

 \rightarrow ¹H NMR spectrum for **4d**

S48

➢ HRMS spectrum for 4d

 \rightarrow ¹H NMR spectrum for **4e**

> ¹³C NMR spectrum for **4e**

➢ HRMS spectrum for 4e

\rightarrow ¹H NMR spectrum for **4f**

 \rightarrow ¹³C NMR spectrum for **4f**

➢ HRMS spectrum for 4f

\rightarrow ¹H NMR spectrum for **4g**

> 13 C NMR spectrum for 4g

► HRMS spectrum for **4g**

\rightarrow ¹H NMR spectrum for **4i**

 \rightarrow ¹³C NMR spectrum for **4i**

➢ HRMS spectrum for 4i

\rightarrow ¹H NMR spectrum for **4**j

> ¹³C NMR spectrum for **4j**

► HRMS spectrum for 4j

 \rightarrow ¹H NMR spectrum for **4**k

> ¹³C NMR spectrum for **4**k

➢ HRMS spectrum for 4k

\rightarrow ¹H NMR spectrum for **4**I

> ¹³C NMR spectrum for **4**l

➢ HRMS spectrum for 4l

\rightarrow ¹H NMR spectrum for **6a**

> ¹³C NMR spectrum for **6a**

HRMS spectrum for **6a**

\rightarrow ¹H NMR spectrum for **6b**

> ¹³C NMR spectrum for **6b**

➢ HRMS spectrum for 6b

S67

\rightarrow ¹H NMR spectrum for **6c**

 \rightarrow ¹³C NMR spectrum for **6**c

➢ HRMS spectrum for 6c

S69

 \rightarrow ¹H NMR spectrum for **6d**

> ¹³C NMR spectrum for **6d**

➢ HRMS spectrum for 6d

S71

 \rightarrow ¹H NMR spectrum for **6e**

> ¹³C NMR spectrum for **6e**

➢ HRMS spectrum for 6e

\rightarrow ¹H NMR spectrum for **6f**

 \rightarrow ¹³C NMR spectrum for **6f**

➢ HRMS spectrum for 6f

\rightarrow ¹H NMR spectrum for **6**g

> 13 C NMR spectrum for **6g**

➢ HRMS spectrum for 6g

S77

 \rightarrow ¹H NMR spectrum for **6h**

> ¹³C NMR spectrum for **6h**

➢ HRMS spectrum for 6h

 \rightarrow ¹H NMR spectrum for **6i**

> ¹³C NMR spectrum for **6i**

➢ HRMS spectrum for 6i

S81

\rightarrow ¹H NMR spectrum for **6**j

> 13 C NMR spectrum for **6**j

S82

➢ HRMS spectrum for 6j

\rightarrow ¹H NMR spectrum for **6**k

> 13 C NMR spectrum for **6k**

S84

➢ HRMS spectrum for 6k

S85

 \rightarrow ¹H NMR spectrum for **7a**

> ¹³C NMR spectrum for **7a**

► HRMS spectrum for **7a**

▶ ¹H NMR spectrum for **7b**

> ¹³C NMR spectrum for **7b**

➢ HRMS spectrum for 7b

 \rightarrow ¹H NMR spectrum for **7**c

> ¹³C NMR spectrum for **7**c

➢ HRMS spectrum for 7c

\rightarrow ¹H NMR spectrum for **7d**

> 13 C NMR spectrum for **7d**

S92

➢ HRMS spectrum for 7d

> ¹³C NMR spectrum for **7e**

HRMS spectrum for 7e ۶

> ¹³C NMR spectrum for **7f**

➢ HRMS spectrum for 7f

 \rightarrow ¹H NMR spectrum for **7g**

> 13 C NMR spectrum for **7g**

HRMS spectrum for 7g ۶

 \rightarrow ¹H NMR spectrum for **7h**

> ¹³C NMR spectrum for **7h**

➢ HRMS spectrum for 7h

➢ ¹H NMR spectrum for 7i

> ¹³C NMR spectrum for **7i**

HRMS spectrum for 7i ۶

\rightarrow ¹H NMR spectrum for **7**j

> 13 C NMR spectrum for **7**j

➢ HRMS spectrum for 7j

 \rightarrow ¹H NMR spectrum for **7**k

> ¹³C NMR spectrum for **7k**

► HRMS spectrum for **7k**

\rightarrow ¹H NMR spectrum for **9**

➢ HRMS spectrum for 9

