Palladium-catalyzed δ -selective reductive Heck reaction of alkenyl

carbonyl compounds with aryl iodides and bromides

Yang Li, Jun-Fang Gong* and Mao-Ping Song*

College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry,

Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of

China

E-mail: gongjf@zzu.edu.cn (J.-F. Gong) or mpsong@zzu.edu.cn (M.-P. Song).

Table of Contents

1. General Information	S2
2. Experimental Section	S3
2.1 Optimization of Reaction Conditions	S3
2.2 Synthesis of Alkene Substrates	S8
2.3 Pd-catalyzed Intermolecular Reductive Heck Reaction	S12
2.4 Scale-up Reaction and Removal of Directing Group	S29
2.5 Studies on Mechanism	S30
2.6 Crystal Reports for 3ai	S32
3. References	S35
4. NMR Spectra	S36

1. General Information

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker DPX 400 or Bruker DPX 600 instruments using tetramethylsilane as an internal standard. Signal multiplicities are represented by the following abbreviations: (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet), coupling constant (*J* values) in Hz and integration. HRMS was determined on a *Waters* Q-Tof Micro MS/MS System ESI spectrometer. Melting points were measured on a WC-1 instrument and are uncorrected. Catalytic reactions were carried out in 35 mL pressure tubes with Teflon screw caps under air. Solvents were dried with standard methods and freshly distilled prior to use if needed. Substrates **1a-1k** were synthesized according to relevant literatures. Unless otherwise mentioned, all materials were commercially obtained and used without further purification.

2. Experimental Section

2.1 Optimization of Reaction Conditions

Table S1 Effect of Solvents^{*a*}

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	$AQ = \bigvee_{N}^{3} H$
1a 2	ta 3aa	
Entry	Solvent	Yield (%)
1	MeOH	34
2	EtOH	73
3	<i>i</i> -PrOH	31
4	t-BuOH	trace
5	<i>n</i> -BuOH	31
6	<i>n</i> -PrOH	36
7	HOAc	trace
8	DMSO	trace
9	CH ₃ CN	trace
10	DMF	trace
11	Toluene	trace
12	THF	trace
13	EtOAc	trace
14	1,4-Dioxane	trace
15	DCE	trace
16^b	EtOH	71
17^c	EtOH	67
18^d	EtOH	73
19	EG	32

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Pd(OAc)₂ (5 mol%), K₃PO₄ (0.3 mmol), solvent (1.0 mL), 100 °C, 8 h, under air. Isolated yields. ^{*b*}Under Ar. ^{*c*}Dry EtOH. ^{*d*}H₂O (5 equiv) was added.

	Me EtOH, 100 °C, 8 h	$AQ = \bigvee_{H}^{3} \bigvee_{H}^{3} \bigvee_{H}^{2}$
1a 2a	3aa	
Entry	Additive	Yield (%)
1	/	trace
2	K ₃ PO ₄	73
3	K ₂ CO ₃	30
4	t-BuOK	60
5	KTFA	ND
6	KHCO ₃	ND
7	K ₂ HPO ₄ ·3H ₂ O	ND
8	KOAc	trace
9	КОН	65
10	KBr	ND
11	NaF	ND
12	Na ₂ CO ₃	ND
13	PivOK	ND
14	NaOH	67
15	EtONa	29
16	NaNO ₂	trace
17	PhCOONa	trace
18	$Na_2C_2O_4$	trace
19	HOAc	ND
20	PhCOOH	ND
21	LiOH	37

Table S2 Effect of Additives^{*a*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Pd(OAc)₂ (5 mol%), additive (0.3 mmol), EtOH (1.0 mL), 100 °C, 8 h, under air. Isolated yields. ND: not detected.

Table 55 Effect of Catalyst Loaung	Table	S 3	Effect	of	Catalyst	Loading ^a
------------------------------------	-------	------------	--------	----	----------	-----------------------------

AQ + I	OMe 2a	$ \begin{array}{c} Pd(OAc)_2 (x \text{ mol}\%) \\ \overline{K_3PO_4} \\ EtOH, 100 \ ^\circC, 8 \text{ h} \end{array} $	AQ=
Entry		Catalyst loading (mol%)	Yield (%)
1		10.0	72
2		5.0	73
3		2.5	65
4		1.0	43

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $Pd(OAc)_2$ (x mol%), K_3PO_4 (0.3 mmol), EtOH (1.0 mL), 100 °C, 8 h, under air. Isolated yields.

Table S4 Effect of Pd Sources^{*a*}

AQ + COMe $1a 2a$	$\frac{\text{Pd source, K_3PO_4}}{\text{EtOH, 100 °C, 8 h}} \text{Aq}$	OMe AQ=
Entry	Pd source	Yield (%)
1	Pd(OAc) ₂	73
2	PdCl ₂	63
3	$Pd(CH_3CN)_2Cl_2$	73
4	$Pd(PPh_3)_2Cl_2$	ND
5	$Pd_2(dba)_3$	48
6	Pd(dba) ₂	46
7	$Pd(PPh_3)_4$	ND

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Pd source (5 mol%), K_3PO_4 (0.3 mmol), EtOH (1.0 mL), 100 °C, 8 h, under air. Isolated yields. ND: not detected.

	+ $Pd(OAc)_2, K_3PO_4$ Ligand OMe EtOH, 100 °C, 8 h	O + AC OMe	O OMe
	2a	заа С (0())	
Entry	Ligand (10 mol%)	3aa (%)	3aa' (%)
1	/	73	ND
2	Cy-Johnphos	26	18
3	PCy ₃ HBF ₄	ND	34
4	X-phos	74	ND
5	PCy ₃	ND	40
6	Ph ₂ PCy	ND	26
7	Ph ₂ PEt	ND	17
8	Cy ₂ NH	71	ND

Table S5 Effect of Ligands^{*a*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), $Pd(OAc)_2$ (5 mol%), K_3PO_4 (0.3 mmol), Ligand (10 mol%), EtOH (1.0 mL), 100 °C, 8 h, under Ar. Isolated yields.

AG	o ↓ + x→		Pd(OAc) ₂ , K ₃ P EtOH, T °C, 8	AQ	
	1a 2b' , X = Br; 2	2 b'' , X = (CI	3ab	~
Entry	Catalyst loading	Х	$T(^{o}C)$	Ligand	Yield (%)
	(mol%)			(mol%)	
1	5	Br	100	/	38
2	5	Cl	100	/	ND
3	5	Br	120	/	ND
$4^{b,c}$	5	Br	100	X-phos	36
				(10 mol%)	
$5^{b,c}$	5	Br	100	Cy-Johnphos	23
				(10 mol%)	
6	10	Br	100	/	44
7^d	10	Br	100	/	66

Table S6 Reaction of 1a with phenyl bromide and chloride^{*a*}

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2b'** or **2b''** (0.3 mmol), Pd(OAc)₂, K₃PO₄ (0.3 mmol), EtOH (1.0 mL), 8 h, under air. Isolated yields. ND: not detected. ^{*b*}Under Ar. ^{*c*}Occurrence of the Heck reaction was observed. ^{*d*}**2b'** (0.6 mmol).

Reaction of 3-butenoic acid derivative bearing AQ group (6) with 4-iodoanisole:

To a 35 mL pressure tube, **6** (0.2 mmol), **2a** (0.3 mmol), Pd(OAc)₂ (5 mol%), K₃PO₄ (0.3 mmol) and EtOH (1.0 mL) were added sequentially. The reaction was stirred in a *pre*-warmed 100 °C oil bath for 8 hours under air. Then the reaction was quenched with ethyl acetate, filtered through a pad of celite, concentrated and purified by preparative TLC on silica gel plates (petroleum ether/ethyl acetate = 7/1) to give **7** in 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 1H), 8.84 – 8.76 (m, 2H), 8.14 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.43 (dd, *J* = 4.2, 8.2 Hz, 1H), 4.04 – 3.93 (m, 1H), 3.76 – 3.66 (m, 1H), 3.65 – 3.54 (m, 1H), 2.77 (dd, *J* = 7.9, 15.0 Hz, 1H), 2.65 (dd, *J* = 3.7, 15.0 Hz, 1H), 1.37 – 1.29 (m, 6H).

