Supplementary Information

Combined KH/Alkaline-Earth Amides Catalysts for

Hydrogenation of Alkenes

Xiang-Yu Zhang,^[a] Hui-Zhen Du,^[a] Dan-Dan Zhai^[b] and Bing-Tao Guan*^[b]

^[a]State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry,

Nankai University, Tianjin 300071, China

^[b]Department of chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China *E-mail: bguan@fudan.edu.cn

Table of Contents

 2. Additional Condition Optimization	1. General Information	2
 3. Typical Procedure for Hydrogenation Reaction	2. Additional Condition Optimization	3
 4. Mechanism Studies	3. Typical Procedure for Hydrogenation Reaction	4
 4.1. The reaction between KH and M(HMDS)₂·S_n (M = Ca and Mg)	4. Mechanism Studies	5
 4.2. The catalytic hydrogenation reactions with [KMg(HMDS)₂H]₂^[4]6 5. NMR Spectrum of Hydrogenation Reactions	4.1. The reaction between KH and $M(HMDS)_2 \cdot S_n$ (M = Ca and Mg)	5
5. NMR Spectrum of Hydrogenation Reactions	4.2. The catalytic hydrogenation reactions with [KMg(HMDS) ₂ H] ₂ ^[4]	6
6. References	5. NMR Spectrum of Hydrogenation Reactions	7
	6. References	28

1. General Information

All manipulations of air- and moisture-sensitive compounds were performed under an argon atmosphere by use of standard Schlenk techniques or under a nitrogen atmosphere in a Mikrouna glovebox. Benzene-*d*₆ and substituted alkenes purchased from J&K, Alfa Aesar, Adamas and TCI were dried over CaH₂, degassed and kept in a glovebox prior to use. KH (30% w/w in mineral oil) purchased from Alfa Aesar was washed thoroughly with hexane and kept in a glovebox. LiHMDS (1.0 M in THF) and NaHMDS (1.0 M in THF) and KHMDS (1.0 M in THF) (1.0 M in THF) was purchased from J&K. After a process for removing the solvents under vacuum, the metal amides were kept as solids under -30 °C in a glovebox. High purity nitrogen (99.999%) and hydrogen (99.999%) gas were purchased from Tianjin Huanyu Gas Co., Ltd. Ca(HMDS)₂·(THF)₂^[1], Ca(HMDS)₂·Et₂O^[2] and Zn(HMDS)₂^[3] were synthesized according to literatures. ¹H NMR, ¹³C NMR were recorded on a Bruker AV 400 (400 MHz for ¹H, 101 MHz for ¹³C) instrument in C₆D₆. The inductively coupled plasma optical emission spectrometer (ICP-OES) was performed by SPECTRO-BLUE.

2. Additional Condition Optimization

Catalytic hydrogenation of *trans*-β-methylstyrene

We also evaluated catalytic hydrogenation of *trans*- β -methylstyrene (**1c**) by various catalysts at 80 °C for 48 h. The combinations of KH with calcium and magnesium amide were proved to be efficient catalysts for this reaction (Table S1, entries 1-2). KH could not realize this reaction in C₆D₆ or THF, and these metal amides themselves were also sluggish for the hydrogenation reaction (Table S1, entries 3-6). When carried out in THF solvent, **1c** could not be hydrogenated (Table S1, entry 7). The hydrogenation reaction was not efficient when using the mixture of alkali metal and zinc amides with KH (Table S1, entries 8-11).

