Investigation of the Remote Acyl Group Participation in Glycosylation from Conformational Perspectives by Using Trichloroacetimidate as the Acetyl Surrogate

Ke Xu, Qingmin Man, Yang Zhang, Jia Guo, Yichu Liu, Zunyun Fu, Yueyue Zhu, Yingxia Li, Mingyue Zheng^{*,} and Ning Ding^{*}

Table of Contents

1. General Information	S2
2. Preparation of bis- and tris- trichloroacetimidates	S3-S18
3. Formation of Bridging Intermediates	S19-S23
4. Details for DFT calculations	S24-S55
5. Table S1. The matchings of calculated and NMR data-suggested conformations	S56
6. References	S57-S58
7. NMR Spectra	S59-S169

1. General Information

Unless otherwise noted, all materials and dry solvents were used as received from Adamas-beta*without further purification. ¹H and ¹⁰C (data from HSQC) NMR spectra were recorded on Varian Mercury 300 MHz, 400 MHz or Bruker 600 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) (δ =0). NMR data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet and/or multiple resonances), coupling constant in hertz (Hz), integration. All NMR signals were assigned on the basis of ¹H NMR, ¹⁰C NMR, COSY, HSQC and HMBC experiments. Mass spectra were recorded on a Q-Tof Ultima Global mass spectrometer or a Shimadzu LCMS-IT-TOF mass spectrometer. TLC-analysis was performed on silica gel 60 F₂₅₄ (Huang Hai Inc.) with detection by UV-absorption (254 nm) when applicable, and by spraying with a solution of (NH₄)₆Mo₇O₃₄·H₂O (25 g L⁻¹) in 5% sulfuric acid in ethanol followed by charring. All reactions were carried out under an argon atmosphere.

2. Preparation of bis- and tris- trichloroacetimidates

Scheme S1. Synthesis of Compound 3

p-Methylphenyl 2,3-*O*-di-Benzyl-4,6-*O*-benzylidene-1-thio-β-D-mannopyranoside (S2)

To a solution of $S1^1$ (3.1 g, 11.0 mmol) in CH₃CN (100 mL), CSA (511.1 mg, 2.2 mmol) was added. The mixture was kept stirring at r.t. for 6 h. Upon completion, the solvent was evaporated to form a residue as a yellow solid.

The above residue was dissolved in DMF (250 mL), NaH (60% dispersion in oil, 3.5 g, 88.0 mmol) was added at 0 °C. After stirred at 0 °C for 30 min, benzyl bromide was added to the above solution. The reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by water (100 mL), and then diluted by ethyl acetate (500 mL). The organic phase was separated and then washed with brine (200 mL). The organic phase was separated, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S2** as a white solid (5.6 g, 92%). The physical data matched those previously reported.²

p-Methylphenyl 2,3,6-*O*-tri-benzyl-1-thio-β-D-mannopyranoside (S3)

To a solution of **S2** (2.0 g, 3.6 mmol) in THF at 0 °C was added borane-trimethylamine complex (1.0 g, 14.4 mmol), AlCl₃ (2.88 g, 21.6 mmol) and H₂O (130 μ L, 7.2 mmol), the reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by H₂O/1 M HCl (*v*:*v* = 1:1), and then neutralized by saturated aqueous NaHCO₃. The above mixture was diluted by ethyl acetate. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S3** as a white solid (1.8 g, 92%). The physical data matched those previously reported.³

1 2,3,6-tri-O-benzyl-4-O-trichloroacetimidoyl-α-D-mannopyranosyl trichloroacetimidate (3)

To a solution of S3 (1.0 g, 1.8 mmol) in DCM (50 mL) at 0 °C was added NIS (445.5 mg, 2.0 mmol), TFA (154 μ L) and H₂O (1.0 mL), the reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (50 mL) containing DBU (134 μ L, 0.9 mmol) and trichloroacetonitrile (900 μ L, 9.0 mmol), the reaction mixture was kept stirring at r.t. for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **3** as a colorless oil (543 mg, 41%). ¹H NMR: (400 MHz, CDCl₃): δ 8.56 (s, 1H), 8.55 (s, 1H), 7.35 (d, *J* = 5.7 Hz, 2H), 7.29 – 7.24 (m, 13H), 6.32 (s, 1H), 5.77 (t, *J* = 9.8 Hz, 1H), 4.71 (d, *J* = 4.5 Hz, 2H), 4.61 (d, *J* = 12.2 Hz, 1H), 4.55 – 4.48 (m, 3H), 4.16 (s, 1H), 3.98 (d, *J* = 9.3 Hz, 1H), 3.80 (s, 1H), 3.69 – 3.63 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 161.19 (*C*=N-H), 159.63 (*C*=N-H), 137.42 – 126.92, 95.36, 90.64, 90.31, 75.91, 72.99, 72.95, 72.74, 72.15, 72.02, 71.81, 68.11, 65.26. ESI-MS: m/z calcd for C₃₁H₃₀Cl₆N₂NaO₆⁺ [M+Na] ⁺ 759.0, found 759.0.

Scheme S2. Synthesis of Compound 5

p-Methylphenyl 2,3-*O*-di-Benzyl-4,6-*O*-benzylidene-1-thio-β-D-galactopyranoside (S5)

To a solution of $S4^2$ (3.1 g, 11.0 mmol) in CH₃CN (100 mL), CSA (511.1 mg, 2.2 mmol) was added. The mixture was kept stirring at r.t. for 6 h. Upon completion, the solvent was evaporated to form a residue as a yellow solid.

The above residue was dissolved in DMF (250 mL), NaH (60% dispersion in oil, 3.5 g, 88.0 mmol) was added at 0 °C. After stirred at 0 °C for 30min, benzyl bromide was added to the above solution. The reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by water (100 mL), and then diluted by ethyl acetate (500 mL). The organic phase was separated and then washed with brine (200 mL). The organic phase was separated, dried (MgSO₄) and concentrated in vacuo

to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S5** as a white solid (5.8 g, 95%). The physical data matched those previously reported.²

p-Methylphenyl 2,3,6-*O*-tri-benzyl-1-thio-β-D-galactopyranoside (S6)

To a solution of **S5** (2.0 g, 3.6 mmol) in THF at 0 °C was added borane-trimethylamine complex (1.0 g, 14.4 mmol), AlCl₃ (2.88 g, 21.6 mmol) and H₂O (130 μ L, 7.2 mmol), the reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by H₂O/1 M HCl (*v*:*v* = 1:1), and then neutralized by saturated aqueous NaHCO₃. The above mixture was diluted by ethyl acetate. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S6** as a white solid (1.6 g, 82%). The physical data matched those previously reported.⁴

2,3,6-tri-O-benzyl-4-O-trichloroacetimidoyl-α-D-galactopyranosyl trichloroacetimidate (5)

To a solution of **S6** (1.0 g, 1.8 mmol) in DCM (50 mL) at 0 °C was added NIS (445.5 mg, 2.0 mmol), TFA (154 μ L) and H₂O (1.0 mL), the reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (50 mL) containing DBU (134 μ L, 0.9 mmol) and trichloroacetonitrile (900 μ L, 9.0 mmol), the reaction mixture was kept stirring at r.t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **5** as a colorless oil (596 mg, 45%). ¹H NMR: (600 MHz, CDCl₃): δ 8.59 (s, 1H, C=N*H*), 8.44 (s, 1H, C=N*H*), 7.31 – 7.27 (m, 13H), 7.25 – 7.24 (m, 2H), 6.53 (d, *J* = 2.9 Hz, 1H), 5.99 (s, 1H), 4.89 (d, *J* = 11.7 Hz, 1H), 4.73 (d, *J* = 2.5 Hz, 2H), 4.62 (d, *J* = 11.7 Hz, 1H), 4.51 (s, 1H), 4.46 (d, *J* = 11.7 Hz, 1H), 4.38 (t, *J* = 6.6 Hz, 1H), 4.11 (dd, *J* = 4.3, 2.8 Hz, 2H), 3.62 (dd, *J* = 6.7, 3.0 Hz, 2H). ¹³C NMR: (151 MHz, CDCl₃): δ 162.19 (*C*=NH), 161.25 (*C*=NH), 138.31 – 127.25, 95.06, 91.47 (-CCl₃), 91.31 (-CCl₃), 75.98, 73.83, 73.63, 73.01, 71.75, 71.68, 70.82, 67.77. ESI-MS: m/z calcd for C₃₁H₃₀Cl₆N₂NaO₆⁺ [M+Na] ⁺ 759.0, found 759.0.

Scheme S3. Synthesis of Compound 7

2,3,4-tri-O-benzyl-6-O-trichloroacetimidoyl-α-D-glucopyranosyl trichloroacetimidate (7)

To a solution of $\mathbf{87}^5$ (2.8 g, 5.3 mmol) in CH₃OH at r.t. was added sodium methanolate, the mixture was kept stirring for 12 h. then the mixture was neutralized by amberlite 120 [H⁺] and concentrated *in vacuo* to form a yellow solid.

The above residue was dissolved in anhydrous DCM containing DBU (387 µL, 2.6 mmol) and trichloroacetonitrile (2.7 mL, 26.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **7** as a colorless oil (1.8 g, 45%, two steps). ¹H NMR: (600 MHz, CDCl₃): δ 8.60 (s, 1H, C=N-*H*), 8.36 (s, 1H, C=N-*H*), 7.35 – 7.27 (m, 15H, Ar-*H*), 6.51 (d, *J* = 3.5 Hz, 1H, H1), 4.98 (d, *J* = 10.8 Hz, 1H), 4.93 (d, *J* = 10.5 Hz, 1H), 4.85 (d, *J* = 10.8 Hz, 1H), 4.76 (d, *J* = 11.6 Hz, 1H), 4.71 (d, *J* = 11.6 Hz, 1H), 4.63 (d, *J* = 10.5 Hz, 1H), 4.58 (dd, *J* = 12.0, 1.8 Hz, 1H), 4.53 (dd, *J* = 12.0, 3.8 Hz, 1H), 4.18 (ddd, *J* = 10.2, 3.6, 1.7 Hz, 1H), 4.10 (t, *J* = 9.3 Hz, 1H), 3.79 – 3.75 (m, 2H). ¹³C NMR: (151 MHz, CDCl₃): δ 162.54 (*C*=NH), 161.26 (*C*=NH), 138.3 – 127.61, 94.01, 91.18 (-CCl₃), 91.17 (-CCl₃), 81.37, 79.50, 75.86, 75.60, 72.99, 71.55, 67.23. ESI-MS: m/z calcd for C₃₁H₃₀Cl₆N₂NaO₆⁺ [M+Na] ⁺ 759.0, found 759.0.

Scheme S4. Synthesis of Compound 9

2,3,4-tri-O-benzyl-6-O-trichloroacetimidoyl-α-D-mannopyranosyl trichloroacetimidate (9)

To a solution of $\mathbf{S8}^5$ (2.7 g, 5.1 mmol) in CH₃OH at r.t. was added sodium methanolate, the mixture was kept stirring for 12 h. then the mixture was neutralized by amberlite 120 [H⁺] and concentrated *in vacuo* to form a yellow solid.

The above residue was dissolved in anhydrous DCM containing DBU (372 µL, 2.5 mmol) and trichloroacetonitrile (2.6 mL, 25.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **9** as a colorless oil (1.8 g, 44%, two steps). ¹H NMR: (600 MHz, CDCl₃): δ 8.56 (s, 1H, C=N-*H*), 8.35 (s, 1H, C=N-*H*), 6.35 (s, 1H), 4.98 (d, *J* = 10.5 Hz, 1H), 4.78 (d, *J* = 12.0 Hz, 1H), 4.74 – 4.69 (m, 2H), 4.67 – 4.63 (m, 4H), 4.56 (dd, *J* = 11.8, 4.1 Hz, 1H), 4.24 (t, *J* = 9.7 Hz, 1H), 4.11 (dd, *J* = 9.9, 3.5 Hz, 1H), 3.99 (dd, *J* = 9.5, 2.9 Hz, 1H), 3.87 (s, 1H). ¹³C NMR: (151 MHz, CDCl₃): δ 162.73 (*C*=NH), 160.38 (*C*=NH), 138.00 – 127.63, 95.63, 91.28 (-CCl₃), 90.91 (-CCl₃), 78.92, 75.60, 73.96, 73.94, 72.95, 72.68, 72.47, 67.48. ESI-MS: m/z calcd for C₃₁H₃₀Cl₆N₂NaO₆⁺ [M+Na] ⁺ 759.0, found 759.0.

Scheme S5. Synthesis of Compound 11

2,3,4-tri-O-benzyl-6-O-trichloroacetimidoyl-a-D-galactopyranosyl trichloroacetimidate (11)

To a solution of $\mathbf{89^5}$ (2.6 g, 4.9 mmol) in CH₃OH at r.t. was added sodium methanolate, the mixture was kept stirring for 12 h. Then the mixture was neutralized by amberlite 120 [H⁺] and concentrated *in vacuo* to form a yellow solid.

The above residue was dissolved in anhydrous DCM containing DBU (357 µL, 2.4 mmol) and trichloroacetonitrile (2.5 mL, 24.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **11** as a colorless oil (1.6 g, 42%, two steps). ¹H NMR: (600 MHz, CDCl₃): δ 8.48 (s, 1H, C=N-*H*), 8.25 (s, 1H, C=N-*H*), 7.29 - 7.18 (m, 15H, Ar-*H*), 6.47 (d, *J* = 3.4 Hz, 1H), 4.96 (d, *J* = 11.2 Hz, 1H), 4.83 (d, *J* = 11.8 Hz, 1H), 4.71 (d, *J* = 11.9 Hz, 1H), 4.69 (s, 2H), 4.57 (d, *J* = 11.2 Hz, 1H), 4.40 – 4.37 (m, 1H), 4.30 – 4.26 (m, 2H), 4.21 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.99 (dd, *J* = 10.0, 2.6 Hz, 1H), 3.96 (s, 1H). ¹³C NMR: (151 MHz, CDCl₃): δ 161.65 (*C*=NH), 160.47 (*C*=NH), 137.83 – 126.88, 94.27, 90.75 (-CCl₃), 90.48 (-CCl₃), 77.41, 75.14, 74.32, 74.31, 72.81, 72.37, 69.97, 66.78. ESI-MS: m/z calcd for C₃₁H₃₀Cl₆N₂NaO₆⁺ [M+Na] ⁺ 759.0, found 759.0.

Scheme S6. Synthesis of Compound 14

To a solution of $S10^2$ (2.0 g, 5.3 mmol) was dissolved in DMF (250 mL), NaH (60% dispersion in oil, 3.5 g, 88.0 mmol) was added at 0 °C. After stirred at 0 °C for 30min, benzyl bromide was added to the above solution. The reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by water (100 mL), and then diluted by ethyl acetate (500 mL). The organic phase was separated and then washed with brine (200 mL). The organic phase was separated, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid.

The above residue was dissolved in DCM (100 mL) at 0 °C was added TFA (16 mL) and H₂O (4 mL), the reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by saturated aqueous NaHCO₃, and then diluted by DCM. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S11** as a white solid (2.3 g, 92%). The physical data matched those previously reported.⁶

2,3-di-O-benzyl-4,6-di-O-trichloroacetimidoyl-a-D-glucopyranosyl trichloroacetimidate (15)

To a solution of **S11** (1.0 g, 2.1 mmol) in DCM (50 mL) at 0 °C was added NIS (512.0 mg, 2.3 mmol), TFA (177 μ L, 2.3 mmol) and H₂O (1.0 mL), the reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (50 mL) containing DBU (150 μ L, 1.0 mmol) and trichloroacetonitrile (3.2 mL, 31.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **15** as a colorless oil (530 mg, 32%). ¹H NMR: (400 MHz, CDCl₃): δ 8.65 (s, 1H, C=N*H*), 8.64 (s, 1H, C=N*H*), 8.29 (s, 1H, C=N*H*), 7.31 – 7.25 (m, 10H), 6.48 (s, 1H), 5.49 (t, *J* = 9.4 Hz, 1H), 4.87

(d, *J* = 10.8 Hz, 1H), 4.78 (d, *J* = 10.6 Hz, 1H), 4.72 (s, 2H), 4.48 (d, *J* = 10.7 Hz, 1H), 4.40 (d, *J* = 10.8 Hz, 2H), 4.17 (t, *J* = 9.3 Hz, 1H), 3.87 (d, *J* = 8.2 Hz, 1H). ¹³C NMR: (151 MHz, CDCl₃): δ 162.49 (*C*=NH), 161.79 (*C*=NH), 161.02 (*C*=NH), 137.99 – 127.64, 93.69, 91.08 (-CCl₃), 91.04 (-CCl₃), 79.00, 78.98, 75.58, 73.89, 73.27, 70.45, 67.01. ESI-MS: m/z calcd for $C_{26}H_{24}Cl_9N_3NaO_6^+$ [M+Na] ⁺ 811.9, found 811.9.