2.2 Synthesis of Alkene Substrates

General Procedure A for Installing Directing Group:¹

 $\begin{array}{c} & & O & R^2 \\ & & & NH_2 & + & HO & \\ & & & R^1 \end{array} \xrightarrow{\begin{subarray}{c} 0 & R^2 \\ & & & pyridine \\ \hline DCM \end{array} \xrightarrow{\begin{subarray}{c} 0 & R^2 \\ & & & & R^3 \\ \hline & & & & R^1 \end{array} \xrightarrow{\begin{subarray}{c} 0 & R^2 \\ & & & & & R^3 \\ \hline & & & & & R^1 \end{array}$

To a 100 mL round bottom flask equipped with a magnetic stir bar were added 8-aminoquinoline (1.0 equiv), pyridine (3.0 equiv), HATU (1.5 equiv), DCM (0.4 M) and corresponding acid (1.0 equiv). The reaction was stirred at 25 °C for 12 h. The solvent was removed under vacuum, and the residue was diluted with ethyl acetate, washed with sat. NaHCO₃ (20 mL, \times 2) and brine (20 mL, \times 1). The organic layer was then dried, concentrated under vacuum, and purified by column chromatography (petroleum ether/ethyl acetate = 20/1-15/1) to afford corresponding product.

N-(quinolin-8-yl)pent-4-enamide (1a)

The title compound was prepared from 4-pentenoic acid according to the general procedure A, affording **1a** as a yellow oil in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.89 – 8.71 (m, 2H), 8.16 (dd, J = 1.7, 8.3 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.45 (dd, J = 4.2, 8.3 Hz, 1H), 6.01 – 5.87 (m, 1H), 5.16 (qd, J = 1.6, 17.1 Hz, 1H), 5.08 – 5.02 (m, 1H), 2.72 –2.63 (m, 2H), 2.62 – 2.54 (m, 2H).

2-methyl-N-(quinolin-8-yl)pent-4-enamide (1b)

2-methylpent-4-enoic acid was prepared by an adjusted literature procedure.² To a 100 mL flask was added diisopropylamine (22 mmol) in THF (0.5 M) and then *n*-BuLi (22 mmol, 2.5 M in THF) was added dropwise at -78 °C. The mixture was warmed to 0 °C and stirred for 0.5 h to afford LDA. Allylacetic acid (10 mmol) in THF (1 M) was added at -78 °C and the mixture was stirred for 0.5 h. Then iodomethane (11 mmol) was added into the mixture. The mixture was heated to room temperature and stirred overnight. After the reaction, the mixture was poured into 20 mL ice water. The organic phase was separated. The aqueous layer was acidified with HCl (2 M) and extracted with ethyl acetate (15 mL, ×9). The combined organic layer was washed with brine and dried over Na₂SO₄. After removal of the solvent under reduced pressure, crude 2-methylpent-4-enoic acid was obtained. The crude acid was taken forward to the next step without further purification according to general procedure A to afford **1b** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 8.84 – 8.75 (m, 2H), 8.13 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.42 (dd, *J* = 4.2, 8.3 Hz, 1H), 5.93 – 5.80 (m, 1H), 5.19 – 5.09 (m, 1H), 5.08 – 5.00 (m, 1H), 2.75 – 2.53 (m, 2H), 2.38 – 2.27 (m, 1H), 1.34 (d, *J* = 6.8 Hz, 3H).

2-benzyl-N-(quinolin-8-yl)pent-4-enamide (1c)

2-benzylpent-4-enoic acid was prepared by literature procedure.³ Crude 2-benzylpent-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1c** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 8.78 (dd, J = 1.5, 7.4 Hz, 1H), 8.73 (dd, J = 1.6, 4.2 Hz, 1H), 8.11 (dd, J = 1.6, 8.3 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.40 (dd, J = 4.2, 8.2 Hz, 1H), 7.30 – 7.18 (m, 4H), 7.15 – 7.08 (m, 1H), 5.95 – 5.81 (m, 1H), 5.20 – 5.10 (m, 1H), 5.07 – 5.00 (m, 1H), 3.20 – 3.10 (m, 1H), 2.96 – 2.80 (m, 2H), 2.65 – 2.54 (m, 1H), 2.45 – 2.35 (m, 1H).

2-phenyl-N-(quinolin-8-yl)pent-4-enamide (1d)

2-phenylpent-4-enoic acid was prepared by literature procedure.⁴ Crude 2-phenylpent-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1d** as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.77 (dd, J = 1.6, 7.3 Hz, 1H), 8.73 (dd, J = 1.7, 4.2 Hz, 1H), 8.11

(dd, J = 1.6, 8.3 Hz, 1H), 7.53 – 7.44 (m, 4H), 7.42 – 7.34 (m, 3H), 7.31 – 7.26 (m, 1H), 5.89 – 5.76 (m, 1H), 5.18 – 5.10 (m, 1H), 5.04 – 4.98 (m, 1H), 3.81 (t, J = 7.6 Hz, 1H), 3.12 – 3.02 (m, 1H), 2.74 – 2.64 (m, 1H).

3-methyl-N-(quinolin-8-yl)pent-4-enamide (1e)

3-methylpent-4-enoic acid was prepared by literature procedure.⁵ Crude 3-methylpent-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1e** as a brown oil. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.84 – 8.75 (m, 2H), 8.19 – 8.11 (m, 1H), 7.56 – 7.47 (m, 2H), 7.45 (dd, *J* = 4.2, 8.2 Hz, 1H), 5.96 – 5.84 (m, 1H), 5.17 – 5.08 (m, 1H), 5.04 – 4.97 (m, 1H), 2.96 – 2.84 (m, 1H), 2.66 – 2.57 (m, 1H), 2.55 – 2.46 (m, 1H), 1.17 (d, *J* = 6.8 Hz, 3H).

3,3-dimethyl-N-(quinolin-8-yl)pent-4-enamide (1f)

3,3-dimethylpent-4-enoic acid was prepared by literature procedure.¹ Crude 3,3-dimethylpent-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1f** as a yelow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.83 – 8.74 (m, 2H), 8.13 (dd, *J* = 1.4, 8.3 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.43 (dd, *J* = 4.2, 8.3 Hz, 1H), 6.06 (dd, *J* = 10.7, 17.4 Hz, 1H), 5.12 – 5.01 (m, 2H), 2.54 (s, 2H), 1.26 (s, 6H).

2-methyl-3-phenyl-N-(quinolin-8-yl)pent-4-enamide (1g)

2-methyl-3-phenylpent-4-enoic acid was prepared by literature procedure.⁵ Crude 2-methyl-3-phenylpent-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1g** as a yelow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 8.67 (dd, J = 1.6, 4.2 Hz, 1H), 8.62 (dd, J = 1.2, 7.5 Hz, 1H), 7.92 (dd, J = 1.3, 8.2 Hz, 1H), 7.37 – 7.22 (m, 5H), 7.19 – 7.11 (m, 2H), 7.02 – 6.94 (m, 1H), 6.06 – 5.94 (m, 1H), 5.22 – 5.14 (m, 1H), 5.12 (dd, J = 1.5, 10.1 Hz, 1H), 3.69 (t, J = 1.5)

9.6 Hz, 1H), 2.97 – 2.88 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 3H).

(E)-N-(quinolin-8-yl)hex-4-enamide (1h)

(*E*)-hex-4-enoic acid was prepared by literature procedure.⁶ Crude (*E*)-hex-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1h** as a brown oil. ¹H NMR (600 MHz, CDCl₃) δ 9.82 (s, 1H), 8.83 – 8.76 (m, 2H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.46 – 7.42 (m, 1H), 5.64 – 5.50 (m, 2H), 2.62 (t, *J* = 7.4 Hz, 2H), 2.53 – 2.47 (m, 2H), 1.66 (d, *J* = 5.4 Hz, 3H).

(E)-N-(quinolin-8-yl)hept-4-enamide (1i)

(*E*)-hept-4-enoic acid was prepared by an adjusted literature procedure.⁶ Crude (*E*)-hept-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1i** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.82 – 8.75 (m, 2H), 8.15 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.45 (dd, *J* = 4.2, 8.3 Hz, 1H), 5.66 – 5.57 (m, 1H), 5.56 – 5.47 (m, 1H), 2.67 – 2.60 (m, 2H), 2.55 – 2.47 (m, 2H), 2.06 – 1.95 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H).