	Ph ^{Me} + 1c	H ₂ <u>Catalyst (10 mol %</u> 6 bar) C ₆ D ₆ , 80 °C, 48 h	b) → H Ph → Me 2c H
Entry	Catalyst		Yield (%) ^[b]
1	KH + Ca	$(\text{HMDS})_2 \cdot (\text{THF})_2$	99
2	KH + Mg	$g(HMDS)_2 \cdot Et_2O$	99
3	KH		<5
4 ^[c]	KH		<5
5	Ca(HMD	$(S)_2 \cdot (THF)_2$	24
6	Mg(HMI	$DS)_2 \cdot Et_2O$	<5
7 ^[c]	KH + Ca	$(\text{HMDS})_2 \cdot (\text{THF})_2$	<5
8	KH + LiI	HMDS·THF	12
9	KH + Na	HMDS·(THF)0.9	11
10	KH + KH	IMDS · (THF)0.8	24
11	KH + Zn	(HMDS) ₂	10

Table S1. Hydrogenation of *trans*-β-methylstyrene.^[a]

[a] Conditions: *trans*- β -methylstyrene (1c) (0.3 mmol), H₂ (6 bar), KH (10 mol %), metal amides (10 mol %), C₆D₆ (0.5 mL), 80 °C, 48 h; [b] NMR yields with hexamethylbenzene as an internal standard; [c] THF as solvent.

3. Typical Procedure for Hydrogenation Reaction

Typical procedure for hydrogenation reaction of 1,1-diphenylethylene

In a glovebox, to an oven-dried steel autoclave (25 mL) were added KH (0.03 mmol, 1.2 mg), $Ca(HMDS)_2 (THF)_2 (0.03 mmol, 15.2 mg)$, hexamethylbenzene (internal standard, about 15 mg) and $C_6D_6 (0.5 mL)$. The mixture was stirred at ambient temperature for 5 minutes, then was added 1,1-diphenylethylene (**1a**, 0.30 mmol, 54 mg). The autoclave was sealed, pressurized with 6 bar of H₂ and stirred at 60 °C for 5 hours. The yield of 99% were obtained from the relative ¹H NMR integrations of the internal standard and product.

Typical procedure for hydrogenation reaction of 1-octene

In a glovebox, to an oven-dried steel autoclave (25 mL) were added KH (0.03 mmol, 1.2 mg), $Ca(HMDS)_2 \cdot (THF)_2$ (0.03 mmol, 15.2 mg), and C_6D_6 (0.5 mL). The suspension was stirred at ambient temperature for 5 minutes, then 1-octene (1b, 0.3 mmol, 33.6 mg) was added. The autoclave was sealed, pressurized with 6 bar of H₂ and stirred at 100 °C for 24 hours. The yield of octane (75%) and 2-octene (23%) were determined by GC analysis with dodecane as an internal standard.

4. Mechanism Studies

4.1. The reaction between KH and $M(HMDS)_2 \cdot S_n$ (M = Ca and Mg).

In a glovebox, to a 25-mL shlenk tube were added KH (0.1 mmol, 4 mg), $M(HMDS)_2$. S_n (0.1 mmol, M = Ca, 50.5 mg or M = Mg, 41.9 mg) and solvent (THF or benzene, 0.5 mL). The tube was tightly sealed, removed from the glovebox and heated at 80 °C for 48 h. The suspension was then settled and filtrated through a 25 mm-Luer syringe filter to give a light yellow solution. The volatiles were removed under vacuum to provide a light yellow solid, which was then analyzed with ¹H NMR and ICP-OES.

Figure S1. ¹H NMR spectrum (C_6D_6) of the reaction of KH and $Ca(HMDS)_2 \cdot (THF)_2$ in benzene.