Scheme S7. Synthesis of Compound 17

p-Methylphenyl 2-*O*-Benzyl-4,6-*O*-benzylidene-1-thio-β-D-glucopyranoside (S12)

S10² (2.0 g, 5.3 mmol) were allowed to react with benzyl bromide (1.1 equiv) in dry acetonitrile (1 mL) at 80 °C for 12 h, in the presence of $[Fe(dibm)_3]^7$ (0.1 equiv) and K₂CO₃ (1.5 equiv). The reaction mixture was directly purified by silica gel column chromatography to afford **S12** (2.1g, 85%) as a white solid. The physical data matched those previously reported.⁷

p-Methylphenyl 2,4-di-*O*-Benzyl-1-thio-β-D-glucopyranoside (S13)

To a solution of **S12** (2.0 g, 4.3 mmol) in anhydrous DCM (20 mL) at r.t. was added 1 M borane-tetrahydrofuran complex (21.5 mL, 21.5 mmol) and Cu(OTf)₂ (234 mg, 0.65 mmol), the reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by saturated aqueous NaHCO₃, and then diluted by ethyl acetate. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S13** as a colorless oil (2.0 g, 99%). The physical data matched those previously reported.³

2,4-di-O-benzyl-3,6-di-O-trichloroacetimidoyl-a-D-glucopyranosyl trichloroacetimidate (17)

To a solution of **S13** (1.0 g, 2.1 mmol) in DCM (50 mL) at 0 °C was added NIS (512.0 mg, 2.3 mmol), TFA (177 μ L, 2.3 mmol) and H₂O (1.0 mL), the reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase

was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (50 mL) containing DBU (150 μ L, 1.0 mmol) and trichloroacetonitrile (3.2 mL, 31.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **17** as a colorless oil (148 mg, 9%). ¹H NMR: (600 MHz, CDCl₃): δ 8.66 (s, 1H, C=N*H*), 8.58 (s, 1H, C=N*H*), 8.38 (s, 1H, C=N*H*), 7.29 – 7.27 (m, 10H, Ar-*H*), 6.44 (d, *J* = 3.6 Hz, 1H), 5.99 (t, *J* = 9.6 Hz, 1H), 4.82 (d, *J* = 10.4 Hz, 1H), 4.71 (d, *J* = 11.8 Hz, 1H), 4.65 (s, 1H), 4.59 (dd, *J* = 12.7, 2.4 Hz, 2H), 4.52 – 4.49 (m, 1H), 4.29 (ddd, *J* = 10.1, 3.8, 1.7 Hz, 1H), 3.94 (d, *J* = 9.7 Hz, 1H), 3.91 (dd, *J* = 8.5, 4.8 Hz, 1H). ¹³C NMR: (151 MHz, CDCl₃): δ 162.43 (*C*=NH), 162.16 (*C*=NH), 161.13 (*C*=NH), 137.44 – 127.65, 93.65, 91.55 (-CCl₃), 91.16 (-CCl₃), 90.97 (-CCl₃), 78.51, 77.54, 75.90, 75.01, 73.32, 71.29, 67.07. ESI-MS: m/z calcd for C₂₆H₂₄Cl₉N₃NaO₆⁺ [M+Na] ⁺ 811.9, found 811.9.

Scheme S8. Synthesis of Compound 20

p-Methylphenyl 2,6-di-*O*-Benzyl-1-thio-β-D-glucopyranoside (S14)

To a solution of **S12** (2.0 g, 4.3 mmol) in THF (100 mL) at 0 °C was added borane-trimethylamine complex (1.25 g, 17.2 mmol), AlCl₃ (3.4 g, 25.8 mmol) and H₂O (155 μ L, 7.2 mmol), the reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by H₂O/1 M HCl (*v:v* = 1:1), and then neutralized by saturated aqueous NaHCO₃. The above mixture was diluted by ethyl acetate. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S14** (1.7 g, 85%) as a white solid. The physical data matched those previously reported.³

2,6-di-O-benzyl-3,4-di-O-trichloroacetimidoyl-a-D-glucopyranosyl trichloroacetimidate (20)

To a solution of **S14** (1.0 g, 2.1 mmol) in DCM (50 mL) at 0 °C was added NIS (512.0 mg, 2.3 mmol), TFA (177 μ L, 2.3 mmol) and H₂O (1.0 mL), the reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase

was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (50 mL) containing DBU (150µL, 1.0 mmol) and trichloroacetonitrile (3.2 mL, 31.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **20** as a colorless oil (115 mg, 7%). ¹H NMR: (600 MHz, CDCl₃): δ 8.64 (s, 1H), 8.53 (s, 2H), 7.37 – 7.28 (m, 11H), 6.47 (s, 1H), 6.07 (t, *J* = 9.7 Hz, 1H), 5.72 (t, *J* = 9.9 Hz, 1H), 4.71 (d, *J* = 12.2 Hz, 1H), 4.66 (d, *J* = 12.0 Hz, 1H), 4.49 (d, *J* = 11.3 Hz, 2H), 4.29 (d, *J* = 9.8 Hz, 1H), 3.99 (d, *J* = 9.7 Hz, 1H), 3.62 (dd, *J* = 24.7, 11.2 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 161.39 (*C*=NH), 160.74 (*C*=NH), 160.42 (*C*=NH), 136.96 – 127.18, 93.20, 90.64 (-CCl₃), 90.38 (-CCl₃), 90.27 (-CCl₃), 75.26, 72.88, 72.77, 71.48, 71.15, 66.92. ESI-MS: m/z calcd for C₂₆H₂₄Cl₉N₃NaO₆⁺ [M+Na]⁺ 811.9, found 811.9.

Scheme S9. Synthesis of Compound 23

p-Methylphenyl 2,3-O-di-Benzyl-1-thio-β-D-galactopyranoside (S15)

To a solution of **S5** (2.0 g, 3.6 mmol) in DCM (100 mL) at 0 °C was added TFA (16 mL) and H₂O (4 mL), the reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by saturated aqueous NaHCO₃, and then diluted by DCM. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S15** as a white solid (1.3 g, 81%). The physical data matched those previously reported.⁶

2,3-di-O-benzyl-4,6-di-O-trichloroacetimidoyl-a-D-galactopyranosyl trichloroacetimidate (23)

To a solution of **S15** (1.0 g, 2.1 mmol) in DCM (50 mL) at 0 °C was added NIS (512.0 mg, 2.3 mmol), TFA (177 μ L, 2.3 mmol) and H₂O (1.0 mL), the reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase

was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (50 mL) containing DBU (150 μ L, 1.0 mmol) and trichloroacetonitrile (3.2 mL, 31.5 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **23** as a colorless oil (430 mg, 26%). ¹H NMR: (600 MHz, CDCl₃): δ 8.55 (s, 1H, C=N*H*), 8.47 (s, 1H, C=N*H*), 8.36 (s, 1H, C=N*H*), 7.34 – 7.27 (m, 10H, Ar-*H*), 6.39 (s, 1H), 5.80 – 5.77 (m, 1H), 4.71 (d, *J* = 11.9 Hz, 1H), 4.64 (dd, *J* = 11.6, 4.6 Hz, 1H), 4.62 – 4.59 (m, 2H), 4.55 (d, *J* = 11.9 Hz, 1H), 4.51 (d, *J* = 6.8 Hz, 2H), 4.27 (d, *J* = 2.3 Hz, 1H), 4.19 – 4.17 (m, 1H). ¹³C NMR: (151 MHz, CDCl₃): δ 161.72 (*C*=NH), 161.47 (*C*=NH), 160.21 (*C*=NH), 136.64, 136.54, 127.84, 127.76, 127.37, 127.33, 127.29, 103.34, 90.48 (-CCl₃), 90.40 (-CCl₃), 90.36 (-CCl₃), 86.01, 82.13, 81.28, 72.75, 71.85, 71.58, 66.05. ESI-MS: m/z calcd for C₂₆H₂₄Cl₉N₃NaO₆⁺ [M+Na] ⁺ 811.9, found 811.9.

Scheme S10. Synthesis of Compound 26

p-Methyphenyl 2,6-*O*-di-Benzyl-1-thio-β-D-galactopyranoside (S17)

To a solution of **S16**⁷ (510 mg, 1.56 mmol) in DMF (20 mL) at 0 °C was added NaH (60% dispersion in oil, 500 mg, 12.5 mmol). After stirred at 0 °C for 30 min, benzyl bromide (950 μ L, 7.82 mmol) was added to the above solution. The reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by water (20 mL), and then diluted by ethyl acetate (50 mL). The organic phase was separated and then washed with brine (20 mL). The organic phase was separated, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid.

The above residue was dissolved in AcOH/H₂O (v:v=4:1, 10 mL). The solution was kept stirring at 80 °C for 3 h. Upon completion, the reaction mixture was quenched by saturated aqueous NaHCO₃, and then diluted by ethyl acetate. The organic phase was separated, washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column

chromatography to afford **S17** (545 mg, 75%) as a colorless oil. The physical data matched those previously reported.⁷

2,6-di-O-benzyl-3,4-di-O-trichloroacetimidoyl-a-D-galactopyranosyl trichloroacetimidate (26)

To a solution of **S17** (545 mg, 1.17 mmol) in DCM (20 mL) was added NIS (200.0 mg, 1.20 mmol), TFA (90 μ L, 1.20 mmol) and H₂O (0.5 mL). The reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (10 mL) containing DBU (75 μ L, 0.5 mmol) and trichloroacetonitrile (1.6 mL, 16.4 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **26** as a colorless oil (172 mg, 11%, 2 steps). ¹H NMR: (600 MHz, CDCl₃): δ 8.66 (s, 1H, C=N*H*), 8.58 (s, 1H, C=N*H*), 8.49 (s, 1H, C=N*H*), 7.35 – 7.30 (m, 10H, Ar-*H*), 6.46 (d, *J* = 1.6 Hz, 1H), 6.23 (dd, *J* = 9.7, 1.6 Hz, 1H), 5.79 (t, *J* = 5.8 Hz, 1H), 4.83 (dd, *J* = 9.7, 1.5 Hz, 1H), 4.75 (s, 1H), 4.60 (s, 1H), 4.56 (d, *J* = 11.9 Hz, 1H), 4.54 (s, 1H), 3.96 (t, *J* = 1.6 Hz, 1H), 3.85 (dd, *J* = 9.9, 5.9 Hz, 1H), 3.74 (dd, *J* = 9.9, 7.3 Hz, 1H). ¹³C NMR: (151 MHz, CDCl₃): δ 160.60 (*C*=NH), 159.61 (*C*=NH), 157.29 (*C*=NH), 137.04 – 127.10, 90.60 (-CCl₃), 90.23 (-CCl₃), 89.77 (-CCl₃), 76.85, 73.06, 72.81, 72.21, 71.34, 70.55, 66.83, 65.58. ESI-MS: m/z calcd for C₂₆H₂₄Cl₉N₃NaO₆⁺ [M+Na] ⁺ 811.9, found 811.9.

Scheme S11. Synthesis of Compound 29

p-Methylphenyl 6-*O-tert*-butyldimethylsilyl-1-thio-β-D-mannopyranoside (S18)

To a solution of **S1** (3.1 g, 11.0 mmol), TEA (5.0 mL, 36.3 mmol) and DMAP (67 mg, 0.5 mmol) in anhydrous DMF (30 mL) was added dropwise TBDMSC1 (2.0 g, 13.2 mmol) solution of DMF (10 mL) at 0 °C. The reaction mixture was kept stirring at r.t. for 24 h. Upon completion, the reaction mixture was concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S18** as a colorless oil (3.3g, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.6 Hz, 2H, 2 Ar-H), 7.11 (d, *J* = 7.5 Hz, 2H, Ar-*H*), 4.46 (d, *J* = 9.6 Hz, 1H), 4.08 (s, 1H), 3.96 – 3.85 (m, 2H), 3.66 (t, *J* = 9.2 Hz, 1H), 3.58 (d, *J* = 6.4 Hz, 1H), 3.51 (d, *J* = 4.7 Hz, 1H), 2.33 (s, 3H, PhCH₃), 0.90 (s, 9H, -C(CH₃)₃), 0.11 (s, 3H, -CH₃), 0.09 (s, 3H, -CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 138.22 – 128.35, 88.77, 78.01, 74.97, 69.85, 69.40, 63.18, 25.82, 21.17, 18.22, -5.45, -5.46. ESI-MS: m/z calcd for C₁₉H₃₂NaO₅SSi⁺ [M+Na]⁺ 423.2, found 423.2.

p-Methylphenyl 3-*O*-(2-methyl-naphthyl)-6-*O-tert*-butyldimethylsilyl-1-thio-β-D-mannopyranoside (S19)

To a solution of **S18** (1.0 g, 2.5 mmol) in toluene (50 mL) was added dibutyltin oxide (685 mg, 2.7 mmol), the mixture was refluxed for 6 h in Dean-Stark tube. After cooled to 60 °C, tetrabutylammonium bromide (890 mg, 2.7 mmol) and NapBr (830 mg, 3.7 mmol) were added to the mixture and stirred at 60 °C for 24h. Upon completion, the reaction mixture was concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S19** as a colorless oil (700 mg, 52%).¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 10.4, 6.5 Hz, 4H, Ar-*H*), 7.52 – 7.44 (m, 5H, Ar-*H*), 7.09 (d, *J* = 7.9 Hz, 2H, Ar-*H*), 4.91 (s, 2H), 4.44 (d, *J* = 9.7 Hz, 1H), 4.10 (s, 1H), 3.93 – 3.79 (m, 3H), 3.50 – 3.42 (m, 2H), 2.71 (d, *J* = 1.9 Hz, 1H, -O*H*), 2.49 (d, *J* = 2.0 Hz, 1H, -O*H*), 2.32 (s, 3H, PhC*H*₃), 0.89 (s, 9H, -C(C*H*₃)₃), 0.08 (s, 3H, -C*H*₃), 0.07 (s, 3H, -C*H*₃). ¹³C NMR (151 MHz, CDCl₃) δ 138.22 – 128.35, 88.77, 78.01, 74.97, 69.85, 69.40, 63.18, 25.82, 21.17, 18.22, -5.45, -5.46. ESI-MS: m/z calcd for C₃₀H₄₀NaO₅SSi⁺ [M+Na]⁺ 563.2, found 563.2.

p-Methylphenyl 2,4-di-*O*-Benzyl-3-*O*-(2-methyl-naphthyl)-6-*O*-*tert*-butyldimethylsilyl-1-thio-β-Dmannopyranoside (S20)

To a solution of **S19** (540 mg, 1.0 mmol) in DMF (100 mL) at 0 °C was added NaH (60% dispersion in oil, 320 mg, 8.0 mol). After stirred at 0 °C for 30min, benzyl bromide (0.6 mL, 5.0 mmol) was added to the above solution. The reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by water (100 mL), and then diluted by ethyl acetate (500 mL). The organic phase was separated and then washed with brine (200 mL). The organic phase was separated, dried (MgSO₄)

and concentrated *in vacuo* to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S20** as a white solid (450 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 3H, Ar-*H*), 7.73 – 7.68 (m, 1H, Ar-*H*), 7.47 (dd, *J* = 8.6, 3.0 Hz, 5H, Ar-*H*), 7.41 – 7.29 (m, 10H, Ar-*H*), 7.01 (d, *J* = 7.9 Hz, 2H, Ar-*H*), 5.02 (d, *J* = 11.4 Hz, 1H), 4.89 (s, 2H), 4.78 (q, *J* = 10.3 Hz, 2H), 4.67 (d, *J* = 11.5 Hz, 1H), 4.59 (d, *J* = 9.6 Hz, 1H), 3.97 (d, *J* = 2.3 Hz, 1H), 3.93 (d, *J* = 9.4 Hz, 1H), 3.74 (dd, *J* = 6.7, 3.6 Hz, 2H), 3.65 (dd, *J* = 9.2, 2.7 Hz, 1H), 3.43 (t, *J* = 6.7 Hz, 1H), 2.30 (s, 3H, PhC*H*₃), 0.85 (s, 9H, -C(C*H*₃)₃), 0.02 (s, 3H, -C*H*₃), 0.01 (s, 3H, -C*H*₃). ¹³C NMR (151 MHz, CDCl₃) δ 138.99 – 125.67, 88.01, 84.09, 78.79, 75.59, 74.49, 73.49, 72.80, 61.42, 25.86, 21.11, 18.17, -5.39, -5.48. ESI-MS: m/z calcd for C₄₄H₅₂NaO₅SSi⁺ [M+Na]⁺ 743.3, found 743.3.

p-Methylphenyl 2,4-di-*O*-Benzyl-1-thio-β-D-mannopyranoside (S21)

S20 (450 mg, 0.6 mmol) was dissolved in TFA/toluene (*v*:*v* = 10:1). The solution was kept stirring at 0 °C for 3h. Upon completion, the reaction mixture was concentrated in vacuo to form a residue as a yellow solid. The residue was dissolved in DCM/MeOH (*v*:*v* = 2:1) containing MeONa and stirred at r.t. for 2 h. the reaction mixture was concentrated *in vacuo* and purified by silica gel column chromatography to afford **S21** as a colorless oil (200 mg, 72%). ¹H NMR (400 MHz, CDCCl₃) δ 7.45 – 7.32 (m, 12H, Ar-*H*), 7.10 (d, *J* = 7.6 Hz, 2H, Ar-*H*), 5.71 (d, *J* = 5.0 Hz, 1H), 4.92 (d, *J* = 11.5 Hz, 1H), 4.81 (d, *J* = 11.1 Hz, 1H), 4.66 (d, *J* = 11.6 Hz, 1H), 4.57 (d, *J* = 11.1 Hz, 1H), 4.30 (d, *J* = 5.3 Hz, 1H), 4.18 (dd, *J* = 9.7, 5.3 Hz, 1H), 4.00 (d, *J* = 9.6 Hz, 1H), 3.92 (s, 1H), 3.77 – 3.70 (m, 1H), 3.52 (s, 1H), 2.32 (s, 3H, -CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 137.97 – 127.98, 86.90, 76.63, 75.78, 74.90, 71.99, 71.39, 71.24, 62.35, 21.05. ESI-MS: m/z calcd for C₂₇H₃₀NaO₅S⁺ [M+Na] ⁺ 489.2, found 489.2.