(Z)-5-cyclohexyl-N-(quinolin-8-yl)pent-4-enamide (1j)

(*Z*)-5-cyclohexylpent-4-enoic acid was prepared by literature procedure.⁷ Crude (*Z*)-5-cyclohexylpent-4-enoic acid was taken forward to the next step without further purification according to general procedure A to afford **1j** as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 9.81 (s, 1H), 8.83 – 8.78 (m, 2H), 8.16 (dd, *J* = 1.1, 8.2 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.45 (dd, *J* = 4.2, 8.2 Hz, 1H), 5.38 – 5.32 (m, 1H), 5.31 – 5.27 (m, 1H), 2.64 – 2.54 (m, 4H), 2.38 – 2.30 (m, 1H), 1.70 – 1.57 (m, 5H), 1.31 – 1.21 (m, 2H), 1.19 – 1.10 (m, 1H), 1.09 – 1.00 (m, 2H).

(E)-5-phenyl-N-(quinolin-8-yl)pent-4-enamide (1k)

The title compound was prepared by an adjusted literature procedure as a yellow solid.⁸ ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 8.79 (dd, *J* = 1.4, 7.4 Hz, 1H), 8.73 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.13 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.56 – 7.45 (m, 2H), 7.41 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.30 – 7.24 (m, 2H), 7.21 – 7.15 (m, 1H), 6.52 (d, *J* = 15.8 Hz, 1H), 6.38 – 6.26 (m, 1H), 2.77 – 2.69 (m, 4H).

2.3 Pd-catalyzed Intermolecular Reductive Heck Reaction

Typical procedure for reductive Heck reaction of unactivated alkenes with aryl iodides: To a 35 mL pressure tube, alkene substrate (0.2 mmol), aryl iodide (0.3 mmol), Pd(OAc)₂ (5 mol%), K₃PO₄ (0.3 mmol) and EtOH (1.0 mL) were added sequentially. The reaction was stirred in a *pre*-warmed 100 °C oil bath for 8 hours under air. Then the reaction was quenched with ethyl acetate, filtered through a pad of celite, concentrated and purified by preparative TLC on silica gel plates (petroleum ether/ethyl acetate = 5/1-25/1 or dichloromethane/ethyl acetate = 120/1) to give the desired product.

Typical procedure for reductive Heck reaction of unactivated alkenes with aryl bromides: To a 35 mL pressure tube, alkene substrate (0.2 mmol), aryl bromide (0.6 mmol), Pd(OAc)₂ (10 mol%), K₃PO₄ (0.3 mmol) and EtOH (1.0 mL) were added sequentially. The reaction was stirred in a *pre*-warmed 100 °C oil bath for 8 hours under air. Then the reaction was quenched with ethyl acetate, filtered through a pad of celite, concentrated and purified by preparative TLC on silica gel plates (petroleum ether/ethyl acetate = 13/1 or dichloromethane/ethyl acetate = 120/1) to give the desired product.

5-(4-methoxyphenyl)-*N*-(quinolin-8-yl)pentanamide (3aa)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3aa** as a yellow solid (48.8 mg, 73%), mp = 62-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.83 – 8.75 (m, 2H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.44 (dd, *J* = 4.2, 8.2 Hz, 1H), 7.15 – 7.08 (m, 2H), 6.86 – 6.78 (m, 2H), 3.77 (s, 3H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 2H), 1.92 – 1.81 (m, 2H), 1.79 – 1.69 (m, 2H). ¹³C NMR (100

MHz, CDCl₃) δ 171.7, 157.8, 148.1, 138.4, 136.4, 134.6, 134.3, 129.3, 128.0, 127.4, 121.6, 121.4, 116.4, 113.8, 55.3, 38.1, 34.8, 31.3, 25.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₃N₂O₂ 335.1754, found 335.1764.

5-phenyl-N-(quinolin-8-yl)pentanamide (3ab)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ab** as a yellow oil (49.9 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.83 – 8.74 (m, 2H), 8.15 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 2.69 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 2H), 1.94 – 1.83 (m, 2H), 1.82 – 1.72 (m, 2H).

5-(4-fluorophenyl)-*N*-(quinolin-8-yl)pentanamide (3ac)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 12/1) to provide **3ac** as a brown oil (43.2 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.82 – 8.74 (m, 2H), 8.15 (dd, *J* = 1.5, 8.2 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.17 – 7.10 (m, 2H), 6.98 – 6.91 (m, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.4 Hz, 2H), 1.92 – 1.81 (m, 2H), 1.80 – 1.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 161.2 (d, ¹*J*_{CF} = 241.6 Hz), 148.1, 138.3, 137.8 (d, ⁴*J*_{CF} = 3.2 Hz), 136.4, 134.5, 129.7 (d, ³*J*_{CF} = 7.7 Hz), 128.0, 127.4, 121.6, 121.4, 116.5, 115.0 (d, ²*J*_{CF} = 21.0 Hz), 38.0, 34.9, 31.2, 25.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -117.89. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₀FN₂O 323.1554, found 323.1560.

5-(4-chlorophenyl)-*N*-(quinolin-8-yl)pentanamide (3ad)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ad** as a pale brown solid (46.7 mg, 69%), mp = 67-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.83 – 8.74 (m, 2H), 8.16 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.45 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.15 – 7.08 (m, 2H), 2.66 (t, *J* = 7.5 Hz, 2H),

2.58 (t, J = 7.3 Hz, 2H), 1.92 – 1.81 (m, 2H), 1.79 – 1.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 148.1, 140.6, 138.3, 136.4, 134.5, 131.5, 129.8, 128.4, 128.0, 127.5, 121.6, 121.5, 116.4, 38.0, 35.1, 30.9, 25.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₀ClN₂O 339.1259, found 339.1264.

5-(4-bromophenyl)-N-(quinolin-8-yl)pentanamide (3ae)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ae** as a yellow solid (40.6 mg, 53%), mp = 90-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.83 – 8.72 (m, 2H), 8.14 (dd, *J* = 1.4, 8.2 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.44 (dd, *J* = 4.2, 8.2 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.08 – 7.02 (m, 2H), 2.63 (t, *J* = 7.6 Hz, 2H), 2.57 (t, *J* = 7.3 Hz, 2H), 1.91 – 1.79 (m, 2H), 1.78 – 1.67 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 171.5, 148.1, 141.3, 138.3, 136.4, 134.5, 131.4, 130.2, 128.0, 127.4, 121.6, 121.4, 119.5, 116.4, 37.9, 35.1, 30.9, 25.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₀BrN₂O 383.0754, found 383.0759.

5-(p-tolyl)-N-(quinolin-8-yl)pentanamide (3af)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3af** as a pale yellow solid (43.3 mg, 68%), mp =42-43 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.83 – 8.76 (m, 2H), 8.15 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.45 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.13 – 7.06 (m, 4H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.59 (t, *J* = 7.5 Hz, 2H), 2.32 (s, 3H), 1.94 – 1.83 (m, 2H), 1.80 – 1.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 139.1, 138.3, 136.4, 135.2, 134.5, 129.0, 128.3, 128.0, 127.5, 121.6, 121.4, 116.4, 38.1, 35.3, 31.3, 25.4, 21.0. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805, found 319.1812.

5-(4-(trifluoromethyl)phenyl)-N-(quinolin-8-yl)pentanamide (3ag)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide

3ag as a brown oil (49.9 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.82 – 8.72 (m, 2H), 8.14 (dd, J = 1.6, 8.3 Hz, 1H), 7.56 – 7.46 (m, 4H), 7.44 (dd, J = 4.2, 8.3 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.59 (t, J = 7.3 Hz, 2H), 1.93 – 1.82 (m,2H), 1.82 – 1.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 148.1, 146.3, 138.3, 136.4, 134.5, 128.7, 128.2 (q, ² $_{JCF} = 32.1$ Hz), 128.0, 127.4, 125.3 (q, ³ $_{JCF} = 3.8$ Hz), 124.4 (q, ¹ $_{JCF} = 270.1$ Hz), 121.6, 121.5, 116.4, 37.9, 35.6, 30.7, 25.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.27. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₀F₃N₂O 373.1522, found 373.1531.