Table S2. ICP-OES analysis of the reaction between KH and $M(HMDS)_2 \cdot S_1$

entry	reactants	solvent	K (wt%)	Ca (wt%)
1	$\mathbf{K}\mathbf{H} + \mathbf{C}\mathbf{a}(\mathbf{H}\mathbf{M}\mathbf{D}\mathbf{S})_2 \cdot (\mathbf{T}\mathbf{H}\mathbf{F})_2$	benzene	17.5	17.5
2	$\mathbf{K}\mathbf{H} + \mathbf{C}\mathbf{a}(\mathbf{H}\mathbf{M}\mathbf{D}\mathbf{S})_2 \cdot (\mathbf{T}\mathbf{H}\mathbf{F})_2$	THF	18.6	17.7
3	K H + 3 Ca (HMDS) ₂ ·(THF) ₂	benzene	6.9	28.0
			K (wt%)	Mg (wt%)
4	$\mathbf{K}\mathbf{H} + \mathbf{M}\mathbf{g}(\mathbf{H}\mathbf{M}\mathbf{D}\mathbf{S})_2 \cdot \mathbf{E}\mathbf{t}_2\mathbf{O}$	benzene	14.8	12.9
5	\mathbf{K} H + $\mathbf{M}\mathbf{g}$ (HMDS) ₂ ·Et ₂ O	THF	16.1	15.5

Figure S3. $[KMg(HMDS)_2H]_2$ catalyzed hydrogenation of 1-octene (1b : 2b : 1b' = 6 : 86 : 8).

5. NMR Spectrum of Hydrogenation Reactions

Figure S5. $[KH + Ca(HMDS)_2 \cdot (THF)_2]$ catalyzed hydrogenation of 1,1-diphenylethene (hexamethylbenzene, 15.7 mg, 99% yield).^[5-8]

Figure S6. $[KH + Mg(HMDS)_2 \cdot Et_2O]$ catalyzed hydrogenation of 1,1-diphenylethene (hexamethylbenzene, 16.3 mg, 99% yield).

Figure S7. **[KH + Zn(HMDS)**₂] catalyzed hydrogenation of 1,1-diphenylethene (hexamethylbenzene, 16.0 mg, 99% yield).

Figure S8. [KH + KHMDS·(THF)_{0.8}] catalyzed hydrogenation of 1,1-diphenylethene (hexamethylbenzene, 11.3 mg, 99% yield).

Figure S9. ¹H NMR (400 MHz, C₆D₆) spectrum of 1-octene.

Figure S10. **[KH + Ca(HMDS)**₂·**(THF)**₂**]** catalyzed hydrogenation of 1-octene (98% conv.; 75% of n-octane and 23% of isomers).^[5]

Figure S11. **[KH + Mg(HMDS)**₂·**Et**₂**O]** catalyzed hydrogenation of 1-octene (96% conv.; 80% of n-octane and 16% of isomers).

Figure S13. [KH + Ca(HMDS)₂·(THF)₂] catalyzed hydrogenation of *trans*- β -methylstyrene (hexamethylbenzene, 16.5 mg, 99% yield).^[5]

Figure S14. **[KH + Mg(HMDS)**₂·**Et**₂**O]** catalyzed hydrogenation of *trans*- β -methylstyrene (hexamethylbenzene, 16.0 mg, 99% yield).

Figure S15. ¹H NMR (400 MHz, C₆D₆) spectrum of α-methylstyrene.

Figure S16. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of α -methylstyrene (97% yield).^[5-8]

Figure S17. [KH + Ca(HMDS)₂·(THF)₂] catalyzed hydrogenation of α -methylstyrene (99% yield).

3.32

Figure S18. ¹H NMR (400 MHz, C₆D₆) spectrum of 1,3-diphenylpropene.^[9]

Figure S19. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of 1,3-diphenylpropene (99% yield).

Figure S20. **[KH + Ca(HMDS)**₂·(**THF**)₂**]** catalyzed hydrogenation of 1,3-diphenylpropene (99% yield).

Figure S21. ¹H NMR (400 MHz, C₆D₆) spectrum of 1,2-diphenylethene.

Figure S22. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of 1,2-diphenylethene (97% yield).^[5-8]

Figure S23. **[KH + Ca(HMDS)**₂·(**THF**)₂**]** catalyzed hydrogenation of 1,2-diphenylethene (88% yield).

Figure S25. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of diphenylacetylene (88% yield).^[5-8]

Figure S26. [KH + Ca(HMDS)₂·(THF)₂] catalyzed hydrogenation of diphenylacetylene (96% yield).

Figure S27. ¹H NMR (400 MHz, C₆D₆) spectrum of styrene.