2,4-di-O-benzyl-3,6-di-O-trichloroacetimidoyl-α-D-mannopyranosyl trichloroacetimidate (29)

S29 (200 mg, 0.4 mmol) was dissolved in DCM (10 mL), NIS (100 mg, 0.44 mmol), TFA (34μ L, 0.44 mmol) and H₂O (0.1 mL) was added at 0 °C. The reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase was separated and then washed with brine, dried (MgSO₄) and concentrated *in vacuo* to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (5 mL) containing DBU (120 μ L, 0.2 mmol) and trichloroacetonitrile (0.6 mL, 6.0 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **29** as a colorless oil (150 mg, 48%, 2 steps). ¹H NMR (600 MHz, CDCl₃) δ 8.59 (s, 1H, C=N*H*),

8.56 (s, 1H, C=N*H*), 8.35 (s, 1H, C=N*H*), 6.50 (d, J = 2.1 Hz, 1H), 7.35 – 7.28 (m, 10H, Ar-*H*), 5.54 (d, J = 10.3 Hz, 1H), 4.93 (d, J = 10.8 Hz, 1H), 4.78 (d, J = 11.8 Hz, 1H), 4.71 (d, J = 11.8 Hz, 1H), 4.55 (d, J = 10.8 Hz, 1H), 4.51 (t, J = 6.1 Hz, 1H), 4.48 – 4.43 (m, 2H), 4.39 (dd, J = 10.0, 2.6 Hz, 1H), 4.34 (dd, J = 10.7, 6.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 162.19 (*C*=NH), 162.09 (*C*=NH), 161.10 (*C*=NH), 137.78, 137.64, 128.45, 128.32, 127.96, 127.73, 127.60, 94.65, 91.24 (-*C*Cl₃), 91.14 (-*C*Cl₃), 90.98 (-*C*Cl₃), 77.75, 75.24, 73.91, 73.36, 73.27, 69.99, 66.97. ESI-MS: m/z calcd for C₂₆H₂₄Cl₉N₃NaO₆⁺ [M+Na] ⁺ 811.9, found 811.9.

Scheme S12. Synthesis of Compound 32

p-Methylphenyl 3-O-(2-methyl-naphthyl)-1-thio-β-D-galactopyranoside (S22)

To a solution of **S1** (3.1 g, 11.0 mmol) in toluene (100 mL) was added dibutyltin oxide (3.0 g, 12.1 mmol), the mixture was refluxed for 6 h in Dean-Stark tube. After cooled to 60 °C, tetrabutylammonium bromide (3.9 mg, 12.1 mmol) and NapBr (3.6 g, 16.5 mmol) were added to the mixture and stirred at 60 °C for 24 h. Upon completion, the reaction mixture was concentrated in vacuo to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S22** as a colorless oil (2.4 g, 52%). The physical data matched those previously reported.⁸

p-Methylphenyl 2,4,6-tri-*O*-Benzyl-3-*O*-(2-methyl-naphthyl)-1-thio-β-D-galactopyranoside (S23)

To a solution of **S22** (426 mg, 1.0 mmol) in DMF (50 mL) at 0 °C was added NaH (60% dispersion in oil, 320 mg, 8.0 mol). After stirred at 0 °C for 30 min, benzyl bromide (0.6 mL, 5.0 mmol) was added to the above solution. The reaction mixture was kept stirring at r.t. for 6 h. Upon completion, the reaction mixture was quenched by water (100 mL), and then diluted by ethyl acetate (500 mL). The organic phase was

separated and then washed with brine (200 mL). The organic phase was separated, dried (MgSO₄) and concentrated in vacuo to form a residue as a yellow solid. The residue was purified by silica gel column chromatography to afford **S23** as a white solid (510 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (t, *J* = 15.7 Hz, 4H, Ar-*H*), 7.45 (d, *J* = 9.1 Hz, 3H, Ar-*H*), 7.34 – 7.20 (m, 17H, Ar-*H*), 7.02 (d, *J* = 7.1 Hz, 2H, Ar-*H*), 5.55 (s, 1H), 4.94 (d, *J* = 10.6 Hz, 1H), 4.73 (d, *J* = 7.2 Hz, 3H), 4.63 (t, *J* = 12.7 Hz, 2H), 4.55 (d, *J* = 10.4 Hz, 1H), 4.49 (d, *J* = 11.6 Hz, 1H), 4.30 (dd, *J* = 8.1, 3.7 Hz, 1H), 4.09 (t, *J* = 9.2 Hz, 1H), 4.02 (s, 1H), 3.94 (d, *J* = 9.3 Hz, 1H), 3.85 (dd, *J* = 10.9, 3.5 Hz, 1H), 3.76 (d, *J* = 10.6 Hz, 1H), 2.30 (s, 3H, -CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 138.45 – 125.86, 85.96, 80.17, 76.13, 75.20, 75.01, 73.28, 72.72, 72.11, 71.80, 69.21, 21.10. ESI-MS: m/z calcd for C₄₅H₄₄NaO₅S⁺ [M+Na]⁺ 719.3, found 719.3.

p-Methylphenyl 2,4,6-tri-*O*-Benzyl-1-thio-β-D-galactopyranoside (S24)

S23 (420 mg, 0.6 mmol) was dissolved in TFA/toluene (v:v = 10:1). The solution was kept stirring at 0 °C for 3h. Upon completion, the reaction mixture was concentrated in vacuo to form a residue as a yellow solid. The residue was dissolved in DCM/MeOH (v:v = 2:1) containing MeONa and stirred at r.t. for 2 h. the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography to afford **S24** as a colorless oil (227 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 17H, Ar-*H*), 7.04 (d, J = 6.9 Hz, 2H, Ar-*H*), 5.61 (s, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.75 (d, J = 11.4 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.57 – 4.46 (m, 3H), 4.34 – 4.26 (m, 1H), 3.99 (s, 2H), 3.83 – 3.73 (m, 3H), 2.30 (s, 3H, -CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 138.35 – 127.48, 85.24, 79.64, 74.91, 73.32, 72.28, 72.09, 71.90, 69.14, 21.11. ESI-MS: m/z calcd for C₃₄H₃₆NaO₅S⁺ [M+Na]⁺ 579.2, found 579.2.

2,4,6-tri-O-benzyl-3-O-trichloroacetimidoyl-a-D-galactopyranosyl trichloroacetimidate (32)

S24 (227 mg, 0.4 mmol) was dissolved in DCM (10 mL), NIS (100 mg, 0.44 mmol), TFA (34 μ L, 0.44 mmol) and H₂O (0.1 mL) was added at 0 °C. The reaction mixture was kept stirring at r.t. for 6 h. upon completion, the above solution was quenched by NaHSO₃ and then diluted by DCM. The organic phase was separated and then washed with brine, dried (MgSO₄) and concentrated in vacuo to form a residue as a yellow oil. The residue was purified by silica gel column chromatography to afford a colorless oil.

The above residue was dissolved in anhydrous DCM (5 mL) containing DBU (120 μ L, 0.2 mmol) and trichloroacetonitrile (0.4 mL, 4.0 mmol), the reaction mixture was kept stirring at r,t, for 2 h. Upon completion, the solvent was evaporated and the residue was purified by silica gel column chromatography to afford **32** as a colorless oil (166 mg, 56%, 2 steps). ¹H NMR (600 MHz, CDCl₃) δ 8.59 (s, 1H, C=N*H*), 8.45 (s, 1H, C=N*H*), 7.38 (d, *J* = 7.1 Hz, 2H, Ar-*H*), 7.34 – 7.26 (m, 11H, Ar-*H*), 7.19 – 7.17 (m, 2H, Ar-

H), 6.41 (d, J = 2.0 Hz, 1H), 5.44 (dd, J = 9.7, 3.2 Hz, 1H), 4.91 (d, J = 10.6 Hz, 1H), 4.73 (s, 2H), 4.68 (d, J = 12.0 Hz, 1H), 4.56 (d, J = 10.6 Hz, 1H), 4.52 (d, J = 12.0 Hz, 1H), 4.47 – 4.45 (m, 1H), 4.36 (t, J = 9.8 Hz, 1H), 4.09 (ddd, J = 9.9, 4.0, 1.5 Hz, 1H), 3.85 (dd, J = 11.3, 4.2 Hz, 1H), 3.74 (dd, J = 11.3, 1.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 161.58, (*C*=NH), 160.42 (*C*=NH), 138.10 – 127.44, 95.83, 91.16 (-*C*Cl₃), 90.85 (-*C*Cl₃), 78.80, 74.92, 74.51, 73.39, 73.15, 73.04, 72.38, 68.44. ESI-MS: m/z calcd for C₃₁H₃₀Cl₆N₂NaO₆⁺ [M+Na]⁺ 759.0, found 759.0.

3. Formation of bridging intermediates

BnO BnO

BnO

General procedures for Formation of bridging intermediates 4, 6, 8, 10, 12, 15, 16, 18, 19, 21, 24, 25, 28, 33 and by-products 13, 22 based on the '*bis*-trichloroacetimidates method' and '*tris*-trichloroacetimidates method': *bis*-trichloroacetimidates 3, 5, 7, 9, 11, 32 or *tris*-trichloroacetamides 14, 17, 20, 23, 26, 29 (50 mg, 0.06 mmol) was dissolved in anhydrous DCM (5 mL) and cooled to 0 °C. 4 Å molecular sieves (fresh activated) and TfOH or TBSOTf (0.1 equiv.) were then added. The reaction mixture was stirred at 0 °C for 3 h and then quenched with Et₄N. The solvent was evaporated and the residue was purified by silica gel column chromatography to afford the corresponding bridging intermediate 4, 6, 8, 10, 12, 15, 16, 18, 19, 21, 24, 25, 28, 33 or by-products 13, 22.

BnO OBn Compound 4: 'H NMR: (600 MHz, CDCl₃): δ 7.33 – 7.29 (m, 13H, Ar-*H*), 7.25 (m, 2H, Ar-*H*), 5.34 (d, *J* = 1.7 Hz, 1H, H1), 4.71 – 4.65 (m, 5H, H4, H5 and 3 × PhC*H*-), 4.62 (d, *J* = 11.5 Hz, 1H, PhC*H*-), 4.50 (d, *J* = 11.8 Hz, 1H, PhC*H*-), 4.46 (d, *J* = 11.8 Hz, 1H, PhC*H*-), 4.24 (dt, *J* = 7.7, 1.7 Hz, 1H, H3), 4.13 (dd, *J* = 7.7, 1.6 Hz, 1H, H2), 4.09 (m, 1H, H6a), 3.75 (dd, *J* = 9.6, 5.7 Hz, 1H, H6b). ¹¹C NMR: (151 MHz, CDCl₃): δ 155.52 (*C*=N-), 137.89 – 127.61, 81.37 (C1), 76.07, 75.19, 73.83 (C2), 73.33 (PhCH₂-), 73.08 (C3), 72.77, 72.61, 69.32 (C6). ESI-HRMS: m/z calcd. for C₂₅H₂₅Cl₃NO₅ [M+H] · 576.1106, found 576.1120.

CCl₃ Compound **6**: H NMR: (600 MHz, CDCl₃): δ 7.39 – 7.26 (m, 15H, Ar-*H*), 5.80 (d, *J* = 5.5 Hz, 1H, H1), 4.68 (d, *J* = 11.2 Hz, 1H, PhC*H*-), 4.63 (td, *J* = 6.8, 1.5 Hz, 1H, H5), 4.58 (d, *J* = 11.6 Hz, 1H, PhC*H*-), 4.53 (m, 3H, H4 and PhC*H*-), 4.49 (d, *J* = 11.6 Hz, 1H, PhC*H*-),

^{OBn} 4.39 (d, J = 11.2 Hz, 1H, PhC*H*-), 4.30 (dd, J = 5.4, 3.8 Hz, 1H, H2), 4.10 (dd, J = 3.4, 1.7 Hz, 1H, H3), 3.72 (dd, J = 9.8, 6.3 Hz, 1H, H6a), 3.66 (dd, J = 9.7, 7.0 Hz, 1H, H6b). ¹²C NMR: (151 MHz, CDCl₃): δ 151.51 (*C*=N-), 137.50 – 127.76, 93.64 (-*C*Cl₃), 87.94 (C1), 86.62 (C2), 85.36 (C3), 82.85 (C5), 81.71 (C4), 73.63 (PhCH₂-), 72.46 (PhCH₂-), 71.92 (PhCH₂-), 67.61 (C6). ESI-HRMS: m/z calcd. for C₂₅H₂₅Cl₃NO₅⁺ [M+H]⁺ 576.1106, found 576.1094.

Compound 8: 'H NMR: (600 MHz, CDCl₃): 8 7.39 (d, J = 7.0 Hz, 2H), 7.36 – 7.27 (m, 13H), 5.51 (d, J = 1.5 Hz, 1H), 4.88 (d, J = 11.2 Hz, 2H, 2 × PhCH-), 4.80 (m, 2H, 2 × PhCH-), 4.59 (m, 2H, 2 × PhCH-), 4.15 – 4.08 (m, 3H, H5 and H6a and H6b),

3.89 (dd, *J* = 10.0, 7.6 Hz, 1H, H3), 3.57 (dd, *J* = 10.0, 5.8 Hz, 1H, H4), 3.52 (dd, *J* = 7.6, 1.7 Hz, 1H, H2). ¹³C NMR: (151 MHz, CDCl₃): δ 148.91 (*C*=N-), 138.24 – 127.80, 93.69 (-*C*Cl₃), 89.31 (C1), 84.34 S19

(C2), 81.43 (C3), 77.42 (C5), 75.26 (PhCH₂-), 74.84 (C6), 74.65 (PhCH₂-), 74.31 (C4), 72.14 (PhCH₂-). ESI-HRMS: m/z calcd. for C₂₉H₂₈Cl₃NNaO₅⁺ [M+Na] ⁺ 598.0925, found 598.0932.

CCl₃ Compound **10**: H NMR: (600 MHz, CDCl₃): δ 7.40 – 7.27 (m, 15H, Ar-*H*), 5.65 (d, *J* = 6.4 Hz, 1H, H1), 4.83 (dd, *J* = 12.5, 8.9 Hz, 1H, H6a), 4.74 (d, *J* = 11.9, 1H, PhC*H*-), 4.69 (d, *J* = 11.8, 1H, PhC*H*-), 4.63 (d, *J* = 12.0 Hz, 1H, PhC*H*-), 4.59 (d, *J* = 12.0 Hz, 1H, PhC*H*-), 4.55 – 4.50 (m, 2H, 2 × PhC*H*-), 4.31 – 4.26 (m, 1H, H5), 4.20 (dd, *J* = 6.4, 3.5 Hz, 1H, H2), 4.13 (dd, *J* = 12.5, 6.7 Hz, 1H, H6b), 3.84 (dd, *J* = 6.8, 3.4 Hz, 1H, H3), 3.62 (bd, *J* = 6.8 Hz, 1H, H4). "C NMR: (151 MHz, CDCl₃): δ 153.69 (*C*=N-), 138.17 – 127.78, 93.32 (-*C*Cl₃), 86.36 (C1), 77.63 (C3), 75.68 (C5), 73.91, 73.01, 72.90, 72.71. ESI-HRMS: m/z calcd. for C₂₉H₂₈Cl₃NNaO₅⁺ [M+Na] + 598.0925, found 598.0934.

Compound **12**: ¹H NMR: (600 MHz, CDCl₃): δ 7.35 – 7.27 (m, 13H, Ar-*H*), 7.23 (d, *J* = 7.1 Hz, 2H, Ar-*H*), 5.48 (s, 1H, H1), 5.00 (dd, *J* = 11.9, 3.3 Hz, 1H, H6a), 4.61-4.51 (m, 4H, 4 × PhC*H*-), 4.44 (dd, *J* = 12.0, 3.2 Hz, 2H, 2 × PhC*H*-), 4.33-4.27 (m, 2H, H5 and H6b), 4.09 (d, *J* = 5.4 Hz, 1H, H4), 3.88 (bs, 2H, H2 and H3). ¹³C NMR: (151 MHz,

CDCl₃): δ 151.43 (*C*=N-), 137.83 – 127.76, 93.97(-*C*Cl₃), 85.64 (C1), 74.34, 72.92, 72.73 (Ph*C*H₂-), 72.37 (Ph*C*H₂-), 72.13 (C6), 71.60 (Ph*C*H₂-), 71.45 (C4), 70.05 (C5). ESI-HRMS: m/z calcd. for C₂₉H₂₈Cl₃NNaO₃+ [M+Na] +598.0925, found 598.0932.