5-(4-acetylphenyl)-*N*-(quinolin-8-yl)pentanamide (3ah)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 6/1) to provide **3ah** as a brown oil (31.9 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.82 – 8.74 (m, 2H), 8.18 – 8.12 (m, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.56 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 2.75 (t, *J* = 7.4 Hz, 2H), 2.59 (t, *J* = 7.2 Hz, 2H), 2.56 (s, 3H), 1.92 – 1.74 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 171.4, 148.1, 148.0, 138.3, 136.4, 135.1, 134.5, 128.6, 128.5, 128.0, 127.4, 121.6, 121.5, 116.4, 37.9, 35.7, 30.6, 26.5, 25.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₂H₂₃N₂O₂ 347.1754, found 347.1770.

5-([1,1'-biphenyl]-4-yl)-*N*-(quinolin-8-yl)pentanamide (3ai)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ai** as a pale yellow solid (54.8 mg, 72%), mp = 83-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.83 – 8.73 (m, 2H), 8.11 (dd, *J* = 1.5, 8.3 Hz, 1H), 7.59 – 7.44 (m, 6H), 7.43 – 7.37 (m, 3H), 7.33 – 7.21 (m, 3H), 2.72 (t, *J* = 7.5 Hz, 2H), 2.59 (t, *J* = 7.4 Hz, 2H), 1.95 – 1.85 (m, 2H), 1.84 – 1.74 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 148.1, 141.4, 141.2, 138.8, 138.4, 136.4, 134.6, 128.9, 128.7, 128.0, 127.5, 127.1, 127.0, 121.6, 121.4, 116.5, 38.1, 35.4, 31.1, 25.4. HRMS (positive ESI): [M+H]⁺ calcd for C₂₆H₂₅N₂O 381.1961, found 381.1967.

5-(4-(*tert*-butyl)phenyl)-N-(quinolin-8-yl)pentanamide (3aj)

Purified by preparative TLC on silica gel (dichloromethane/ethyl acetate = 120/1) to provide **3aj** as a yellow oil (39.6 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.85 – 8.76 (m, 2H), 8.16 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.45 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.18 – 7.12 (m, 2H), 2.68 (t, *J* = 7.6 Hz, 2H), 2.60 (t, *J* = 7.4 Hz, 2H), 1.95 – 1.85 (m, 2H), 1.83 – 1.73 (m, 2H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.5, 148.1, 139.1, 138.4, 136.4, 134.6, 128.1, 128.0, 127.5, 125.2, 121.6, 121.4, 116.5, 38.2, 35.2, 34.4, 31.5, 31.1, 25.5. HRMS (positive ESI): [M+H]⁺ calcd for C₂₄H₂₉N₂O 361.2274, found 361.2281.

5-(*m*-tolyl)-*N*-(quinolin-8-yl)pentanamide (3ak)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ak** as a yellow oil (44.6 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.85 – 8.68 (m, 2H), 8.13 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.57 – 7.45 (m, 2H), 7.42 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.04 – 6.89 (m, 3H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.57 (t, *J* = 7.4 Hz, 2H), 2.30 (s, 3H), 1.93 – 1.82 (m, 2H), 1.81 – 1.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 142.2, 138.3, 137.9, 136.4, 134.6, 129.3, 128.3, 128.0, 127.5, 126.5, 125.5, 121.6, 121.4, 116.4, 38.1, 35.7, 31.2, 25.4, 21.4. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805, found 319.1810.

5-(3-fluorophenyl)-N-(quinolin-8-yl)pentanamide (3al)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3al** as a yellow oil (39.3 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.81 – 8.74 (m, 2H), 8.14 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.43 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.27 – 7.17 (m, 1H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.92 – 6.82 (m, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.58 (t, *J* = 7.3 Hz, 2H), 1.91 – 1.80 (m, 2H), 1.80 – 1.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 162.9 (d, ¹*J*_{CF} = 244.0 Hz), 148.1, 144.8 (d, ³*J*_{CF} = 7.0 Hz) 138.3, 136.3,

134.5, 129.7 (d, ${}^{3}J_{CF} = 8.0$ Hz), 128.0, 127.4, 124.1 (d, ${}^{4}J_{CF} = 2.0$ Hz), 121.6, 121.4, 116.4, 115.2 (d, ${}^{2}J_{CF} = 20.0$ Hz), 112.6 (d, ${}^{2}J_{CF} = 21.0$ Hz), 38.0, 35.5 (d, ${}^{4}J_{CF} = 1.0$ Hz), 30.7, 25.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.89. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₀FN₂O 323.1554, found 323.1560.

5-(3-chlorophenyl)-*N*-(quinolin-8-yl)pentanamide (3am)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3am** as a brown solid (37.9 mg, 56%), mp = 42-44 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.82 – 8.75 (m, 2H), 8.14 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.21 – 7.12 (m, 3H), 7.09 – 7.04 (m, 1H), 2.66 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.3 Hz, 2H), 1.93 – 1.80 (m, 2H), 1.79 – 1.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 148.1, 144.2, 138.3, 136.4, 134.5, 134.1, 129.6, 128.5, 128.0, 127.4, 126.7, 126.0, 121.6, 121.4, 116.4, 37.9, 35.4, 30.8, 25.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₀ClN₂O 339.1259, found 339.1274.

5-(3-methoxyphenyl)-N-(quinolin-8-yl)pentanamide (3an)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3an** as a yellow oil (46.1 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.83 – 8.76 (m, 2H), 8.14 (dd, *J* = 1.5, 8.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.43 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.78 – 6.69 (m, 2H), 3.78 (s, 3H), 2.68 (t, *J* = 7.6 Hz, 2H), 2.59 (t, *J* = 7.4 Hz, 2H), 1.94 – 1.84 (m, 2H), 1.82 – 1.72 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 159.7, 148.1, 143.9, 138.3, 136.4, 134.5, 129.3, 128.0, 127.4, 121.6, 121.4, 120.9, 116.4, 114.2, 111.1, 55.1, 38.1, 35.8, 31.0, 25.4. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₃N₂O₂ 335.1754, found 335.1764.

5-(o-tolyl)-N-(quinolin-8-yl)pentanamide (3ao)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ao** as a brown oil (39.5 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 8.84 – 8.77 (m, 2H), 8.15 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.45 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.19 – 7.07 (m, 4H), 2.69 (t, *J* = 7.8 Hz, 2H), 2.61 (t, *J* = 7.5 Hz, 2H), 2.32 (s, 3H), 1.99 – 1.88 (m, 2H), 1.78 – 1.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 148.1, 140.4, 138.4, 136.4, 135.8, 134.6, 130.2, 128.9, 128.0, 127.5, 125.93, 125.92, 121.6, 121.4, 116.5, 38.1, 33.1, 29.9, 25.7, 19.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805, found 319.1811.

5-(2,6-dimethylphenyl)-*N*-(quinolin-8-yl)pentanamide (3ap)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ap** as a brown solid (49.2 mg, 74%), mp = 82-84 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.84 – 8.78 (m, 2H), 8.16 (dd, *J* = 1.7, 8.3 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.45 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.02 – 6.97 (m, 3H), 2.75 – 2.68 (m, 2H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.34 (s, 6H), 2.03 – 1.94 (m, 2H), 1.68 – 1.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 148.1, 139.1, 138.4, 136.4, 136.0, 134.5, 128.1, 128.0, 127.5, 125.6, 121.6, 121.4, 116.5, 38.1, 29.6, 28.8, 26.2, 19.9. HRMS (positive ESI): [M+H]⁺ calcd for C₂₂H₂₅N₂O 333.1961, found 333.1971.

5-(3,5-dimethylphenyl)-*N*-(quinolin-8-yl)pentanamide (3aq)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3aq** as a yellow oil (42.6 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.86 – 8.69 (m, 2H), 8.13 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.42 (dd, *J* = 4.2, 8.3 Hz, 1H), 6.86 – 6.73 (m, 3H), 2.67 – 2.50 (m, 4H), 2.26 (s, 6H), 1.92 – 1.80 (m, 2H), 1.80 – 1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 142.2, 138.3, 137.8, 136.4, 134.6, 128.0, 127.5,127.4, 126.3, 121.6, 121.4, 116.4, 38.2, 35.6, 31.2, 25.5, 21.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₂H₂₅N₂O 333.1961, found 333.1973.