Figure S28. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of styrene using hexamethylbenzene (15.8 mg) as an internal standard (13.3 mg, 5% yield of ethylbenzene; 98% conv. for styrene; oligomers were detected by GC-MS: m/z: 210.1, 314.2, 405.0).^[8]

Figure S29. $[KH + Ca(HMDS)_2 \cdot (THF)_2]$ catalyzed hydrogenation of styrene using hexamethylbenzene (15.8 mg) as an internal standard (15.8 mg, 14% yield of ethylbenzene; 97% conv. for styrene; oligomers were detected by GC-MS: m/z: 210.1, 314.2, 405.0).

Figure S33. ¹H NMR (400 MHz, C₆D₆) spectrum of norbornene.

Figure S34. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of norbornene (99% yield).^[5-8]

Figure S35. [KH + Ca(HMDS)₂·(THF)₂] catalyzed hydrogenation of norbornene (99% yield).

Figure S37. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of of 1-hexene (99% conv.; 88% of n-octane and 12% of isomers).^[5-8]

Figure S38. **[KH + Ca(HMDS)**₂·(**THF)**₂**]** catalyzed hydrogenation of of 1-hexene (98% conv.; 78% of n-octane and 20% of isomers).

Figure S39. ¹H NMR (400 MHz, C₆D₆) spectrum of 1,9-decadiene.

Figure S40. **[KH + Mg(HMDS)**₂·**Et**₂**O]** catalyzed hydrogenation of 1,9-decadiene (99% conv.; 76% of n-octane and 24% of isomers).^[5]

Figure S41. [KH + Ca(HMDS)₂·(THF)₂] catalyzed hydrogenation of 1,9-decadiene (97% conv.; 61% of n-octane and 36% of isomers).

Figure S42. ¹H NMR (400 MHz, C₆D₆) spectrum of 1,3-cyclooctene.

Figure S43. [KH + Mg(HMDS)₂·Et₂O] catalyzed hydrogenation of 1,3-cyclooctene (70% conv.; 57% of cyclooctene, 13% of cyclooctane).^[10]

Figure S44. **[KH + Ca(HMDS)**₂·(**THF**)₂] catalyzed hydrogenation of 1,3-cyclooctene (87% conv.; 79% of cyclooctene, 8% of cyclooctane).

6. References

- [1] M. Westerhausen, Inorg. Chem. 1991, 30, 96-101.
- [2] H. Bürger, W. Sawodny and U. Wannagat, J. Organomet. Chem. 1965, 3, 113-120.
- [3] M. Niemeyer, Inorg. Chem. 2006, 45, 9085-9095.

[4] D. J. Liptrot, M. S. Hill, M. F. Mahon, Chem. -Eur. J. 2014, 20, 9871-9874.

[5] D.-D. Zhai, H.-Z. Du, X.-Y. Zhang, Y.-F. Liu, B.-T. Guan, ACS Catal. 2019, 9, 8766-8771.

[6] A. S. S. Wilson, C. Dinoi, M. S. Hill, M. F. Mahon, L. Maron, *Angew. Chem. Int. Ed.* **2018**, *57*, 15500-15504.

[7] X. Shi, G. Qin, Y. Wang, L. Zhao, Z. Liu, J. Cheng, Angew. Chem. Int. Ed. 2019, 58, 4356-4360.

[8] H. Bauer, M. Alonso, C. Fischer, B. Rçsch, H. Elsen, S. Harder, *Angew. Chem. Int. Ed.* 2018, 57, 15177-15182.

[9] S. A. Runikhina, O. I. Afanasyev, K. Biriukov, D. S. Perekalin, M. Klussmann, D. Chusov, *Chem. -Eur. J.* **2019**, *25*, 16225-16229.

[10] A. Enachi, D. Baabe, M.-K. Zaretzke, P. Schweyen, M. Freytag, J. Raedera, M. D. Walter, *Chem. Commun.* 2018, 54, 13798-13801.