 $\begin{array}{l} \text{BnO} \\ \text{D} \\ \text{BnO} \\ \text{BnO} \\ \text{BnO} \\ \text{BnO} \\ \text{BnO} \\ \text{CCl}_{3} \end{array} \\ \begin{array}{l} \text{Compound } \mathbf{13} \text{:'H NMR} (600 \text{ MHz}, \text{CDCl}_{3}) \ \delta \ 7.38 - 7.26 \ (\text{m}, 15\text{H}, \text{Ar-}H), 7.03 \ (\text{d}, J \\ \text{e} \ 9.2 \ \text{Hz}, 1\text{H}, \text{H1}), 5.08 \ (\text{t}, J = 9.0 \ \text{Hz}, 1\text{H}, \text{H2}), 4.94 \ (\text{d}, J = 11.0 \ \text{Hz}, 1\text{H}, \text{PhC}H-), \\ 4.84 \ (\text{d}, J = 11.2 \ \text{Hz}, 1\text{H}, \text{PhC}H-), 4.77 - 4.75 \ (\text{m}, 3\text{H}, 3 \times \text{PhC}H-), 4.65 \ (\text{d}, J = 11.0 \ \text{Hz}, 1\text{H}, \text{PhC}H-), \end{array}$

Hz, 1H, PhC*H*-), 3.99 (d, J = 1.6 Hz, 1H, H5), 3.84 (t, J = 9.0 Hz, 1H, H3), 3.70 (dd, J = 10.8, 4.9 Hz, 2H, H4 and H6a), 3.55 (t, J = 6.9 Hz, 1H, H6b), 0.89 (s, 9H, -C(C*H*₃)₃), 0.05 (s, 3H, Si-C*H*₃), 0.05 (s

CCl₃ CCl₃ Compound **15**: 'H NMR: (600 MHz, CDCl₃): δ 8.45 (s, 1H, C=NH), 7.37 – 7.27 (m, 10H, Ar-H), 5.57 (d, J = 3.6 Hz, 1H, H1), 5.02 (dd, J = 8.4, 2.8 Hz, 1H, H4), 4.84-4.79 (m, 3H, 3 × PhCH-), 4.66 (dd, J = 12.5, 4.3 Hz, 1H, H6a), 4.62 (d, J = 11.8 Hz), 1H, H6a), 1H, H6a), 1H, H6a), 2H, H6a)

1H, PhCH-), 4.33 (m, 1H, H5), 4.26 (dd, J = 12.5, 3.4 Hz, 1H, H6b), 4.08 (t, J = 8.6 Hz, 1H, H3), 3.54

(dd, J = 8.8, 3.6 Hz, 1H, H2). CNMR: (151 MHz, CDCl₃): 8 162.30 (C=NH), 153.60 (C=N-), 137.92 -127.81, 93.14 (-CCl.), 90.84 (-CCl.), 89.80 (C1), 81.70 (C2), 77.66 (C3), 77.58 (C4), 76.48 (C5), 75.46 (C6), 75.28 (PhCH₂-), 72.58 (PhCH₂-). ESI-HRMS: m/z calcd. for ³⁷Cl C₂₄H₂₇Cl₃N₂O₅⁺ [M+H] + 630.9705, found 630.9717.

Compound **16**: H NMR: (600 MHz, CDCl₃): δ 8.40 (s, 1H, C=NH), 7.35 – 7.27 (m, 10H, Ar-*H*), 5.47 (d, *J* = 4.0 Hz, 1H, H1), 4.91 (bt, *J* = 7.3 Hz, 1H, H5), 4.70 (d, J = 11.8 Hz, 1H, PhCH-), 4.68 (bs, 1H, H4), 4.64 (d, J = 11.6 Hz, 1H, PhCH-), 4.55 (m, $2H, 2 \times PhCH$ -), 4.50 (dd, J = 10.9, 8.6 Hz, 1H, H6a), 4.46 (dd, J = 10.9, 6.3 Hz, 1H,

H6b), 4.20 (dd, J = 3.7, 1.9, 1H, H3), 4.14 (t, J = 3.8 Hz, 1H, H2). "C NMR: (151 MHz, CDCl₃): δ 162.05 (C=NH), 154.63 (C=N-), 137.30 - 127.84, 91.98 (-CCL), 90.91 (-CCL), 83.28 (C2), 79.57 (C1), 79.48 (C3), 75.84 (C4), 73.81(C5), 72.22 (PhCH₂-), 71.47 (PhCH₂-), 67.33 (C6). ESI-HRMS: m/z calcd. for ${}^{37}\text{ClC}_{24}\text{H}_{22}\text{Cl}_{5}\text{N}_{2}\text{NaO}_{5}^{+}$ [M+Na] + 652.9525, found 652.9542.

Compound **18** and **19**: ¹H NMR: (600 MHz, CDCl₃): δ 8.65 (s, 1H. 19-C=NH), 8.28 (s. 1.5H, 18-C=NH), 7.37 – 7.27 (m. 25H, 18-Ar-*H* and 19-Ar-*H*), 5.77 (dd, *J* = 10.2, 8.5 Hz, 1H, 19-H3),

5.56 (d, J = 1.9 Hz, 1H, 19-H1), 5.43 (t, J = 2.3 Hz, 1.5H, 18-H3), 4.83 (d, J = 11.8 Hz, 1H, 19-PhCH-),4.78 (d, J = 11.7 Hz, 1.5H, 18-PhCH-), 4.75 (d, J = 4.1 Hz, 1H, 19-PhCH-), 4.73 (m, 3H, 18-H1 and 18-H4), 4.71 (d, J = 11.9 Hz, 1.5H, 18-H2), 4.60 (d, J = 9.8 Hz, 1.5H, 18-PhCH-), 4.58 (d, J = 9.8 Hz, 1H, 19-PhCH-), 4.55 (dd, J = 11.6, 1.8 Hz, 1.5H, 18-H6a), 4.49 (d, J = 11.8 Hz, 1H, 19-PhCH-), 4.36 - 4.32(m, 3H, 18-PhCH- and 18-H6b), 4.21 - 4.19 (m, 1H, 19-H5), 4.06 (dd, J = 12.6, 2.0 Hz, 1H, 19-H6a),4.00 (d, J = 10.0 Hz, 1.5H, 18-PhCH-), 3.91 (dd, J = 12.6, 2.8 Hz, 1H, 19-H6b), 3.87 (t, J = 2.5 Hz, 1.5H, 1.5H)18-H5), 3.72 (dd, J = 10.3, 6.0 Hz, 1H, 19-H4), 3.58 (dd, J = 8.4, 2.0 Hz, 1H, 19-H2). ¹³C NMR: (151 MHz, CDCl₃): δ 162.72 (18-C=NH), 162.52 (19-C=NH), 153.66 (18-C=N-), 149.87 (19-C=N-), 137.39 -127.94, 93.55 (-CCl₃), 91.46 (-CCl₃), 91.42 (-CCl₃), 91.17 (-CCl₃), 89.51 (19-C1), 82.39 (19-C2), 78.53 (19-C3), 78.48, 77.66 (19-C5), 75.73 (18-C3), 74.62 (19-C6), 74.60 (19-PhCH₂-), 73.65 (19-C4), 73.49, 72.13 (19-PhCH₂-), 72.03, 71.96, 70.78 (18-C5), 67.34 (18-C6), 66.14. ESI-HRMS: m/z calcd. for ${}^{37}\text{ClC}_{24}\text{H}_{23}\text{Cl}_5\text{N}_2\text{O}_5^+\text{[M+H]} + 630.9705$, found 630.9725.

Compound 21: ^H NMR: (600 MHz, CDCl₃): δ 8.70 (s, 1H, C=NH), 7.35 – 7.26 (m, 10H, Ar-H), 5.61-5.59 (m, 1H, H4), 5.48 (d, J = 4.3 Hz, 1H, H1), 4.82 (d, J = 1.2 Hz, 1H, H3), 4.75 (bt, J = 7.2 Hz, 1H, H5), 4.70 – 4.66 (m, 2H, 2 × PhCH-), 4.51 (s, 2H, 2 × PhCH-), 4.17 (t, J = 3.7 Hz, 1H, H2), 3.71 - 3.63 (m, 2H, H6a and H6b). ^aC NMR: (151 MHz, CDCl₃): δ 160.67 (*C*=NH), 155.26 (*C*=N-), 137.33 – 127.65, 91.77 (-*C*Cl₃), 90.39 (-CCl₃), 80.97 (C2), 79.61 (C1), 77.68 (C4), 75.06 (C5), 75.00 (C3), 73.42 (Ph*C*H₂-), 71.48 (Ph*C*H₂-), 69.06 (C6). ESI-HRMS: m/z calcd. for ³⁷ClC₂₄H₂₅Cl₅N₂O₅⁺ [M+H] + 630.9705, found 630.9717.

Compound **22**: ¹H NMR: (600 MHz, CDCl₃): δ 9.24 (s, 1H, O=C*H*), 7.32 (m, 10H), 5.99 (d, *J* = 8.7 Hz, 1H, C=C*H*-), 5.55 (t, *J* = 8.2 Hz, 1H, H4), 5.16 – 5.09 (m, 2H, 2 × PhC*H*-), 4.77 (dd, *J* = 7.3, 2.8 Hz, 1H, H5), 4.48 (m, 2H, 2 × PhC*H*-), 3.48 (dd,

J = 10.4, 6.9 Hz, 1H, H6a), 3.34 (dd, J = 10.4, 4.5 Hz, 1H, H6b). ¹³C NMR: (151 MHz, CDCl₃): δ 188.48 (O=CH, 154.40 (C2), 137.49 – 127.63, 114.65 (H₂N-C), 102.23 (-CCl₃), 79.48 (C5), 73.98 (C4), 73.44 (PhCH₂-), 73.00 (PhCH₂-), 67.88 (C6). ESI-HRMS: m/z calcd. for C₂₂H₂₃Cl₃NO₅⁺ [M+H] ⁺ 486.0636, found 486.0649.

Compound **24**: ¹H NMR: (600 MHz, CDCl₃): δ 8.61 (s, 1H, C=N*H*), 7.40 – 7.26 (m, 10H, Ar-*H*), 6.08 (d, *J* = 6.7 Hz, 1H, H1), 5.47 (td, *J* = 6.9, 3.0 Hz, 1H, H5), 4.78 (d, *J* = 11.2 Hz, 1H, PhC*H*-), 4.66 (dd, *J* = 6.2, 3.2 Hz, 1H, H4), 4.59 (m, 1H, H6a), 4.57 – 4.55 (m, 3H, 2 × PhC*H*- and H3), 4.52 (dd, *J* = 6.8, 4.0 Hz, 1H, H2), 4.46 – 4.42 (m, 2H, H6b and

PhC*H*-). ¹³C NMR: (151 MHz, CDCl₃): δ 161.32 (*C*=NH), 152.77 (*C*=N-), 137.61 – 127.65, 94.02 (-CCl₃), 90.72 (-CCl₃), 89.24 (C1), 86.57 (C2), 85.51 (C3), 79.96 (C4), 73.47 (C5), 73.16 (PhCH₂-), 72.17 (PhCH₂-), 71.07 (C6). ESI-HRMS: m/z calcd. for ³⁷ClC₂₄H₂₃Cl₃N₂O₅⁺ [M+H] + 630.9705, found 630.9732.

Cl₃C + NH + CCl₃ Compound **25**: 'H NMR: (600 MHz, CDCl₃): δ 8.42 (s, 1H, C=N*H*), 7.38 – 7.29 (m, 10H, Ar-*H*), 5.83 (d, J = 5.4 Hz, 1H, H1), 4.84 (t, J = 5.8 Hz, 1H, H5), 4.69 (d, J = 11.2 Hz, 1H, PhC*H*-), 4.62 (d, J = 11.6 Hz, 1H, PhC*H*-), 4.54 – 4.44 (m, 4H, H4, H6a, H6b and PhC*H*-), 4.40 (d, J = 11.2 Hz, 1H, PhC*H*-), 4.32 – 4.29 (m, 1H, H2), 4.14 (bs, 1H, H3). "C NMR: (151 MHz, CDCl₃): δ 162.24 (*C*=NH), 150.96 (*C*=N-), 137.23 – 127.97, 93.43 (-CCl₃), 90.80 (-CCl₃), 88.01 (C1), 86.56 (C2), 85.17 (C3), 81.93 (C4), 81.06(C5), 72.50 (PhCH₂-), 72.11 (PhCH₂-), 66.42(C6). ESI-HRMS: m/z calcd. for "ClC₂₄H₂₅Cl₃N₂O₅+ [M+H] + 630.9705, found 630.9711.

Cl₃C Cl₃ Compound **28**: ¹H NMR: (600 MHz, CDCl₃): δ 8.47 (s, 1H, C=N*H*), 7.39 – 7.27 (m, 10H, Ar-*H*), 5.83 (d, *J* = 5.7 Hz, 1H, H1), 5.22 – 5.19 (m, 1H, H3), 5.14 (bt, *J* = 6.0 Hz, 1H, H5), 4.72 – 4.68 (m, 1H, PhC*H*-), 4.58 – 4.52 (m, 4H, H2, H4 and 2 × PhC*H*-), 4.51 (d, *J* = 11.5 Hz, 1H, PhC*H*-), 3.74 (dd, *J* = 9.9, 6.5 Hz, 1H, H6a), 3.68 (dd, *J* = 10.0, 6.9 Hz, 1H, H6b). ¹³C NMR: (151 MHz, CDCl₃): δ 162.51 (*C*=NH), 152.00 (*C*=N-), 137.46 – 127.86, 93.60 (-*C*Cl₃), 90.59 (-*C*Cl₃), 87.16

(C1), 85.12 (C3), 84.43 (C2), 82.35 (C5), 81.48 (C4), 73.71 (PhCH₂-), 72.45 (PhCH₂-), 67.50 (C6). ESI-HRMS: m/z calcd. for ³⁷ClC₂₄H₂₃Cl₃N₂O₅⁺ [M+H] + 630.9705, found 630.9720.

4. Details for DFT calculations

Computational methods

The energy calculation of the intermediate was carried out in two stages. In the first stage, the initial structure of each intermediate was built by Spartan software (Spartan' 18 for Windows).⁹ The structure was then subjected to a conformation distribution calculation at MMFF level to determine all low energy conformations. The remaining conformations were optimized with semi-empirical and H-F level by Spartan' 18 software.⁹ Then was deleted according to Boltzmann Weights proportion. In the second stage, the coordinates of these lowest energy structure were then moved to Gaussian 09 Rev.A.01¹⁰ and further optimized at B3LYP/6-311+G (d, p). Optimization was done in gas-phase and subsequently re-optimization in combination with a PCM model to include solvent effects, using dichloromethane as the solvent parameter. The denoted free Gibbs energy was calculated using Equation (1) in which E_{gas} is the electronic energy in gas-phase, ΔG_{gas}^T (T=273.15k, p=1atm and C=1M) is thermal correction to Gibbs Free Energy, ΔG_{solv} is solvation free energy and $G_{in solution}^T$ is the free Gibbs energy in solvation. Molecular structures of all intermediates were illustrated using CYLview.¹¹

$$G_{\text{in solution}}^{T} = E_{gas} + \Delta G_{gas}^{T} + \Delta G_{solv} \tag{1}$$

Computational results

Cartesian coordinates, absolute energy values and the number of imaginary frequencies for intermediates:

CCl₃ ∕⊕		С	3.222353	3.850876	2.353647
HN O BnO		С	4.026054	4.396663	1.356230
BnO OBn		С	3.465869	4.746499	0.125596
Egas(B3LYP)=-2934.193	523624 a.u.	С	2.107758	4.549761	-0.104490
E _{solv} (B3LYP)=-2934.25	374853 a.u.	С	-0.183217	3.798673	0.635058
Thermal correction to G 0.465488 a.u.	ibbs Free Energy=	0	2.033657	-0.399066	-0.267827
С -1.295928	-0.849346 -1.384489	С	4.189256	-1.399381	-0.970908
C -2.248278	0.136565 -0.709081	С	5.188901	-0.742762	-1.693677
C -1.408632	0.822824 0.369680	С	5.910306	-1.413372	-2.681246
C -0.142232	1.517649 -0.174320	С	-5.757730	0.834332	0.020653
C 0.436958	0.903531 -1.481871	С	-6.880351	0.021889	0.184890
O -0.242984	-0.262254 -2.039453	С	-7.348750	-0.738781	-0.883120
O -1.003122	-0.221352 1.360610	С	-6.697789	-0.681094	-2.117117
O -0.457433	2.872391 -0.441450	Ν	-0.797252	-1.770142	-0.292924
O -2.678490	1.027472 -1.693722	С	-5.581914	0.133853	-2.280477
C 1.902722	0.539741 -1.329866	С	-3.886797	1.776884	-1.394145
C 1.291418	3.996792 0.891125	С	5.635883	-2.750483	-2.956821
C -5.098416	0.898380 -1.210333	С	-0.206477	-2.354483	2.051776
C 1.861069	3.650770 2.119213	С	4.642876	-3.417749	-2.238330