5-(naphthalen-1-yl)-N-(quinolin-8-yl)pentanamide (3ar)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 20/1) to provide **3ar** as a pale yellow solid (41.1 mg, 58%), mp = 69-72 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.83 – 8.72 (m, 2H), 8.12 (dd, *J* = 1.6, 8.3 Hz, 1H), 8.06 – 7.99 (m, 1H), 7.85 – 7.78 (m, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 7.48 – 7.31 (m, 6H), 3.14 (t, *J* = 7.3 Hz, 2H), 2.60 (t, *J* = 7.3 Hz, 2H), 2.03 – 1.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 148.1, 138.34, 138.28, 136.4, 134.5, 133.9, 131.8, 128.8, 128.0, 127.5, 126.6, 126.0, 125.8, 125.6, 125.4, 123.8, 121.6, 121.4, 116.5, 38.1, 32.9, 30.4, 25.8. HRMS (positive ESI): [M+H]⁺ calcd for C₂₄H₂₃N₂O 355.1805, found 355.1810.

5-(2-methoxynaphthalen-1-yl)-*N*-(quinolin-8-yl)pentanamide (3as)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 20/1) to provide **3as** as a brown solid (48.4 mg, 63%), mp = 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.79 (dd, *J* = 1.2, 7.5 Hz, 1H), 8.75 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.09 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.95 (d, *J* = 8.6 Hz, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.47 – 7.36 (m, 3H), 7.33 – 7.26 (m, 1H), 7.23 (d, *J* = 9.0 Hz, 1H), 3.91 (s, 3H), 3.16 (t, *J* = 7.7 Hz, 2H), 2.61 (t, *J* = 7.7 Hz, 2H), 2.03 – 1.91 (m, 2H), 1.82 – 1.72 (m, 2H). ¹³C NMR (100 MHz, CDCl3) δ 171.9, 154.4, 148.1, 138.4, 136.4, 134.6, 133.0, 129.3, 128.6, 128.0, 127.6, 127.5, 126.2, 123.6, 123.3, 123.2, 121.6, 121.4, 116.5, 113.4, 56.5, 38.3, 29.7, 25.9, 24.5. HRMS (positive ESI): [M+H]⁺ calcd for C₂₅H₂₅N₂O₂ 385.1911, found 385.1900.

5-(2-ethoxynaphthalen-1-yl)-N-(quinolin-8-yl)pentanamide (3at)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 20/1) to provide **3at** as a yellow oil (44.6 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.79 (dd, *J* = 1.3, 7.5 Hz, 1H), 8.75 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.09 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 9.0 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.46 – 7.37 (m, 3H), 7.32 – 7.26 (m, 1H), 7.21 (d, *J* = 9.0 Hz, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.17 (t, *J* = 7.7 Hz, 2H), 2.62 (t, *J* = 7.7 Hz, 2H), 2.04 – 1.91 (m, 2H), 1.84 – 1.74 (m, 2H), 1.42 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 153.8, 148.1, 138.4, 136.4, 134.6, 133.1, 129.3, 128.5, 128.0, 127.5, 126.2, 124.0, 123.3, 123.1, 121.6, 121.3, 116.5, 114.6, 64.9, 38.3, 29.7, 25.9, 24.6, 15.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₆H₂₇N₂O₂ 399.2067, found 399.2062.

2-methyl-5-phenyl-N-(quinolin-8-yl)pentanamide (3bb)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3bb** as a yellow oil (35.7 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 8.85 – 8.75 (m, 2H), 8.14 (dd, J = 1.6, 8.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.43 (dd, J = 4.2, 8.3 Hz, 1H), 7.27 – 7.20 (m, 2H), 7.19 – 7.10 (m, 3H), 2.72 – 2.55 (m, 3H), 1.97 – 1.84 (m, 1H), 1.80 – 1.69 (m, 2H), 1.66 – 1.55 (m, 1H), 1.32 (d, J = 6.9 Hz, 3H).

2-benzyl-5-phenyl-N-(quinolin-8-yl)pentanamide (3cb)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3cb** as a yellow oil (54.5 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 8.81 – 8.75 (m, 1H), 8.70 (dd, J = 1.6, 4.2 Hz, 1H), 8.07 (dd, J = 1.6, 8.3 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.37 (dd, J = 4.2, 8.3 Hz, 1H), 7.25 – 7.16 (m, 6H), 7.14 – 7.08 (m, 4H), 3.19 – 3.08 (m, 1H), 2.89 – 2.81 (m, 1H), 2.79 – 2.70 (m, 1H), 2.62 (t, J = 7.5 Hz, 2H), 1.98 – 1.85 (m, 1H), 1.83 – 1.59 (m, 3H).

2-benzyl-5-(4-chlorophenyl)-N-(quinolin-8-yl)pentanamide (3cd)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3cd** as a light yellow oil (34.3 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 8.77 (d, *J* = 7.3 Hz, 1H), 8.72 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.11 (dd, *J* = 1.3, 8.2 Hz, 1H), 7.54 – 7.45 (m, 2H), 7.41 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.24 –7.18 (m, 4H), 7.17 – 7.08 (m, 3H), 7.06 – 6.99 (m, 2H), 3.13 (dd, *J* = 8.0, 13.5 Hz, 1H), 2.84 (dd, *J* = 6.6, 13.5 Hz, 1H), 2.78 – 2.69 (m, 1H), 2.58 (t, *J* = 7.4 Hz, 2H), 1.95 – 1.82 (m, 1H), 1.79 – 1.58 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 148.1, 140.5, 139.5, 138.4, 136.3, 134.3, 131.4, 129.8, 129.0, 128.5, 128.4, 127.9, 127.4, 126.3, 121.6, 121.5, 116.5, 51.1, 39.3, 35.2, 32.1, 29.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₇H₂₆ClN₂O 429.1728, found 429.1729.

2-benzyl-N-(quinolin-8-yl)-5-(4-(trifluoromethyl)phenyl)pentanamide (3cg)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3cg** as a colorless oil (41.6 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 8.78 (d, J = 7.3 Hz, 1H), 8.72 (dd, J = 1.6, 4.2 Hz, 1H), 8.11 (dd, J = 1.5, 8.2 Hz, 1H), 7.54 – 7.43 (m, 4H), 7.41 (dd, J = 4.2, 8.2 Hz, 1H), 7.27 – 7.16 (m, 6H), 7.15 – 7.09 (m, 1H), 3.14 (dd, J = 7.9, 13.5 Hz, 1H), 2.85 (dd, J = 6.7, 13.5 Hz, 1H), 2.80 – 2.71 (m, 1H), 2.67 (t, J = 7.5 Hz, 2H), 1.99 – 1.86 (m, 1H), 1.85 – 1.59 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 148.1, 146.2, 139.5, 138.4, 136.3, 134.3, 129.0, 128.7, 128.5, 128.1 (q, ² $J_{CF} = 32.1$ Hz), 127.9, 127.4, 126.3, 125.2 (q, ³ $J_{CF} = 3.8$ Hz), 124.4 (q, ¹ $J_{CF} = 272.9$ Hz), 121.58, 121.56, 116.5, 51.0, 39.3, 35.7, 32.1, 29.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.26. HRMS (positive ESI): [M+H]⁺ calcd for C₂₈H₂₆F₃N₂O 463.1992, found 463.1993.

5-([1,1'-biphenyl]-4-yl)-2-benzyl-N-(quinolin-8-yl)pentanamide (3ci)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ci** as a colorless oil (43.3 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.85 – 8.76 (m, 1H), 8.70 (d, *J* = 4.1 Hz, 1H), 8.09 (dd, *J* = 1.4, 8.2 Hz, 1H), 7.57 – 7.35 (m, 9H), 7.32 – 7.27 (m, 1H), 7.26 – 7.16 (m, 6H), 7.15 – 7.08 (m, 1H), 3.21 – 3.09 (m, 1H), 2.92 – 2.83 (m, 1H), 2.82 – 2.72 (m, 1H), 2.67 (t, *J* = 7.3 Hz, 2H), 2.02 – 1.89 (m, 1H), 1.88 – 1.65 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 148.1, 141.3, 141.1, 139.7, 138.7, 138.4, 136.3, 134.4, 129.0, 128.9, 128.7, 128.5, 127.9, 127.4, 127.1, 127.0, 126.3, 121.6,

121.5, 116.5, 51.2, 39.3, 35.6, 32.4, 29.3. HRMS (positive ESI): $[M+H]^+$ calcd for $C_{33}H_{31}N_2O$ 471.2431, found 471.2432.