С	3.927387	-2.745681	-1.251903	Н	-5.406376	1.437954	0.852377
С	-0.671277	-1.392347	0.942626	Н	-7.389405	-0.010685	1.141182
С	3.404305	-0.675288	0.097081	Н	-8.223631	-1.366541	-0.760344
Cl	0.540299	-3.823499	1.347066	Н	-7.070217	-1.261116	-2.953621
Cl	0.951052	-1.534479	3.118317	Н	-0.405681	-2.669215	-0.556363
Cl	-1.697566	-2.801282	2.944399	Н	-5.087211	0.187387	-3.244731
Н	-1.813808	-1.485879	-2.100854	Н	-3.724866	2.409729	-0.515468
Н	-3.083576	-0.411027	-0.253349	Н	-3.991210	2.429382	-2.260833
Н	-1.976513	1.519226	0.979752	Н	6.198243	-3.274538	-3.720815
Н	0.624071	1.449094	0.603483	Н	4.437300	-4.462655	-2.441103
Н	0.333192	1.673470	-2.246176	Н	3.167454	-3.273162	-0.684076
Н	2.274557	0.122659	-2.270960	Н	3.898538	0.267179	0.360854
Н	2.467993	1.455420	-1.105751	Н	3.328398	-1.283075	0.999934
Н	1.235937	3.239141	2.905903	BnO-OBn	0		
Н	3.650077	3.588766	3.314510		V OBn NH		
Н	5.081772	4.561395	1.538273		⊕\ CCl ₃		
Н	4.086268	5.186255	-0.646948	Egas(B3LY)	P)=-2934.193	312932 a.u.	
Н	1.673231	4.835109	-1.056906	Esolv(B3LY	(P)= -2934.25	5029159 a.u.	
Н	-0.653283	4.725127	0.302141	Thermal cc 0.464903 a	orrection to G n.u.	ibbs Free Ei	nergy=
Н	-0.689814	3.478436	1.554467	С	-0.306590	1.032778	-2.244826
Н	5.413473	0.296986	-1.477230	С	-1.075934	-0.220627	-1.793035
Н	6.686503	-0.893440	-3.230720	С	-0.733616	-0.570426	-0.317014

S26

С	0.309845	0.411127	0.247247	Ν	-0.890601	2.258630	-1.570876
С	1.481610	0.738974	-0.665668	С	-0.913810	2.471995	-0.289173
0	1.056615	0.951182	-2.036637	С	-1.578071	3.734478	0.303425
0	-2.450014	0.042008	-1.992048	С	-0.686276	-2.293725	2.174284
С	2.563941	-0.340447	-0.679164	С	0.561162	-2.320211	2.811776
С	-3.562585	-2.178311	-2.040124	С	0.692190	-1.889222	4.128568
0	3.104208	-0.377429	0.624822	С	-0.424773	-1.431412	4.830077
С	5.432335	-0.929017	0.001812	С	-1.671458	-1.409800	4.210102
С	5.912505	-1.758360	-1.014699	С	-1.799336	-1.838407	2.888374
С	7.058900	-1.414650	-1.731694	С	-0.830264	-2.756665	0.745527
С	-4.497738	-2.135167	-0.997509	Cl	-2.895230	3.185286	1.373321
С	-4.858552	-3.297968	-0.323159	Cl	-0.326872	4.621873	1.211694
С	-4.292226	-4.521725	-0.686723	Cl	-2.246875	4.784489	-0.989223
С	-3.365522	-4.575585	-1.724851	Н	-0.461993	1.209042	-3.307503
С	-3.002576	-3.407744	-2.396852	Н	-0.721695	-1.046162	-2.417463
С	-3.199316	-0.917347	-2.783160	Н	-1.649072	-0.468236	0.272460
С	7.732171	-0.231397	-1.439794	Н	0.673349	0.084333	1.216843
С	7.259598	0.604965	-0.426835	Н	1.943106	1.667572	-0.315629
С	6.119403	0.256671	0.290922	Н	3.312171	-0.046545	-1.424227
С	4.196493	-1.302937	0.786343	Н	2.140341	-1.310312	-0.965715
0	-0.406374	1.698592	0.599020	Н	5.394231	-2.684799	-1.242433
0	-0.206921	-1.875535	-0.232461	Н	7.424749	-2.070500	-2.513295

Н	-4.955224	-1.189228	-0.725713	
Н	-5.593555	-3.256217	0.472600	Bn0 NH
Н	-4.582612	-5.428886	-0.169592	ÓBn
Н	-2.931973	-5.524569	-2.018399	E _{gas} (B3LYP)=-2934.18785740 a.u.
Н	-2.291190	-3.459910	-3.215013	$E_{solv}(B3LYP) = -2934.24643684$ a.u.
Н	-4.095481	-0.367192	-3.073233	Thermal correction to Gibbs Free Energy= 0.466361 a.u.
Н	-2.634744	-1.153144	-3.691806	C -0.122355 0.824466 2.445097
Н	8.624702	0.037004	-1.993079	C 1.023194 0.578257 1.437669
Н	7.787575	1.521942	-0.191120	C 1.245318 -0.932285 1.282649
Н	5.760709	0.904509	1.084151	C -0.035668 -1.582291 0.723207
Н	4.397176	-1.291573	1.858960	C 1 305780 0 980638 1 423745
Н	3.862845	-2.310961	0.508966	
Н	-1.348286	2.952705	-2.153859	0 -1.03/396 -0.2//886 2.5/9138
Н	1.430191	-2.685997	2.275251	O 2.136320 1.254486 1.981196
Н	1.660776	-1.920845	4.614146	C 2.499834 3.033755 0.307601
	0.222089	1 104767	5 9 5 9 4 0 7	C 2.323679 3.008120 -1.078747
п	-0.323088	-1.104/0/	5.858497	C 1.816403 4.121028 -1.752374
Н	-2.544132	-1.068922	4.755257	C 1.473034 5.268539 -1.042221
Н	-2.776407	-1.838696	2.415265	C 1.645658 5.305398 0.343406
Н	-0.320829	-3.706808	0.584084	C 2.158444 4.197007 1.011579
Н	-1.884007	-2.880814	0.482652	C 3.069864 1.839209 1.035123
				0 2.321769 -1.148009 0.399048

С	4.414424	-2.171941	-0.172822	Cl	-4.450350	2.551427	-0.049818
С	4.343116	-2.858521	-1.389021	Н	0.340164	0.938709	3.428146
С	5.406674	-2.821658	-2.287272	Н	0.778746	0.998224	0.451592
С	6.557368	-2.098070	-1.975730	Н	1.451923	-1.366234	2.268210
С	6.641279	-1.415307	-0.763481	Н	-0.070269	-1.372216	-0.352976
С	5.574068	-1.452801	0.131661	Н	-1.972133	-1.794682	1.700444
С	3.255548	-2.191834	0.783338	Н	2.606346	2.121229	-1.637201
0	0.043139	-2.969798	0.954982	Н	1.703617	4.094484	-2.830417
Ν	-2.115985	-0.155677	0.442891	Н	1.089451	6.137793	-1.564003
С	-0.930250	2.072460	2.192966	Н	1.401101	6.205698	0.895811
0	-1.621974	2.084323	0.883148	Н	2.319466	4.238623	2.084459
С	-2.204609	1.128972	0.253232	Н	3.912253	2.133253	1.662851
С	-3.116673	1.688281	-0.873678	Н	3.405835	1.075210	0.333699
С	-2.007540	-3.802224	-0.163491	Н	3.453806	-3.432014	-1.630177
С	-2.650562	-3.331910	-1.313414	Н	5.343357	-3.363146	-3.224185
С	-4.045829	-3.330967	-1.399143	Н	7.388879	-2.075109	-2.670616
С	-4.809751	-3.789613	-0.328950	Н	7.538970	-0.862028	-0.512560
С	-4.176428	-4.261899	0.823159	Н	5.646891	-0.928887	1.079450
С	-2.786833	-4.273261	0.902670	Н	3.594962	-1.998632	1.806770
С	-0.497471	-3.824843	-0.072438	Н	2.740267	-3.156161	0.763735
C1	-2.152181	2.793070	-1.881034	Н	-2.659683	-0.724364	-0.209745
Cl	-3.792155	0.379897	-1.895454	Н	-0.308538	2.963894	2.144809

Н	-1.721237	2.189440	2.934024	С	-3.373308	-3.553795	0.035410
Н	-2.059361	-3.001047	-2.162479	С	-4.082370	-3.493489	-1.171441
Н	-4.532013	-2.993677	-2.307709	С	-5.418808	-3.107047	-1.185932
Н	-5.891326	-3.797664	-0.396231	С	-6.065976	-2.779508	0.007534
Н	-4.767419	-4.637632	1.650415	С	-5.371400	-2.841066	1.212589
Н	-2.299522	-4.659618	1.791978	С	-4.029512	-3.224773	1.224507
Н	-0.052497	-3.555570	-1.037222	С	-1.925948	-3.980670	0.039488
Н	-0.144281	-4.820340	0.200068	Ο	2.769127	-1.949264	0.590414
BnO	CCI₃ √⊕			С	4.641519	-1.636136	-1.006102
OBn OBn				С	4.633871	-1.904001	-2.378046
				С	5.273542	-1.045047	-3.273133
Egas(B3LYI	P)=-2934.204	463382 a.u.		С	5.926539	0.090858	-2.801056
Esolv(B3LY)	P)= -2934.25	5982903 a.u.		С	5.948037	0.362199	-1.431146
Thermal co 0.466974 a.	rrection to G .u.	ibbs Free Er	nergy=	С	5.312212	-0.497394	-0.539805
				С	3.935109	-2.548765	-0.033879
С	1.551600	-0.442140	-0.924386	С	-1.775884	0.421888	-1.170881
С	1.629763	-1.804403	-0.217030	Ο	-1.437457	1.158254	-0.003698
С	0.396787	-1.860353	0.661296	Ο	0.448360	-0.747198	1.644078
С	-0.897001	-1.790620	-0.173114	Ν	1.524995	0.593814	0.156692
С	-0.861276	-0.778345	-1.350039	С	0.999633	0.367310	1.322377
0	0.462836	-0.340725	-1.775546	С	1.113794	1.378250	2.477462
0	-1.070340	-3.090416	-0.719286	С	-2.570495	3.248692	-0.720784

С	-3.751036	3.354021	-1.460960	Н	5.266571	-1.267506	-4.333766
С	-3.899717	4.348691	-2.427340	Н	6.429508	0.755477	-3.493733
С	-2.862898	5.246969	-2.665966	Н	6.475680	1.233380	-1.059816
С	-1.680099	5.152566	-1.931266	Н	5.346415	-0.294003	0.525755
С	-1.537643	4.162042	-0.964211	Н	3.635404	-3.482152	-0.522352
С	-2.414079	2.173448	0.328926	Н	4.577046	-2.795614	0.812052
Cl	-0.364469	1.374377	3.457892	Н	-1.707692	1.052117	-2.063467
Cl	1.430362	3.026723	1.843819	Н	-2.807035	0.046691	-1.098027
Cl	2.516889	0.822637	3.447525	Н	1.885189	1.522523	-0.034645
Н	2.439918	-0.233893	-1.515373	Н	-4.565247	2.660640	-1.274928
Н	1.542205	-2.590644	-0.974305	Н	-4.823369	4.422243	-2.989582
Н	0.389470	-2.738348	1.301493	Н	-2.976745	6.022721	-3.414175
Н	-1.728872	-1.527815	0.486142	Н	-0.876342	5.858597	-2.106478
Н	-1.236273	-1.330627	-2.212584	Н	-0.621848	4.102431	-0.385503
Н	-3.585742	-3.759839	-2.098655	Н	-2.058039	2.596178	1.268807
Н	-5.961431	-3.073842	-2.123724	Н	-3.378127	1.685708	0.516781
Н	-7.109753	-2.487747	-0.003662	BnO BnO	_O_OBn		
Н	-5.872066	-2.597510	2.142543	Ľ	NH		
Н	-3.497115	-3.284109	2.169044	U	CCl ³		
Н	-1.793923	-4.944127	-0.454551	Egas(B3LY)	P)=-2934.178	885950 a.u.	
Н	-1.557805	-4.078050	1.068072	Esolv(B3LY	(P)= -2934.23	3879223 a.u	
Н	4.137807	-2.794599	-2.751334	Thermal co	orrection to G	ibbs Free E	nergy=

0.465750 a.u.

				С	-5.665818	-1.036529	-1.685839
С	0.532682	-0.242393	1.573474	С	-3.646510	0.132769	-2.661726
С	1.586433	-0.761929	0.558449	Ο	0.657625	-1.384762	-1.626577
С	1.186480	-0.309818	-0.897102	Ν	0.862512	1.199580	1.907185
С	0.127634	0.803400	-0.815048	Ο	0.783976	2.033543	-0.226211
С	-1.112370	0.461741	0.004980	С	1.002936	2.154988	1.033295
0	-0.784624	-0.351845	1.149975	С	1.485579	3.562128	1.445477
0	1.888411	-2.117244	0.684600	С	2.417711	-1.406128	-3.378420
С	0.502409	-3.396259	2.267510	С	2.969818	-0.419209	-4.200060
С	1.528348	-3.634932	3.191326	С	4.325021	-0.446461	-4.530688
С	1.228015	-3.942458	4.515511	С	5.141104	-1.458323	-4.032008
С	-0.101829	-4.024375	4.932493	С	4.599266	-2.445156	-3.206230
С	-1.127906	-3.794683	4.019296	С	3.245969	-2.422010	-2.884554
С	-0.825870	-3.477750	2.694177	С	0.945296	-1.391676	-3.051703
С	0.830540	-3.101618	0.819688	Cl	1.704087	3.676235	3.222882
С	-2.189957	-0.268467	-0.796734	Cl	3.050582	3.825766	0.626729
0	-2.528284	0.586099	-1.870364	Cl	0.261610	4.740309	0.912356
С	-4.959243	0.146669	-1.915191	Н	0.615298	-0.783385	2.513739
С	-5.492967	1.356082	-1.452440	Н	2.530142	-0.263409	0.800844
С	-6.705663	1.377979	-0.770281	Н	2.080333	0.085857	-1.389085
С	-7.404822	0.190303	-0.547421	Н	-0.171198	1.166190	-1.794275
С	-6.885384	-1.016533	-1.008142	Н	-1.554687	1.399812	0.361261

Н	2.562067	-3.581350	2.867708	Н	0.452024	-2.300980	-3.398402	
Н	2.029632	-4.131554	5.220464	Н	0.454573	-0.538874	-3.534451	
Н	-0.334498	-4.272192	5.961642	5.0	O⊕ CCl ₃			
Н	-2.162564	-3.860502	4.335836	BnO	NH NH			
Н	-1.630076	-3.294565	1.989278	E (D21	VD = 2024.187	790264 a.u		
Н	1.241212	-3.990055	0.335368	$E_{gas}(DJL)$	VP = -2934.107	1/31630 a.u.		
Н	-0.056198	-2.797741	0.264990	Thermal	correction to G	ibbs Free E	nergv=	
Н	-3.041687	-0.444173	-0.129789	0.467918 a.u.				
Н	-1.813218	-1.232534	-1.154791	С	-0.252317	0.401101	1.161691	
Н	-4.958334	2.282506	-1.635464	С	-1.117263	-0.060540	-0.050752	
Н	-7.113990	2.320255	-0.423071	С	-1.109822	-1.599894	-0.052134	
Н	-8.353555	0.209063	-0.023702	С	0.316904	-2.151304	-0.237266	
Н	-7.427688	-1.940522	-0.843893	С	1.325416	-1.293115	0.581886	
Н	-5.268353	-1.979369	-2.048860	Ο	0.658019	-0.539511	1.613846	
Н	-3.669259	0.822939	-3.506579	Ο	-0.610970	0.476159	-1.260384	
Н	-3.435757	-0.872723	-3.046260	С	-2.199918	2.303408	-1.704945	
Н	1.024103	1.444050	2.880335	С	-1.450444	3.485793	-1.779708	
Н	2.336414	0.367928	-4.597943	С	-1.974874	4.690075	-1.317609	
Н	4.739220	0.319188	-5.176360	С	-3.259862	4.729114	-0.772685	
Н	6.193797	-1.483430	-4.288605	С	-4.017204	3.562531	-0.700531	
Н	5.231349	-3.237611	-2.822423	С	-3.489806	2.357173	-1.166210	
Н	2.828335	-3.191608	-2.245167	С	-1.608950	1.000179	-2.183188	

S33

0	-1.959785	-2.055906	-1.084093	Cl	2.932964	3.600138	-0.946708
0	0.312393	-3.503158	0.178895	С	2.116117	-0.354558	-0.335907
Ν	0.477777	1.693762	0.900088	Н	-0.898734	0.632173	2.010178
0	2.567200	0.874891	0.362470	Н	-2.139428	0.283709	0.118567
С	1.747974	1.821897	0.664817	Н	-1.467574	-1.934707	0.927966
С	2.428350	3.208177	0.726473	Н	0.556774	-2.085827	-1.304363
Cl	1.304458	4.469040	1.328179	Н	1.994049	-1.947049	1.134176
С	-2.874264	-3.122541	-0.724367	Н	-0.461157	3.465776	-2.226789
С	-3.983193	-2.666326	0.193523	Н	-1.393633	5.601425	-1.400969
С	-4.020356	-3.070407	1.531446	Н	-3.673189	5.667966	-0.422865
С	-5.041780	-2.637516	2.378645	Н	-5.021248	3.590937	-0.293332
С	-6.038529	-1.795379	1.892868	Н	-4.093808	1.456362	-1.125087
С	-6.015778	-1.391493	0.556364	Н	-2.374898	0.239743	-2.342640
С	-4.995707	-1.824595	-0.285633	Н	-1.057291	1.135898	-3.113939
С	1.081601	-4.412319	-0.635732	Н	-0.044616	2.557352	1.032943
С	2.573541	-4.166044	-0.594716	Н	-3.274150	-3.455794	-1.683019
С	3.252685	-3.701948	-1.725445	Н	-2.312292	-3.946097	-0.276934
С	4.628452	-3.465353	-1.684380	Н	-3.256466	-3.742403	1.910191
С	5.337254	-3.688717	-0.506418	Н	-5.063136	-2.966573	3.411260
С	4.669765	-4.159475	0.626741	Н	-6.838740	-1.466676	2.545920
С	3.299410	-4.399660	0.580945	Н	-6.804080	-0.755358	0.169647
Cl	3.831471	3.085367	1.812745	Н	-4.993048	-1.525743	-1.329267

Н	0.839270	-5.397057	-0.233790	Ν	-0.285272	1.112250	1.015571
Н	0.717781	-4.364192	-1.668577	0	2.704316	1.223064	-1.148708
Н	2.708537	-3.545468	-2.652076	0	0.651238	-0.962337	0.946585
Н	5.144833	-3.121081	-2.573335	С	-0.171465	-0.112541	1.442838
Н	6.406537	-3.514616	-0.473455	С	-1.746721	-0.381039	-1.772882
Н	5.221966	-4.353184	1.539228	С	3.162971	3.593285	-0.565835
Н	2.787621	-4.778847	1.459688	С	2.506988	4.330439	-1.560675
Н	1.531367	-0.010246	-1.186729	С	-0.884839	-0.591771	2.720741
Н	3.043871	-0.813416	-0.667392	С	1.977700	5.585275	-1.275020
BnO、 👎	CCI ₃			С	2.102497	6.122707	0.007997
O NH				С	2.761502	5.402440	1.001442
] OBn			С	3.288317	4.142299	0.714154
Egas(B3LYP)	=-2934.196	591393 a.u.		С	3.719574	2.225955	-0.874632
Esolv(B3LYP)= -2934.25	5289872 a.u.		С	2.459364	-3.507888	-1.512074
Thermal corr 0.468566 a.u	rection to G	ibbs Free Er	nergy=	0	0.359627	-2.190816	-1.652826
				С	2.329073	-4.227142	-0.316630
С	-0.316394	0.115729	-1.925099	С	3.452643	-4.560078	0.434004
С	0.833277	-0.870949	-1.549730	С	4.724164	-4.183656	-0.004151
С	1.516452	-0.586923	-0.202578	С	4.865456	-3.477941	-1.196457
С	1.860184	0.895166	-0.079933	С	3.736767	-3.141634	-1.945595
С	0.504060	1.623061	-0.152372	С	1.233512	-3.137744	-2.313040
0	-0.162156	1.445431	-1.351561	Ο	-2.123270	-0.608596	-0.420563

С	-4.562256	-0.478629	-0.859427	Н	3.817988	3.593478	1.487097
С	-5.323202	-0.969785	-1.922973	Н	4.352590	1.870873	-0.054062
С	-6.405977	-0.243402	-2.419363	Н	4.314558	2.235599	-1.787930
С	-6.733954	0.987964	-1.858440	Н	1.343527	-4.530149	0.021253
С	-5.980012	1.488411	-0.795760	Н	3.341140	-5.125045	1.352429
С	-4.904980	0.757770	-0.299075	Н	5.599646	-4.452218	0.575633
С	-3.400046	-1.275395	-0.310849	Н	5.851171	-3.197077	-1.549133
Cl	-1.321961	-2.301345	2.600367	Н	3.855195	-2.603152	-2.880773
Cl	0.331244	-0.340788	4.027702	Н	1.520531	-2.738627	-3.292602
Cl	-2.334495	0.406242	3.054731	Н	0.595287	-4.007851	-2.472401
Н	-0.209585	0.302053	-2.996561	Н	-5.073900	-1.929919	-2.363801
Н	1.641934	-0.692219	-2.267861	Н	-6.989954	-0.639378	-3.242085
Н	2.376100	-1.237369	-0.072737	Н	-7.574836	1.553981	-2.241934
Н	2.332626	1.100035	0.888785	Н	-6.238359	2.442702	-0.350951
Н	0.606167	2.696353	-0.008374	Н	-4.328780	1.147140	0.533755
Н	-1.036986	1.679385	1.393409	Н	-3.336093	-2.247606	-0.813366
Н	-2.402652	0.371777	-2.223440	Н	-3.527426	-1.455371	0.757073
Н	-1.836687	-1.307994	-2.349754	CC]⊕	2l ₃		
Н	2.412882	3.918652	-2.559939	BnO BnO	NH		
Н	1.478506	6.150789	-2.053313		Bn		
Н	1.699034	7.104662	0.226226	Egas(B3LYI	P)=-2934.19 [°]	72601 a.u.	

Η

2.875912 5.823027 1.993832

 $E_{solv}(B3LYP)=-2934.25472122 a.u.$
Thermal co	rrection to Gibbs Free Energy=	С	6.230617	-1.078419	0.830673
0.465703 a.u.		С	5.844930	-0.147351	-0.135725
С	0.303605 -1.734002 -1.5313	C 23	5.071415	-0.548628	-1.221003
С	0.309358 -0.218463 -1.4367	C 08	3.817662	-2.303212	-2.530852
С	-1.111999 0.362862 -1.5988	73 O	-1.237157	1.662500	-1.075696
С	-2.160677 -0.543962 -0.9043	N	-0.793857	-0.623621	1.162693
С	-1.449498 -1.481115 0.0938	05 O	0.898537	0.220452	-0.132658
0	-0.500205 -2.310818 -0.4773	C C	0.285462	0.078472	0.987161
0	-2.825061 -1.304334 -1.8840	C C	0.984476	0.792181	2.164601
С	1.686497 -2.371059 -1.4351	25 C	-1.021476	4.049771	-1.316245
С	-4.564902 -2.373106 -0.4705	C C	-2.361327	4.435311	-1.197705
С	-4.239978 -3.736125 -0.4599	C C	-2.691467	5.682934	-0.677712
С	-4.511893 -4.518377 0.6587	C 82	-1.685227	6.563887	-0.278631
С	-5.118917 -3.949840 1.7806	C 80	-0.349071	6.191297	-0.400836
С	-5.456616 -2.598330 1.7765	C 31	-0.020225	4.936673	-0.913990
С	-5.179297 -1.814614 0.6549	96 C	-0.663379	2.709967	-1.896422
С	-4.244124 -1.522439 -1.6753	Cl	1.031255	2.532695	1.802654
0	2.467292 -1.799273 -2.4614	.91 Cl	0.094911	0.519510	3.703263
С	4.669767 -1.883524 -1.3556	Cl	2.624936	0.100031	2.286643
С	5.064453 -2.808058 -0.3846	H 71	-0.148142	-1.986264	-2.497531
С	5.841383 -2.410069 0.7038	H 89	1.020795	0.191806	-2.147649
		Н	-1.332512	0.337248	-2.673849

Н	-2.848755	0.107309	-0.355293
Н	-2.155335	-2.112377	0.628326
Н	2.118426	-2.186726	-0.444132
Н	1.582636	-3.456573	-1.563722
Н	-3.775746	-4.183720	-1.332520
Н	-4.263915	-5.573499	0.653143
Н	-5.340282	-4.562631	2.646801
Н	-5.946301	-2.156934	2.637006
Н	-5.463149	-0.766534	0.649508
Н	-4.743241	-0.549758	-1.604015
Н	-4.565173	-2.006782	-2.597665
Н	4.775374	-3.849615	-0.485586
Н	6.149628	-3.140060	1.443579
Н	6.845946	-0.769157	1.667942
Н	6.162604	0.885709	-0.050210
Н	4.785671	0.175086	-1.977621
Н	3.791121	-3.395809	-2.618938
Н	4.208248	-1.895103	-3.463714
Н	-1.173714	-0.649345	2.104892
Н	-3.146506	3.757899	-1.515662
Н	-3.731946	5.974291	-0.592230
Н	-1.943371	7.538642	0.118517

Н	0.436251	6.875344	-0.100668
Н	1.022881	4.653142	-1.013594
Н	0.425398	2.598427	-1.940683
Н	-1.063181	2.599130	-2.912867

E_{gas}(B3LYP)=-2934.19473831 a.u.

 $E_{solv}(B3LYP) = -2934.24984989$ a.u.

Thermal correction to Gibbs Free Energy= 0.468181 a.u.

С	-1.879483	0.122897	-0.904965
С	-1.772126	-0.738180	0.376770
С	-0.342568	-0.838717	0.921477
С	0.595932	-1.259939	-0.222163
С	0.399002	-0.362923	-1.473709
0	-0.912838	-0.255383	-1.899632
0	0.286042	-2.585730	-0.596074
0	-0.676233	2.352203	-0.438064
N	1.026953	0.988050	-1.247102
С	-1.924060	1.634114	-0.776982
С	2.345118	-3.129174	-1.858538
С	3.634219	-2.651979	-1.601959

С	0.530701	2.085471	-0.756210	С	-3.873740	-0.975834	1.575856
С	1.457888	3.317129	-0.565629	Cl	1.054579	4.434106	-1.908793
С	4.487166	-2.304650	-2.651624	Cl	3.193819	2.862325	-0.666041
С	4.054351	-2.429201	-3.969617	Cl	1.135820	4.072208	1.008889
С	2.770654	-2.910228	-4.236792	Н	-2.845924	-0.114768	-1.357111
С	1.923673	-3.259955	-3.188873	Н	-2.058086	-1.752239	0.077151
С	1.412272	-3.486363	-0.725335	Н	-0.305789	-1.619556	1.685639
0	0.129259	0.398295	1.441752	Н	1.629112	-1.166199	0.126525
0	-2.642132	-0.238942	1.375363	Н	0.958374	-0.787640	-2.305965
С	1.026846	-0.355865	3.613724	Н	2.031076	1.017627	-1.409879
С	2.408380	-0.177113	3.463498	Н	-2.606150	1.940424	0.011126
С	3.306944	-1.004117	4.130424	Н	-2.219585	2.072306	-1.730759
С	2.835655	-2.023198	4.960635	Н	3.984405	-2.573721	-0.577125
С	1.465132	-2.205944	5.122841	Н	5.489767	-1.951170	-2.439380
С	0.566609	-1.375826	4.450943	Н	4.717075	-2.168408	-4.786614
С	0.057800	0.543417	2.884761	Н	2.437327	-3.024680	-5.261854
С	-4.871489	-0.800248	0.456779	Н	0.930552	-3.642494	-3.401028
С	-5.560881	0.411213	0.312554	Н	0.948038	-4.459251	-0.889315
С	-6.460770	0.594237	-0.733641	Н	1.955818	-3.520197	0.225344
С	-6.686259	-0.435123	-1.649689	Н	2.779525	0.624202	2.832455
С	-6.016118	-1.647922	-1.508679	Н	4.373873	-0.848071	4.017398
С	-5.114478	-1.828699	-0.458939	Н	3.535494	-2.662615	5.486034

Н	1.094147	-2.989253	5.773648	С	0.841052	-1.61458900	-0.87094400
Н	-0.500852	-1.515217	4.590379	Ο	-0.909573	1.612167	-0.030177
Н	-0.968324	0.368750	3.213511	Ο	1.738482	0.587123	-0.629373
Н	0.299021	1.594358	3.052194	Ο	1.751611	-2.389245	-0.122900
Н	-5.403322	1.206884	1.034177	С	-3.152058	-0.184447	-1.091917
Н	-6.998647	1.530754	-0.827439	С	-1.229598	3.986865	0.023781
Н	-7.392571	-0.295703	-2.459808	С	2.585250	1.054816	0.318241
Н	-6.200715	-2.455623	-2.207468	С	-2.548782	4.444967	0.103626
Н	-4.609626	-2.782970	-0.344593	С	-2.876200	5.522341	0.925567
Н	-4.266310	-0.580176	2.513448	С	-1.884859	6.151399	1.678318
Н	-3.639078	-2.035786	1.721847	С	-0.566179	5.701510	1.604714
BnO 0-	OBn ⊕ OBn			Ν	2.411572	0.887905	1.549551
Cl₃C ↓ NH				С	-0.241429	4.625494	0.781170
Egas(B3L	.YP)= -2934.14	884308 a.u.		С	-0.878150	2.814829	-0.848419
Esolv(B31	LYP)= -2934.21	1931740 a.u.		С	3.755776	1.783201	-0.385036
Thermal 0.459390	correction to G) a.u.	ibbs Free Er	nergy=	С	3.671601	-3.812975	0.048307
				С	4.685955	-3.074162	0.669114
С	-0.428207	-2.402540	-0.920487	С	5.556213	-3.687624	1.566475
С	0.637337	-0.238228	-0.229661	С	5.421755	-5.047547	1.851232
С	-1.861895	-0.505823	-0.371028	С	4.415436	-5.790731	1.235642
С	-0.670626	0.402173	-0.714840	С	3.542972	-5.174314	0.339410
0	-1.573470	-1.962331	-0.696328	С	2.726661	-3.143219	-0.905443

0	-4.186974 -0.91831800 -0.47817800	Н	0.208110	6.19105600	2.18435500
С	-6.508521 -1.466608 -0.304951	Н	0.785444	4.281578	0.721991
С	-6.893949 -2.724727 -0.778188	Н	0.122020	2.924859	-1.273683
С	-7.819984 -3.493966 -0.074430	Н	-1.598419	2.709092	-1.665882
Н	-0.383028 -3.473399 -1.117262	Н	4.795743	-2.018829	0.444810
Н	0.629331 -0.330878 0.856679	Н	6.340681	-3.108365	2.039783
Н	-2.025399 -0.535612 0.706342	Н	6.101475	-5.525938	2.547099
Н	-0.621824 0.565437 -1.797601	Н	4.309950	-6.847638	1.451628
Н	1.174077 -1.479619 -1.912839	Н	2.761830	-5.755659	-0.139040
Н	-3.317271 0.896644 -0.997024	Н	2.207149	-3.881101	-1.523971
Н	-3.062739 -0.424481 -2.160865	Н	3.245955	-2.436099	-1.560024
С	-8.369841 -3.010289 1.112614	Н	-6.469977	-3.102410	-1.702980
С	-7.993039 -1.754826 1.591175	Н	-8.113391	-4.466588	-0.452960
С	-7.068411 -0.987999 0.884631	Н	-9.091791	-3.606091	1.659562
С	-5.484298 -0.651501 -1.045930	Н	-8.422175	-1.372527	2.510425
Cl	4.636355 0.604678 -1.425968	Н	-6.781142	-0.010292	1.257481
Cl	3.114623 3.119200 -1.405694	Н	-5.698426	0.420569	-0.956866
Н	3.146210 1.302718 2.116358	Н	-5.474014	-0.914678	-2.110162
Cl	4.894201 2.464032 0.815089		HN		
Н	-3.323287 3.961575 -0.482823	BnO BnO	O ⊕ OBn		
Н	-3.901181 5.871654 0.975887	E _{gas} (E	B3LYP)= -2934.14	1910469 a.u.	

Η

-2.137454 6.991194 2.315649

E_{solv}(B3LYP)= -2934.21900233 a.u.