2,5-diphenyl-*N*-(quinolin-8-yl)pentanamide (3db)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3db** as a yellow oil (41.1 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.76 (dd, J = 1.4, 7.5 Hz, 1H), 8.70 (dd, J = 1.6, 4.2 Hz, 1H), 8.06 (dd, J = 1.6, 8.3 Hz, 1H), 7.51 – 7.40 (m, 4H), 7.38 – 7.32 (m, 3H), 7.29 – 7.20 (m, 3H), 7.17 – 7.11 (m, 3H), 3.70 (t, J = 7.6 Hz, 1H), 2.76 – 2.57 (m, 2H), 2.42 – 2.29 (m, 1H), 2.05 – 1.93 (m, 1H), 1.81 – 1.57 (m, 2H).

5-(4-chlorophenyl)-2-phenyl-N-(quinolin-8-yl)pentanamide (3dd)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3dd** as a yellow oil (44.0 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 8.75 (d, *J* = 7.4 Hz, 1H), 8.71 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.53 – 7.42 (m, 4H), 7.41 – 7.32 (m, 3H), 7.30 – 7.23 (m, 1H), 7.19 (d, *J* = 8.3 Hz, 2H), 7.06 (d, *J* = 8.3 Hz, 2H), 3.70 (t, *J* = 7.5 Hz, 1H), 2.75 – 2.52 (m, 2H), 2.40 – 2.27 (m, 1H), 2.02 – 1.89 (m, 1H), 1.78 – 1.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 148.2, 140.5, 139.7, 138.4, 136.3, 134.5, 131.5, 129.8, 128.9, 128.4, 128.0, 127.9, 127.4, 127.3, 121.6, 121.5, 116.3, 54.9, 35.2, 32.9, 29.5. HRMS (positive ESI): [M+H]⁺ calcd for C₂₆H₂₄ClN₂O 415.1572, found 415.1574.

2-phenyl-N-(quinolin-8-yl)-5-(4-(trifluoromethyl)phenyl)pentanamide (3dg)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3dg** as a yellow oil (51.9 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.75 (dd, *J* = 1.5, 7.4 Hz, 1H), 8.71 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.08 (dd, *J* = 1.6, 8.2 Hz, 1H), 7.51 - 7.42 (m, 6H), 7.40 - 7.33 (m, 3H), 7.30 - 7.21 (m, 3H), 3.71 (t, *J* = 7.6 Hz, 1H), 2.80 -

2.62 (m, 2H), 2.42 – 2.83 (m, 1H), 2.03 – 1.91 (m, 1H), 1.82 – 1.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 148.2, 146.2, 139.6, 138.4, 136.3, 134.4, 129.0, 128.7, 128.2 (q, ²*J*_{CF} = 32.4 Hz), 128.0, 127.9, 127.5, 127.3, 125.2 (q, ³*J*_{CF} = 3.8 Hz), 124.4 (q, ¹*J*_{CF} = 272.8 Hz), 121.6, 116.4, 54.8, 35.7, 32.9, 29.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.24. HRMS (positive ESI): [M+H]⁺ calcd for C₂₇H₂₄F₃N₂O 449.1835, found 449.1837.

5-([1,1'-biphenyl]-4-yl)-2-phenyl-N-(quinolin-8-yl)pentanamide (3di)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3di** as a pale yellow oil (42.9 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.77 (d, *J* = 7.5 Hz, 1H), 8.70 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.07 (dd, *J* = 1.4, 8.3 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.52 – 7.42 (m, 6H), 7.42 – 7.33 (m, 5H), 7.32 – 7.24 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 3.72 (t, *J* = 7.5 Hz, 1H), 2.80 – 2.62 (m, 2H), 2.46 – 2.32 (m, 1H), 2.09 – 1.95 (m, 1H), 1.85 – 1.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 148.2, 141.3, 141.2, 139.8, 138.8, 138.4, 136.3, 134.5, 128.93, 128.89, 128.7, 128.1, 127.9, 127.38, 127.36, 127.1, 127.03, 127.00, 121.6, 121.5, 116.4, 55.0, 35.5, 33.1, 29.6. HRMS (positive ESI): [M+H]⁺ calcd for C₃₂H₂₉N₂O 457.2274, found 457.2272.

3-methyl-5-phenyl-N-(quinolin-8-yl)pentanamide (3eb)

Purified by preparative TLC on silica gel (dichloromethane/ethyl acetate = 120/1) to provide **3eb** as a yellow oil (36.3 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 8.85 – 8.75 (m, 2H), 8.13 (dd, J = 1.6, 8.3 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.43 (dd, J = 4.2, 8.3 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.22 – 7.12 (m, 3H), 2.81 – 2.57 (m, 3H), 2.45 – 2.34 (m, 1H), 2.32 – 2.18 (m, 1H), 1.87 – 1.73 (m, 1H), 1.68 – 1.53 (m, 1H), 1.12 (d, J = 6.6 Hz, 3H).

5-(4-methoxyphenyl)-3,3-dimethyl-N-(quinolin-8-yl)pentanamide (3fa)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3fa** as a yellow oil (27.5 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.82 – 8.75 (m, 2H), 8.15 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.56 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.16 – 7.09 (m, 2H), 6.83 – 6.77 (m, 2H), 3.76 (s, 3H), 2.70 – 2.61 (m, 2H), 2.50 (s, 2H), 1.77 – 1.71 (m, 2H), 1.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 157.7, 148.2, 138.4, 136.4, 135.0, 134.6, 129.3, 128.0, 127.4, 121.6, 121.4, 116.4, 113.8, 55.3, 50.1, 44.9, 34.0, 30.0, 27.6. HRMS (positive ESI): [M+H]⁺ calcd for C₂₃H₂₇N₂O₂ 363.2067, found 363.2072.

2-methyl-3,5-diphenyl-N-(quinolin-8-yl)pentanamide (3gb)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3gb** as a yellow oil (30.8 mg, 39%). ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 8.65 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.54 (dd, *J* = 2.1, 6.9 Hz, 1H), 8.02 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.41 – 7.29 (m, 3H), 7.25 – 7.19 (m, 2H), 7.19 – 7.10 (m, 4H), 7.10 – 6.95 (m, 4H), 3.04 – 2.93 (m, 1H), 2.81 – 2.71 (m, 1H), 2.44 – 2.27 (m, 2H), 2.23 – 2.12 (m, 1H), 2.01 – 1.87 (m, 1H), 1.32 (d, *J* = 6.8 Hz, 3H).

5-(4-methoxyphenyl)-*N*-(quinolin-8-yl)hexanamide (3ha)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 12/1) to provide **3ha** as a brown solid (35.5 mg, 51%), mp = 72-74 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.75 (s, 1H), 8.82 – 8.74 (m, 2H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.1, 8.1 Hz, 1H), 7.12 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.2 Hz, 2H), 3.77 (s, 3H), 2.75 – 2.69 (m, 1H), 2.55 – 2.48 (m, 2H), 1.83 – 1.74 (m, 1H), 1.72 – 1.64 (m, 3H), 1.25 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 157.8, 148.1, 139.4, 138.3, 136.4, 134.6, 128.0, 127.8, 127.5, 121.6, 121.3, 116.4, 113.8, 55.2, 39.1, 38.2, 38.1, 23.9, 22.5. HRMS (positive ESI): [M+H]⁺ calcd for C₂₂H₂₅N₂O₂ 349.1911, found 349.1922.

5-phenyl-*N*-(quinolin-8-yl)hexanamide (3hb)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 12/1) to provide **3hb** as a yellow oil (29.3 mg, 46%). ¹H NMR (600 MHz, CDCl₃) δ 9.76 (s, 1H), 8.82 – 8.74 (m, 2H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.44 (dd, *J* = 4.1, 8.0 Hz, 1H), 7.30 – 7.24 (m, 2H), 7.23 – 7.14 (m, 3H), 2.80 – 2.72 (m, 1H), 2.55 – 2.47 (m, 2H), 1.85 – 1.76 (m, 1H), 1.75 – 1.61 (m, 3H), 1.28 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 147.3, 138.3, 136.4, 134.5, 128.4, 128.0, 127.5, 127.0, 126.0, 121.6, 121.3, 116.4, 39.9, 38.2, 37.9, 23.9, 22.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₃N₂O 319.1805, found 319.1807.

5-([1,1'-biphenyl]-4-yl)-N-(quinolin-8-yl)hexanamide (3hi)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 12/1) to provide **3hi** as a brown oil (34.7 mg, 44%). ¹H NMR (600 MHz, CDCl₃) δ 9.77 (s, 1H), 8.80 – 8.73 (m, 2H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.47 (m, 4H), 7.45 – 7.39 (m, 3H), 7.33 – 7.24 (m, 3H), 2.86 – 2.77 (m, 1H), 2.58 – 2.51 (m, 2H), 1.90 – 1.80 (m, 1H), 1.80 – 1.68 (m, 3H), 1.31 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 146.4, 141.2, 138.9, 138.3, 136.4, 134.5, 128.7, 128.0, 127.5, 127.4, 127.2, 127.02, 126.96, 121.6, 121.4, 116.4, 39.6, 38.2, 37.9, 23.9, 22.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₇H₂₇N₂O 395.2118, found 395.2131.

5-(4-methoxyphenyl)-N-(quinolin-8-yl)heptanamide (3ia)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 25/1) to provide **3ia** as a yellow oil (47.1 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 8.82 – 8.72 (m, 2H), 8.14 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.44 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.10–7.02 (m, 2H), 6.87 – 6.78 (m, 2H), 3.77 (s, 3H), 2.52 – 2.38 (m, 3H), 1.83 – 1.57 (m, 5H), 1.57 – 1.46 (m, 1H), 0.76 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.7,

157.8, 148.1, 138.3, 137.4, 136.4, 134.6, 128.6, 127.9, 127.5, 121.6, 121.3, 116.4, 113.7, 55.2, 46.9, 38.3, 36.2, 29.8, 23.9, 12.2. HRMS (positive ESI): $[M+H]^+$ calcd for $C_{23}H_{27}N_2O_2$ 363.2067, found 363.2070.

5-phenyl-N-(quinolin-8-yl)heptanamide (3ib)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ib** as a yellow oil (47.9 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 8.80 – 8.73 (m, 2H), 8.12 (dd, *J* = 1.6, 8.3 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.41 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.19 – 7.13 (m, 3H), 2.56 – 2.41 (m, 3H), 1.87 – 1.50 (m, 6H), 0.77 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 148.1, 145.4, 138.3, 136.4, 134.5, 128.3, 128.0, 127.4, 127.5, 126.0, 121.6, 121.4, 116.4, 47.8, 38.3, 36.1, 29.7, 23.9, 12.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₂H₂₅N₂O 333.1961, found 333.1964.

5-(3-methoxyphenyl)-N-(quinolin-8-yl)heptanamide (3in)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3in** as a brown oil (47.1 mg, 65%). ¹H NMR (600 MHz, CDCl₃) δ 9.74 (s, 1H), 8.81 – 8.73 (m, 2H), 8.15 (dd, *J* = 1.3, 8.2 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.44 (dd, *J* = 4.2, 8.2 Hz, 1H), 7.22 – 7.17 (m, 2H), 6.77 (d, *J* = 7.5 Hz, 1H), 6.73 – 6.70 (m, 2H), 3.78 (s, 3H), 2.50 (t, *J* = 7.1 Hz, 2H), 2.47 – 2.42 (m, 1H), 1.82 – 1.52 (m, 6H), 0.78 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 159.6, 148.1, 147.2, 138.4, 136.4, 134.6, 129.2, 127.9, 127.4, 121.6, 121.3, 120.3, 116.4, 113.6, 110.9, 55.1, 47.9, 38.3, 36.0, 29.6, 23.9, 12.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₃H₂₇N₂O₂ 363.2067, found 363.2073.

5-cyclohexyl-5-(4-methoxyphenyl)-*N*-(quinolin-8-yl)pentanamide (3ja)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3ja** as a yellow oil (55.8 mg, 67%). ¹H NMR (600 MHz, CDCl₃) δ 9.72 (s, 1H), 8.81 – 8.73 (m, 2H), 8.17 – 8.13 (m, 1H), 7.54 – 7.47 (m, 2H), 7.45 (dd, J = 4.2, 8.2 Hz, 1H), 7.03 (d, J

= 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 3.77 (s, 3H), 2.53 – 2.42 (m, 2H), 2.35 – 2.29 (m, 1H), 1.94 – 1.83 (m, 2H), 1.71 – 1.56 (m, 6H), 1.47 – 1.37 (m, 2H), 1.24 – 1.14 (m, 1H), 1.14 – 0.99 (m, 2H), 0.94 – 0.84 (m, 1H), 0.80 – 0.71 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 171.8, 157.7, 148.1, 138.4, 136.4, 136.2, 134.6, 129.3, 128.0, 127.5, 121.6, 121.3, 116.4, 113.4, 55.2, 51.2, 43.3, 38.3, 32.3, 31.5, 30.9, 26.61, 26.55, 24.1. HRMS (positive ESI): [M+H]⁺ calcd for C₂₇H₃₃N₂O₂ 417.2537, found 417.2538.

5-cyclohexyl-5-phenyl-*N*-(quinolin-8-yl)pentanamide (3jb)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 20/1) to provide **3jb** as a yellow oil (43.3 mg, 56%). ¹H NMR (600 MHz, CDCl₃) δ 9.72 (s, 1H), 8.81 – 8.72 (m, 2H), 8.15 (d, *J* = 8.1 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.46 – 7.43 (m, 1H), 7.29 – 7.23 (m, 2H), 7.19 – 7.10 (m, 3H), 2.53 – 2.42 (m, 2H), 2.39 – 2.33 (m, 1H), 1.97 – 1.87 (m, 2H), 1.74 – 1.65 (m, 2H), 1.62 – 1.55 (m, 4H), 1.50 – 1.39 (m, 2H), 1.24 – 1.15 (m, 1H), 1.14 – 1.00 (m, 2H), 0.96 – 0.86 (m, 1H), 0.82 – 0.73 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 148.1, 144.2, 138.4, 136.4, 134.6, 128.6, 128.0, 127.9, 127.5, 125.8, 121.54, 121.3, 116.4, 52.1, 43.2, 38.3, 32.2, 31.4, 31.0, 26.6, 26.5, 24.1. HRMS (positive ESI): [M+H]⁺ calcd for C₂₆H₃₁N₂O 387.2431, found 387.2438.

5-(4-chlorophenyl)-5-cyclohexyl-N-(quinolin-8-yl)pentanamide (3jd)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3jd** as a pale yellow oil (53.1 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 8.77 (dd, *J* = 1.6, 4.2 Hz, 1H), 8.76 – 8.71 (m, 1H), 8.14 (dd, *J* = 1.2, 8.2 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.43 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.08 – 7.02 (m, 2H), 2.55 – 2.39 (m, 2H), 2.39 – 2.29 (m, 1H), 1.97 – 1.82 (m, 2H), 1.78 – 1.51 (m, 6H), 1.47 – 1.35 (m, 2H), 1.28 – 1.12 (m, 1H), 1.12 – 0.98 (m, 2H), 0.94 – 0.81 (m, 1H), 0.80 – 0.66 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 148.1, 142.7, 138.3, 136.4, 134.5, 131.5, 129.8, 128.2, 127.9, 127.4, 121.6, 121.4, 116.4, 51.6, 43.2, 38.2, 32.1, 31.4, 30.9, 26.52, 26.46, 24.0. HRMS (positive ESI): [M+H]⁺ calcd for C₂₆H₃₀ClN₂O 421.2041, found 421.2044.