				С	6 5/18313	2 02580700	_0.93023200
Therma	ll correction to G	ibbs Free E	nergy=	C	7.565061	2.92309700	0.262078
0.4577) i u.u.			C	/.303901	3.60/505	-0.263978
С	0.123542	2.535188	-0.612741	С	8.294750	2.966376	0.737757
С	-0.929535	0.323433	-0.036691	С	8.004190	1.642512	1.068912
С	1.608129	0.638258	-0.219690	С	6.986483	0.963983	0.400724
С	0.403682	-0.267383	-0.511064	С	5.129757	0.874721	-1.299515
0	1.276492	2.101115	-0.406119	С	-5.000695	-1.217947	-0.971176
С	-1.117945	1.710348	-0.686850	С	-5.916311	-2.093409	-1.550909
0	0.655981	-1.463103	0.239838	С	-5.869555	-3.454521	-1.246027
0	-1.955158	-0.547247	-0.438840	С	-4.904159	-3.934319	-0.361709
0	-2.133248	2.437974	-0.036815	С	-3.987271	-3.055415	0.214369
С	2.816186	0.378698	-1.093958	С	-3.028502	-0.742480	0.521527
С	-4.027515	-1.689863	-0.083064	С	0.758840	-2.643668	-0.414721
С	-3.971610	3.978139	-0.062368	Ν	0.676029	-2.754475	-1.662045
С	-5.199459	3.424620	0.315020	С	1.033630	-3.754825	0.624877
С	-6.076324	4.140118	1.128573	Cl	2.654480	-3.451993	1.353724
С	-5.731676	5.416760	1.572425	Н	0.058731	3.620619	-0.690588
С	-4.510100	5.977540	1.198321	Н	-0.911561	0.444142	1.052249
С	-3.635727	5.261033	0.384003	Н	1.879671	0.599668	0.835045
С	-3.014256	3.200165	-0.917020	Н	0.340830	-0.515816	-1.571842
0	3.915991	1.063659	-0.543769	Н	-1.337924	1.553142	-1.755740
С	6.248191	1.599698	-0.603175	Н	2.608261	0.700447	-2.124343

Н	2.985398	-0.706598	-1.110371	Н	0.777147 -3.71308100 -1.98472700
Н	-5.473002	2.434369	-0.032718	Cl	1.031836 -5.365052 -0.153869
Н	-7.027331	3.704169	1.412139	Cl	-0.219701 -3.723292 1.911621
Н	-6.414613	5.974694	2.202833		=0 ⊕ ⊕ OBn O
Н	-4.242040	6.971905	1.536329	5.10	
Н	-2.689264	5.702324	0.089242	Egas(B3L	YP)= -2934.15088690 a.u.
Н	-2.411917	3.872395	-1.536713	E _{solv} (B3I	LYP)= -2934.22144122 a.u.
Н	-3.534910	2.492920	-1.570205	Thermal 0.461157	correction to Gibbs Free Energy= ' a.u.
Н	5.985551	3.425426	-1.712091	С	0.087405 -2.355519 -0.408857
Н	7.791953	4.634339	-0.528262	С	1.174019 -0.129887 -0.007832
Н	9.088652	3.493826	1.254372	С	-1.347765 -0.408476 -0.100431
Н	8.572278	1.138865	1.842810	С	-0.152468 0.465281 -0.509795
Н	6.765785	-0.067057	0.657108	0	-1.052561 -1.890727 -0.190996
Н	5.343500	-0.198619	-1.367257	С	1.330627 -1.551887 -0.591977
Н	4.984566	1.263117	-2.314514	0	-0.419227 1.714392 0.089706
Н	-5.042853	-0.160158	-1.208422	0	2.225622 0.696702 -0.437462
Н	-6.667795	-1.715298	-2.234781	0	2.381104 -2.254145 0.027711
Н	-6.584526	-4.136028	-1.692874	С	-2.585242 -0.187751 -0.936611
Н	-4.865624	-4.990232	-0.119204	С	4.318209 1.814799 -0.066570
Н	-3.237601	-3.432427	0.901308	С	4.271814 -3.730404 -0.066209
Н	-2.605249	-1.154385	1.442683	С	5.513092 -3.112388 0.117364
Н	-3.487319	0.224221	0.743672	С	6.502118 -3.727501 0.882816

С	6.257074	-4.967389	1.472941	Н	1.145962	-0.194149	1.085918
С	5.022317	-5.591770	1.293037	Н	-1.562750	-0.280450	0.959830
С	4.035751	-4.975859	0.525845	Н	-0.108695	0.556503	-1.602710
С	3.199964	-3.058604	-0.873130	Н	1.486812	-1.448985	-1.678810
0	-3.673961	-0.823209	-0.255585	Н	-2.473213	-0.601463	-1.941102
С	-4.879777	-0.746161	-0.843351	Н	-2.768087	0.885513	-1.014897
N	-5.067816	-0.162059	-1.942295	Н	5.708548	-2.150470	-0.344568
С	-5.917535	-1.467195	0.046859	Н	7.462232	-3.242250	1.015440
С	-0.585113	4.102928	0.022264	Н	7.026684	-5.447738	2.066260
С	-1.932100	4.478670	0.083577	Н	4.830614	-6.558146	1.745031
С	4.496176	3.093974	0.467167	Н	3.079007	-5.466901	0.381749
С	5.443330	3.964617	-0.073586	Н	2.565789	-3.798438	-1.372145
С	6.217010	3.564113	-1.161169	Н	3.624663	-2.392607	-1.630784
С	6.045873	2.288013	-1.701803	Н	-6.038183	-0.195683	-2.244175
С	5.105911	1.418529	-1.154472	Cl	-5.966421	-0.667021	1.658239
С	3.301372	0.875146	0.521193	Cl	-5.430634	-3.190133	0.239950
С	-2.321684	5.601280	0.810656	Cl	-7.546904	-1.399408	-0.689640
С	-1.365466	6.364271	1.482794	Н	-2.678184	3.892882	-0.443287
С	-0.020749	6.000685	1.423525	Н	3.897350	3.409055	1.315285
С	0.365602	4.874331	0.697438	Н	5.574525	4.952397	0.353402
С	-0.168913	2.879279	-0.745144	Н	6.952318	4.239160	-1.584104
Н	0.136898	-3.444551	-0.405383	Н	6.649574	1.970211	-2.544429

Н	4.982969	0.425236	-1.572969	С	3.037432	2.749847	1.807393
Н	2.886507	1.286295	1.446501	С	3.680951	3.983451	1.766782
Н	3.744841	-0.100306	0.738618	С	3.647563	4.753441	0.602209
Н	-3.367426	5.884535	0.848662	С	2.965993	4.277475	-0.515096
Н	-1.667351	7.240600	2.045140	С	2.319579	3.039689	-0.474887
Н	0.726206	6.593707	1.938905	С	1.672255	0.921576	0.789248
Н	1.412861	4.595905	0.648947	0	-1.606699	-2.669832	0.357442
Н	-0.753142	2.779098	-1.666470	С	-2.770888	-3.455853	0.790551
Н	0.891754	2.912164	-0.999320	С	-3.963048	-2.606025	1.124109
OBn	=0 OBn			С	-5.106019	-2.640786	0.318062
Cl ₃ C NH	⊕ <u> </u>			С	-6.220973	-1.865273	0.636801
Egas(B3LY)	P)= -2934.13	682826 a.u.		С	-6.197506	-1.046043	1.763469
Esolv(B3LY	P)= -2934.20)185440 a.u.		С	-5.060548	-1.006165	2.574289
Thermal co 0 463652 a	prrection to G	ibbs Free Ei	nergy=	С	-3.950695	-1.782693	2.257955
C	1.053185	-1.419637	-1.668802	0	-1.734630	0.119532	0.357004
С	0.407310	-0.673305	-0.488994	С	-1.921062	1.465369	0.448147
С	-1.100067	-0.539251	-0.738266	С	-2.685109	2.155079	-0.722644
С	-1.735092	-1.925745	-0.854285	Ν	-1.560426	2.030182	1.510292
С	-0.921832	-2.851885	-1.695935	С	2.482295	-1.865118	-1.466534
0	0.285937	-2.689074	-1.986375	Cl	-1.516267	2.596394	-2.028832
0	1.014001	0.598823	-0.449209	Cl	-3.484512	3.658857	-0.156387
С	2.351505	2.26590300	0.68618000	Cl	-3.944634	1.061281	-1.393426

0	2.553932	-2.627040	-0.279513	Н	-5.130706	-3.287138	-0.553681
С	4.968029	-2.392634	0.190616	Н	-7.103498	-1.903550	0.008779
С	5.058281	-1.732843	1.423007	Н	-7.063104	-0.443685	2.014402
С	6.118890	-0.870712	1.689319	Н	-5.044093	-0.374418	3.454855
С	7.107800	-0.659663	0.726088	Н	-3.071694	-1.754829	2.892290
С	7.030494	-1.315357	-0.501012	Н	-1.848639	3.005505	1.553057
С	5.964161	-2.176122	-0.765955	Н	2.797065	-2.453799	-2.337331
С	3.806094	-3.316817	-0.093269	Н	3.108107	-0.965611	-1.423398
Н	0.968702	-0.834259	-2.585526	Н	4.297008	-1.901491	2.177740
Н	0.573467	-1.228663	0.436752	Н	6.179980	-0.368877	2.648386
Н	-1.266257	-0.008877	-1.678284	Н	7.935483	0.008635	0.934721
Н	-2.769238	-1.862112	-1.197770	Н	7.797441	-1.158707	-1.251075
Н	-1.330342	-3.816825	-1.990035	Н	5.910318	-2.687352	-1.721926
Н	3.067498	2.158340	2.717286	Н	4.012331	-3.931457	-0.977153
Н	4.207714	4.344483	2.643013	Н	3.623226	-3.980387	0.752643
Н	4.147972	5.714521	0.569431	OBn	HN		
Н	2.932894	4.869037	-1.423369	BnO	OBn		
Н	1.788444	2.677115	-1.344756	Egas(B3LY	YP)= -2934.14	707738 a.u.	
Н	2.410000	0.144983	1.020767	Esolv(B3L)	YP)= -2934.21	285622 a.u.	
Н	0.928694	0.940868	1.593080	Thermal c 0 464678	orrection to G	ibbs Free Er	nergy=
Н	-3.014291	-4.193156	0.022286	0.70707070707	u.u.		
Н	-2.383682	-3.979332	1.663680	С	-0.244225	-1.066298	-2.088628

С	0.507036	-0.236269	-1.030124	С	-1.495115	-3.860521	-0.049593
С	0.320277	1.271370	-1.264892	0	1.070527	2.120342	-0.432072
С	-1.177859	1.609225	-1.290606	С	2.613358	-1.144611	-0.278186
С	-1.968066	0.661246	-2.130506	С	4.032727	-1.429490	-0.822546
0	-1.607694	-0.507011	-2.404590	Ν	2.160466	-1.387263	0.867661
0	1.888365	-0.566259	-1.261222	С	1.877206	3.042711	1.613401
0	-1.834163	1.328906	-0.049477	С	3.256709	2.838269	1.728712
С	-2.775155	2.337977	0.445286	С	4.076521	3.827589	2.268028
С	-4.068087	2.380519	-0.323979	С	3.524241	5.034402	2.699650
С	-4.367958	3.460753	-1.160573	С	2.150440	5.247129	2.589633
С	-5.560324	3.483401	-1.885202	С	1.333224	4.255515	2.047773
С	-6.461707	2.426116	-1.777236	С	0.993359	1.981613	1.016627
С	-6.174276	1.347609	-0.937524	Cl	3.905657	-2.551971	-2.226232
С	-4.986830	1.326737	-0.211674	Cl	5.054447	-2.184540	0.437372
С	-0.495266	-2.510689	-1.714648	Cl	4.786888	0.114422	-1.348101
0	-1.205407	-2.538371	-0.498131	Н	0.273571	-1.008923	-3.046714
С	-2.265136	-3.824270	1.249471	Н	0.213648	-0.542070	-0.028205
С	-2.737201	-2.632984	1.803454	Н	0.694534	1.494052	-2.270643
С	-3.457324	-2.649290	3.000149	Н	-1.327827	2.641125	-1.613871
С	-3.712992	-3.853024	3.652912	Н	-2.983154	0.905972	-2.437548
С	-3.242188	-5.046885	3.102852	Н	-2.937061	2.026250	1.476964
С	-2.522363	-5.031041	1.911088	Н	-2.271818	3.307649	0.436497

Η	-3.675897	4.292670	-1.239343	
Н	-5.784319	4.326395	-2.528404	
Н	-7.389158	2.444331	-2.337872	BnO→ ⊕ HN CCl ₃
Н	-6.879572	0.530188	-0.842399	Egas(B3LYP)= -2934.14559245 a.u.
Н	-4.771103	0.493244	0.448533	E _{solv} (B3LYP)= -2934.21388019 a.u.
Н	0.478203	-3.011872	-1.631496	Thermal correction to Gibbs Free Energy= 0.464076 a.u.
Н	-1.056965	-2.999289	-2.520597	
Н	-2.539072	-1.694957	1.301176	C 0.637474 -0.626725 -0.198401
Н	-3.816431	-1.717044	3.422088	C -0.626236 0.035135 0.398271
Н	-4.271235	-3.863479	4.582101	C -1.656572 0.306161 -0.711513
Н	-3.432762	-5.989351	3.603778	C -2.001595 -1.038287 -1.380592
Н	-2.156773	-5.963761	1.492557	C -0.816068 -1.887414 -1.683386
Н	-2.079966	-4.384857	-0.818357	O 0.298627 -1.772117 -1.120053
Н	-0.557143	-4.415674	0.085043	O -2.581194 -1.964879 -0.456695
Н	2.843030	-1.824119	1.481446	C -3.880238 -2.531853 -0.838536
Н	3.689771	1.900837	1.396718	C -4.343675 -3.406657 0.285546
Н	5.143515	3.656638	2.355620	C -4.945922 -2.840703 1.415776
Н	4.161049	5.802741	3.123271	C -5.360094 -3.649363 2.471118
Н	1.715814	6.181249	2.927090	C -5.177371 -5.031530 2.405052
Н	0.263975	4.423049	1.966719	C -4.580389 -5.602915 1.281470
Н	1.335750	0.985321	1.305532	C -4.163872 -4.792509 0.226815
Н	-0.035911	2.108326	1.350272	C 1.545339 -1.224555 0.859721

0	2.749197	-1.767568	0.297237	Cl	5.463844	-2.897050	0.753693
С	4.958593	-1.725535	-0.511220	Н	1.187770	0.051711	-0.848827
С	3.743201	-0.915132	-0.004114	Н	-1.084521	-0.653983	1.112615
0	-2.793053	0.896768	-0.131625	Н	-1.220953	0.955883	-1.482279
С	-3.193774	2.834924	-1.627423	Н	-2.618939	-0.908529	-2.271182
С	-3.213432	4.010777	-0.866172	Н	-0.911293	-2.761379	-2.324567
С	-2.724938	5.204235	-1.391614	Н	-4.562046	-1.694889	-1.009195
С	-2.210762	5.238554	-2.689222	Н	-3.763544	-3.098946	-1.764535
С	-2.193352	4.076912	-3.458929	Н	-5.093222	-1.767225	1.466343
С	-2.685174	2.882749	-2.930118	Н	-5.828683	-3.204182	3.341151
С	-3.718522	1.546587	-1.041683	Н	-5.503929	-5.661119	3.224826
0	-0.240207	1.145990	1.176369	Н	-4.442157	-6.676444	1.225484
Ν	3.642161	0.334251	0.117763	Н	-3.703229	-5.238276	-0.648532
С	0.678877	3.313980	1.546751	Н	1.060532	-2.065699	1.353325
С	2.013747	3.248419	1.961640	Н	1.777565	-0.447582	1.587288
С	2.489614	4.110762	2.947695	Н	-3.621052	3.989586	0.139133
С	1.634395	5.047898	3.529170	Н	-2.751069	6.108319	-0.794135
С	0.302742	5.119154	3.121090	Н	-1.833983	6.168410	-3.099691
С	-0.171544	4.255151	2.134539	Н	-1.804680	4.100112	-4.470616
С	0.161685	2.365091	0.499128	Н	-2.684568	1.986930	-3.543031
Cl	6.332599	-0.643594	-0.891640	Н	-4.011731	0.8569500	-1.839596
Cl	4.477604	-2.611157	-2.005569	Н	-4.595269	1.732876	-0.422043

Н	4.493436	0.824464	-0.145159	0	1.473992	2.041664	0.757860
Н	2.676918	2.518266	1.509625	С	-3.153188	-0.551805	-0.473757
Н	3.526154	4.054439	3.260723	С	-0.503952	-3.825430	1.330333
Н	2.004968	5.720821	4.294213	С	2.387969	-0.662753	-1.959851
Н	-0.364796	5.846974	3.568353	С	0.439546	-3.981592	2.351216
Н	-1.207135	4.313911	1.817786	С	0.145710	-4.752203	3.475224
Н	-0.700454	2.793087	-0.016538	С	-1.096788	-5.376106	3.587606
Н	0.946199	2.150961	-0.232542	С	-2.042888	-5.228798	2.572596
	OBn			Ν	1.779911	-0.287711	-2.994006
BnO O Cl ₃ C NH	⊖O - OBn			С	-1.746604	-4.457103	1.450651
Egas(B3LY	(P)= -2934.15	844527 a.u.		С	-0.192677	-2.974372	0.131948
Esolv(B3L)	YP)= -2934.22	2411410 a.u		С	3.784087	-1.319471	-1.860763
Thermal c	orrection to G	ibbs Free E	nergy=	С	3.134572	3.482909	1.714809
0.459161 a	a.u.	1 3/15///8	1 186803	С	4.191942	3.581662	0.802641
C	0.645782	0 100510	-0 590102	С	4.869494	4.787079	0.636914
C	-1 835632	0.175046	-0.612619	С	4.497979	5.906187	1.383869
C	-0.595080	-0.708656	-0.671656	С	3.447457	5.815686	2.296210
0	1 754465	1 000202	0.600464	С	2.768415	4.608829	2.458677
C	0.681607	0.873747	0.000404	С	2.394547	2.188630	1.881735
0	0.650500	1 621220	0.777901	Ο	-4.187536	0.384317	-0.684174
0	1 060601	-1.021200	0.40/312	С	-6.523099	0.906004	-0.697223
U	1.809081	-0.334383	-0./1/904	С	-6.905309	1.739255	0.359520

S50

С	-7.831300	2.761137	0.156895	Н	0.880406	-2.957628	-0.065934
Н	-0.768811	2.026591	2.033329	Н	4.486949	2.712706	0.224737
Н	0.600829	0.955282	-1.376125	Н	5.689196	4.853137	-0.069288
Н	-1.876055	0.878793	-1.443814	Н	5.028540	6.843073	1.257890
Н	-0.608094	-1.216251	-1.642064	Н	3.158454	6.681166	2.881279
Н	1.015063	0.148250	1.533425	Н	1.953274	4.540095	3.171403
Н	-3.224761	-1.023961	0.512097	Н	1.828574	2.183175	2.817357
Н	-3.169670	-1.347407	-1.232793	Н	3.071031	1.328315	1.871054
С	-8.386951	2.958755	-1.107628	Н	-6.479137	1.584278	1.345387
С	-8.014474	2.130746	-2.166567	Н	-8.122466	3.398726	0.984002
С	-7.087225	1.110011	-1.960505	Н	-9.110111	3.750907	-1.265510
С	-5.499833	-0.175222	-0.482633	Н	-8.447385	2.277306	-3.149640
Cl	3.616101	-2.957674	-1.132820	Н	-6.801719	0.464963	-2.785073
Cl	4.524886	-1.476018	-3.481625	Н	-5.651512	-1.000481	-1.188640
Н	2.314542	-0.438450	-3.845604	Н	-5.564483	-0.576434	0.535963
Cl	4.847233	-0.306529	-0.822216				
Н	1.409805	-3.504107	2.262318	BnO			
Н	0.886145	-4.870474	4.258153	BnO	∕⊕		
Н	-1.324438	-5.980087	4.458584	E _{gas} (B3L	YP)= -2934.15 ⁷	723376 a.u.	
Н	-3.006453	-5.719012	2.652625	E _{solv} (B3L	.YP)= -2934.22	420288 a.u.	
Н	-2.481735	-4.350758	0.659624	0.458233	a.u.	iuus riee El	iergy=
Н	-0.714202	-3.342159	-0.757532	С	0.623116	1.646704	-1.030613

S51

С	-0.698965	0.448252	0.742119	С	8.049236	2.491046	-0.126671
С	1.815077	0.320093	0.631581	С	7.041695	1.567754	-0.403052
С	0.533813	-0.479891	0.764751	С	5.441529	-0.244632	0.312126
0	1.713362	1.314549	-0.517917	С	-4.833888	-0.311039	2.297062
С	-0.732989	1.194912	-0.594468	С	-6.118387	-0.848375	2.225011
0	0.449815	-1.398240	-0.341271	С	-6.291163	-2.215761	2.010454
0	-1.914420	-0.241487	0.852436	С	-5.176476	-3.043486	1.872116
0	-1.504245	2.371776	-0.504736	С	-3.893714	-2.503816	1.947267
С	3.078543	-0.469917	0.370094	С	-2.326896	-0.548076	2.208815
С	-3.711041	-1.133063	2.158243	С	0.135517	-2.690691	-0.089925
С	-3.315988	3.763432	-1.224872	Ν	-0.005857	-3.150070	1.069337
С	-4.373335	3.681899	-0.311372	С	0.013875	-3.438867	-1.436039
С	-5.114966	4.815849	0.011823	Cl	1.590572	-3.345299	-2.301843
С	-4.806423	6.043160	-0.576797	Н	0.704734	2.382778	-1.830573
С	-3.756215	6.132387	-1.490042	Н	-0.586804	1.184833	1.548818
С	-3.014418	4.996560	-1.811316	Н	1.952697	0.972450	1.493862
С	-2.505156	2.544583	-1.552592	Н	0.576761	-1.036371	1.701666
0	4.175390	0.390975	0.579687	Н	-1.106337	0.505124	-1.367024
С	6.545991	0.733383	0.603989	Н	3.069895	-0.877999	-0.647611
С	7.078209	0.836129	1.893700	Н	3.093197	-1.314410	1.074079
С	8.084979	1.758473	2.173577	Н	-4.618782	2.727067	0.141161
С	8.571879	2.588150	1.162957	Н	-5.935485	4.742523	0.716378

Η	-5.386089	6.924953	-0.328550	OBn
Н	-3.517064	7.082866	-1.952987	
Н	-2.200127	5.067041	-2.524885	Egas(B3LYP)= -2934.15704596 a.u.
Н	-2.001044	2.656488	-2.516794	$E_{solv}(B3LYP) = -2934.22480239 a.u.$
Н	-3.124061	1.642570	-1.576390	Thermal correction to Gibbs Free Energy= 0.459417 a.u.
Н	6.705624	0.188365	2.680499	
Н	8.492183	1.826516	3.176031	C -0.089624 -1.557188 -0.863962
Н	9.358221	3.302703	1.378406	C 1.126329 -0.190228 0.852243
Н	8.428464	3.129679	-0.916381	C -1.381577 -0.233197 0.722478
Н	6.640955	1.490821	-1.408504	C -0.155483 0.665910 0.826043
Н	5.534084	-1.135236	0.945159	O -1.202214 -1.285355 -0.362027
Н	5.467951	-0.562298	-0.736896	C 1.216983 -0.936723 -0.492784
Н	-4.701650	0.752203	2.468116	O -0.172516 1.559611 -0.269881
Н	-6.981689	-0.202729	2.339480	O 2.234050 0.654237 1.039676
Н	-7.289338	-2.635362	1.956692	O 2.158234 -1.986185 -0.446034
Н	-5.306708	-4.107575	1.710691	C -2.660584 0.489452 0.374219
Н	-3.027950	-3.149306	1.845334	C 4.330594 1.198136 2.055495
Н	-1.622981	-1.260203	2.650162	C 3.858179 -3.340083 -1.461370
Н	-2.314349	0.376196	2.796028	C 5.109878 -3.199531 -0.852628
Н	-0.231319	-4.141143	1.080691	C 5.927460 -4.310291 -0.653118
Cl	-0.407221	-5.156209	-1.171199	C 5.500162 -5.573683 -1.062318
Cl	-1.268754	-2.662819	-2.430202	C 4.255292 -5.722334 -1.674190

С	3.439741	-4.609992	-1.872519	Н	-0.232471	1.198135	1.781522
С	2.963751	-2.149506	-1.650569	Н	1.447779	-0.191109	-1.270041
0	-3.733638	-0.435691	0.599113	Н	-2.661162	0.835694	-0.658157
С	-4.971119	-0.003735	0.304658	Н	-2.769455	1.355708	1.030949
Ν	-5.205030	1.149528	-0.142253	Н	5.448548	-2.217903	-0.539254
С	-5.981772	-1.133032	0.609949	Н	6.897101	-4.189889	-0.183841
С	0.038390	3.745196	-1.223673	Н	6.136990	-6.437660	-0.910397
С	1.078326	4.052258	-2.106117	Н	3.922670	-6.701242	-1.999856
С	5.382875	1.353217	1.147102	Н	2.474994	-4.727567	-2.354740
С	6.317254	2.374607	1.311035	Н	2.301542	-2.293930	-2.509825
С	6.208529	3.252703	2.389402	Н	3.538924	-1.230367	-1.801379
С	5.164623	3.104162	3.302889	Н	-6.194419	1.311864	-0.311391
С	4.231715	2.081989	3.135395	Cl	-5.577978	-2.571704	-0.394888
С	3.305697	0.115749	1.858675	Cl	-5.873248	-1.563571	2.354885
С	0.836086	4.813602	-3.249738	Cl	-7.653246	-0.612065	0.240750
С	-0.452079	5.271906	-3.521952	Н	2.082262	3.699017	-1.894804
С	-1.496637	4.970842	-2.645848	Н	5.474044	0.670182	0.309171
С	-1.251005	4.213826	-1.502767	Н	7.130377	2.482342	0.602119
С	0.297104	2.910568	-0.000896	Н	6.936536	4.045268	2.520375
Н	-0.113849	-2.364181	-1.597026	Н	5.079982	3.780191	4.146160
Н	1.051022	-0.926077	1.662589	Н	3.423334	1.967218	3.850228
Н	-1.508736	-0.844333	1.615097	Н	2.886725	-0.203033	2.819039

Н	3.739102	-0.753496	1.358391
Н	1.651214	5.049523	-3.924406
Н	-0.641500	5.865532	-4.409123
Н	-2.498284	5.331429	-2.850672
Н	-2.063705	3.988369	-0.819863
Н	-0.254110	3.297937	0.863162

Н 1.359917 2.879927 0.2414

	Compd.	Optimized struc	ture ^a	Position	dihedral angle ^b	Calcul. ${}^{3}J$ (Hz) ^c	Found ${}^{3}J(\text{Hz})^{d}$	
		ÇCI ₃		H1-H2	60.6	1.6	4.3	
Glu	21	N	The second secon	H2-H3	-108.6	0.8	3.7	
	21	BnO' OBn	-	H3-H4	46.3	3.7	1.2	
		HN CCI3	Pere	H4-H5	-69.4	0.7	bs, bt	
		NH	4	H1-H2	57.1	2.1	4.0	
	1.6	CI3C	It the	H2-H3	-127.9	3.4	3.8	
	16	OBn NOBn	I I MA	H3-H4	71.2	0.5	1.9	
		,cci³	-	H4-H5	-71.7	0.4	bs, bt	
				H1-H2	107.3	0.7	1.5	
	0	O CCI3		H2-H3	-163.7	8.5	7.6	
	8	BnO OBn	THE	H3-H4	-177.8	9.2	10.0	
			ξ - 1	H4-H5	-148.0	6.6	5.8	
		CCIe	-25	H1-H2	-70.6	0.6	2.4	
	33	BnO O O O Bn O Bn	E.	H2-H3	70.8	0.5	2.1	
				H3-H4	71.6	0.5	2.1	
			r m	H4-H5	-106.1	0.6	2.8	
			1	H1-H2	-81.7	-0.2	1.7	
N	4	BnO OBn	A CARL	H2-H3	18.7	7.3	7.7	
Ivian		O CCI3	TT.	H3-H4	60.9	1.6	1.7	
		00.3	•••	H4-H5	-76.6	0.1	m, m	
			Att -	H1-H2	19.4	7.3	6.4	
	10	BnO BnO BnO BnO		H2-H3	-60.5	1.7	3.5	
	10			H3-H4	163.1	8.4	6.8	
				H4-H5	-108.6	0.8	bd, m	
		CCl3	**** • 1	H1-H2	57.7	2.0	NA ^e	
	27	BnO	~~~	H2-H3	-56.8	2.2	NA ^e	
	21		X	H3-H4	-58.2	2.0	NA ^e	
		0013	\sim	H4-H5	27.5	6.4	NA ^e	
		ÇCI₃	Sh 🛩	H1-H2	60.6	1.6	5.5	
Gal	6	BnO ON		H2-H3	-108.6	0.8	3.8	
Gai	0	BnO	ACT	H3-H4	46.3	3.7	1.7	
		ÖBn	1,	H4-H5	-69.4	0.7	1.5	
		ÇCl₃	<u></u>	H1-H2	69.4	0.7	S	
	12		ter -	H2-H3	-71.3	0.5	bs	
	12	BnO BnO	1 AR	H3-H4	-52.5	2.8	bs	
		 OBn	о ОВп	ÓBn Y	H4-H5	47.7	3.5	5.4

5. Table S1. The matchings of calculated and NMR data-suggested conformations

Note: ^aThe conformations were first optimized by computational calculations according to the procedure described in the experimental section. In each case, the final conformation was selected from the conformations with the lowest calculated energy but matching best to the corresponding NMR data. according to the matching degree to the corresponding NMR data. ^b Dihedral angles were generated through CYLview. ^{c. 3}*J* was calculated according to Karplus formula. ^d The real ³*J* found in NMR. ^{c.} This compound was not synthesized.

6. References

Walvoort, M. T.; de Witte, W.; van Dijk, J.; Dinkelaar, Jasper.; Lodder, G.; Overkleeft, H. S.; Codee,
J. D.; van der Marel, G. A. Mannopyranosyl uronic acid donor Rreactivity. *Org. Lett.* 2011, *16*, 4360.

2. Wu, C. H.; Chen, C. C.; Lin, S. C.; Wang, C. C. Simple and practical real-time analysis of solid-phase reactions by thin-layer chromatography. *Synlett*. **2018**, *11*, 1430.

3. Shie, C. R.; Tzeng, Z. H.; Kulkarni, S. S.; Uang, B. J.; Hsu, C. Y.; Hung, S. C. Cu(OTf)₂ as an efficient and dual-purpose catalyst in the regioselective reductive ring opening of benzylidene acetals. *Angew*. *Chem. Int. Ed.* **2005**, *44*, 1665.

4. Fan, Q. H.; Pickens, J. B.; Striegler, S.; Gervaise, C. D. Illuminating the binding interactions of galactonoamidines during the inhibition of β -galactosidase (*E. coli*). *Bioorg. Med. Chem.* **2016**, *4*, 661.

5. Zhang, G. T.; Guo, Z. W.; Hui, Y. Z. A facile regioselective 1,6-*O*-diacetylation method of methylglycopyranosides and their dimethyl phosphonates. *Synth. Commun.* **1997**, *11*, 1907.

6. Yan, M. C.; Chen, Y. N.; Wu, H. T.; Lin, C. C.; Chen, C. T.; Lin, C. C. Removal of acid-labile protecting groups on carbohydrates using water-tolerant and recoverable vanadyl triflate catalyst. *J. Org. Chem.* **2007**, *72*, 299.

7. Choudhury, A. K.; Roy, N. Synthesis of the trisaccharide repeating unit of the K-antigen from *Klebsiella* Type-63. *J. Carbohydr. Chem.* **1997**, *9*, 1363.

8. Ding, N.; Li, X. R.; Chinoy, Z. S.; Boons, G. J. Synthesis of a glycosylphosphatidylinositol anchor derived from *Leishmania donovani* that can be functionalized by Cu-catalyzed azide–alkyne cycloadditions. *Org. Lett.* **2017**, *19*, 3827.

9. Spartan' 18; Revision 1.3.0.

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian Inc., Wallingford CT, **2009**.

11. Legault, C. Y.; CYLview, 1.0b, Univ. Sherbrooke, 2009 (http://www.cylview.org).

7. NMR Spectra

¹H NMR of **4** (600 M, CDCl₃)

¹³C NMR of **4** (151 M, CDCl₃)

HSQC of 4

HMBC of 4

HSQC of 6

HMBC of 6

 $^{1}\text{H} - ^{1}\text{H} \text{ COSY of } \mathbf{6}$

¹H NMR of **8** (600 M, CDCl₃)

¹³C NMR of **8** (151 M, CDCl₃)

HSQC of 8

HMBC of **8**

 $^{1}H - ^{1}H COSY of 8$

¹H NMR of **10** (600 M, CDCl₃)

 $HSQC \ of \ 10$

HMBC of 10

 $^1\mathrm{H}-{^1\mathrm{H}}\ \mathrm{COSY}$ of 10

¹H NMR of **12** (600 M, CDCl₃)

¹³C NMR of **12** (151 M, CDCl₃)

HMBC of 12

¹H NMR of **13** (600 M, CDCl₃)

S84

 $\mathrm{HSQC} \ \mathrm{of} \ \mathbf{13}$

S86

HMBC of 13

 $^{1}\text{H} - ^{1}\text{H} \text{ COSY of } \textbf{13}$

¹H NMR of **15** (600 M, CDCl₃)

S90

HSQC of 15

HMBC of 15

 $^{1}H - ^{1}H COSY of 15$

¹H NMR of **16** (600 M, CDCl₃)

S95

HSQC of 16

HMBC of 16

 $^{1}\text{H} - ^{1}\text{H} \text{ COSY of } \mathbf{16}$

¹H NMR of **18** and **19** (600 M, CDCl₃)

¹³C NMR of **18** and **19** (151 M, CDCl₃)

HSQC of 18 and 19

HMBC of 18 and 19

 $^{1}H - ^{1}H COSY of 18 and 19$

S104

HSQC of 21

HMBC of **21**

¹H NMR of **22** (600 M, CDCl₃)

¹³C NMR of **22** (151 M, CDCl₃)

HSQC of 22

HMBC of 22

¹H NMR of **24** (600 M, CDCl₃)

¹³C NMR of **24** (151 M, CDCl₃)

HMBC of 24

 $^1\mathrm{H}-{^1\mathrm{H}}\ \mathrm{COSY}$ of $\mathbf{24}$

¹H NMR of **25** (600 M, CDCl₃)

HSQC of 25

HMBC of 25

 $^{1}H - ^{1}H COSY of 25$

HMBC of **28**

¹H NMR of **33** (600 M, CDCl₃)

HSQC of **33**

HMBC of **33**

¹H NMR of **7** (600 M, CDCl₃)

¹H NMR of **11** (600 M, CDCl₃)

¹H NMR of **14** (600 M, CDCl₃)

S145

¹H NMR of **17** (600 M, CDCl₃)

¹H NMR of **20** (600 M, CDCl₃)

¹H NMR of **23** (600 M, CDCl₃)

¹H NMR of **26** (600 M, CDCl₃)

S153

¹H NMR of **29** (600 M, CDCl₃)

S155

¹H NMR of **32** (600 M, CDCl₃)

¹H NMR of **S18** (400 M, CDCl₃)

¹³C NMR of **S18** (151 M, CDCl₃)

¹H NMR of **S19** (400 M, CDCl₃)

S161

¹H NMR of **S20** (400 M, CDCl₃)

¹H NMR of **S21** (400 M, CDCl₃)

¹H NMR of **S23** (400 M, CDCl₃)

¹³C NMR of **S23** (151 M, CDCl₃)

¹H NMR of **S24** (400 M, CDCl₃)