5-cyclohexyl-N-(quinolin-8-yl)-5-(4-(trifluoromethyl)phenyl)pentanamide (3jg)

Purified by preparative TLC on silica gel (petroleum ether/ethyl acetate = 15/1) to provide **3jg** as a pale yellow oil (59.9 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 8.80 – 8.70 (m, 2H), 8.13 (dd, *J* = 1.1, 8.2 Hz, 1H), 7.54 – 7.45 (m, 4H), 7.43 (dd, *J* = 4.2, 8.3 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 2.56 – 2.39 (m, 3H), 2.00 – 1.85 (m, 2H), 1.76 – 1.65 (m, 2H), 1.64 – 1.42 (m, 5H), 1.41 – 1.34 (m, 1H), 1.28 – 1.14 (m, 1H), 1.13 – 0.98 (m, 2H), 0.97 – 0.84 (m, 1H), 0.81 – 0.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 148.5, 148.1, 138.3, 136.4, 134.5, 128.8, 128.2 (q, ²*J*_{CF} = 32.3 Hz), 128.0, 127.4, 125.0 (q, ³*J*_{CF} = 3.8 Hz), 124.4 (q, ¹*J*_{CF} = 272.9 Hz), 121.6, 121.4, 116.4, 52.2, 43.1, 38.2, 32.0, 31.3, 31.0, 26.49, 26.47, 26.42, 24.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.15. HRMS (positive ESI): [M+H]⁺ calcd for C₂₇H₃₀F₃N₂O 455.2305, found 455.2304.

N-(quinolin-8-yl)pentanamide (5a)

¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.84 – 8.75 (m, 2H), 8.16 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.45 (dd, *J* = 8.3, 4.2 Hz, 1H), 2.57 (t, *J* = 7.5 Hz, 2H), 1.87 – 1.76 (m, 2H), 1.53 – 1.40 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

2.4 Scale-up Reaction and Removal of Directing Group

Scale-up reaction:

Procedure for scale-up reaction: To a 150 mL pressure tube **1a** (5.0 mmol, 1.31 g), **2b** (7.5 mmol, 1.53 g), $Pd(OAc)_2$ (5 mol%, 56.1 mg), K_3PO_4 (7.5 mmol, 1.59 g) and EtOH (25 mL) were added sequentially. The reaction was stirred in a *pre*-warmed 100 °C oil bath for 8 hours under air. Then the reaction was quenched with ethyl acetate and filtered through a pad of celite. The filtrate was concentrated and purified by preparative TLC on silica gel plates (petroleum ether/ethyl acetate = 20/1) to give the desired product **3ab** (995.1 mg, 65%).

Removal of directing group:

Procedure for removal of directing group (taking **3ab** as an example): To a 150 mL pressure tube were added a suitable size magnet, **3ab** (1.0 mmol, 304.4 mg), sodium hydroxide (15.0 mmol, 600 mg), ethanol (20 mL) sequentially. The reaction was stirred vigorously in a pre-warmed 130 °C oil bath for 13 hours under air. After completion of the reaction, the reaction mixture was cooled to room temperature. Aqueous sodium hydroxide solution (20 mL, 1M) and dichloromethane (20 mL) were added to the mixture, and then transferred to a separating funnel to carry out liquid separation. The aqueous phase was separated and the organic phase was extracted with sodium hydroxide (1M, 15 mL, \times 3). All aqueous phases were combined and then washed with 20 mL of dichloromethane. The aqueous phase was then acidified to pH = 1 with hydrochloric acid (1M). The acidified aqueous phase was extracted with ethyl acetate (20 mL, \times 3), and the organic phases were combined and washed once with 20 mL of brine. The organic phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure to afford 5-phenylpentanoic acid 4 (157.1 mg, 88%).

2.5 Studies on Mechanism

To a 35 mL pressure tube **1k** (0.20 mmol, 60.5 mg), $Pd(OAc)_2$ (5.0 mol%, 2.2 mg), K_3PO_4 (0.30 mmol, 63.7 mg) and EtOH (1.0 mL) were added sequentially. The reaction was stirred in a *pre*-warmed 100 °C oil bath for 8 hours. Then the reaction was quenched with ethyl acetate and filtered through a pad of celite. The filtrate was concentrated and purified by preparative TLC on silica gel plates (petroleum ether/ethyl acetate = 15/1), affording **3ab** (9.7 mg, 16%).

Deuteration experiments:

To a 35 mL pressure tube **1a** (0.2 mmol, 45.3 mg), 2b (0.3 mmol, 61.2 mg), Pd(OAc)₂ (5 mol%, 2.2 mg), K₃PO₄ (0.3 mmol, 63.7 mg) and D-labeling solvent (1.0 mL) were added sequentially. The reaction was stirred in a *pre*-warmed 100 °C oil bath for 8 hours. Then the reaction was quenched with ethyl acetate and filtered through a pad of celite. The filtrate was concentrated and purified by preparative TLC on silica gel plates (petroleum ether/ethyl acetate = 15/1), affording compound **3ab-D** (CH₃CH₂OD) which was partially deuterated at the α -position in 71% isolated yield or **3ab-D** (CD₃CD₂OD) which was partially deuterated at both the α - and γ -positions in 55% isolated yield. The products from deuteration experiments were confirmed by ¹H NMR.

2.00×1 0.23×1 2.05¥ 1.39Å 2.07-I 2.28¥ 1.05¥ 2.25⋠ 2.90∱ 7.5 5.5 5.0 fl (ppm) 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

0.0

2.6 Crystal Reports for 3ai

Figure S1. Molecular structure of 3ai. Hydrogen atoms are omitted for clarity.

Crystals of **3ai** (CCDC 1914045) were obtained by recrystallization from petroleum ether/ethyl acetate at ambient temperature. The data were collected on a Xcalibur, Eos, Gemini diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å). The structure was solved by direct methods using the SHELXS-97 program, and all non-hydrogen atoms were refined anisotropically on F^2 by the full-matrix least-squares technique, which used the SHELXL-97 crystallographic software package. The hydrogen atoms were included but not refined.

	3ai
Empirical formula	$C_{26}H_{24}N_2O$
Formula weight	380.47
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	6.05095(10)
b/Å	8.47658(13)
c/Å	40.4530(7)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2074.89(6)
Z	4
$ ho_{ m calc}g/cm^3$	1.218
μ/mm^{-1}	0.579

Table S6 Summary of crystal structure determination for 3ai

F(000)	808.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.744 to 141.778
Index ranges	$-7 \le h \le 4, -10 \le k \le 10, -49 \le l \le 47$
Reflections collected	15538
Independent reflections	3974 [$R_{int} = 0.0287$, $R_{sigma} = 0.0207$]
Data/restraints/parameters	3974/0/262
Goodness-of-fit on F^2	1.035
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0529, wR_2 = 0.1471$
Final R indexes [all data]	$R_1 = 0.0596, wR_2 = 0.1565$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.19

Table S7 Bond lengths (Å) for compound 3ai

	Length/Å		Length/Å
C1-C2	1.518(5)	C13-C14	1.372(6)
C1-N1	1.358(4)	C14-C15	1.347(7)
C1-O1	1.208(4)	C15-C16	1.354(7)
C2-C3	1.489(5)	C16-C17	1.403(6)
C3-C4	1.531(5)	C18-C19	1.392(5)
C4-C5	1.479(6)	C18-N2	1.317(4)
C5-C6	1.509(6)	C19-C20	1.364(5)
C6-C7	1.373(6)	C20-C21	1.404(5)
C6-C11	1.393(6)	C21-C22	1.418(4)
C7-C8	1.380(6)	C21-C26	1.414(5)
C8-C9	1.383(5)	C22-C23	1.436(4)
C9-C10	1.377(6)	C22-N2	1.363(4)
C9-C12	1.477(5)	C23-C24	1.368(4)
C10-C11	1.391(6)	C23-N1	1.393(4)
C12-C13	1.383(5)	C24-C25	1.409(5)
C12-C17	1.370(6)	C25-C26	1.343(6)

Table S8 Bond angles for 3ai

	Angle/ ^o		Angle/ ^o
N1-C1-C2	112.5(3)	C15-C14-C13	121.2(5)
01-C1C2	123.9(3)	C14-C15-C16	118.8(4)
01-C1-N1	123.6(3)	C15-C16-C17	120.7(5)
C3-C2-C1	116.2(3)	C12-C17-C16	121.0(5)
C2-C3-C4	113.1(3)	N2-C18-C19	124.0(3)
C5-C4-C3	113.9(3)	C20-C19-C18	118.9(3)
C4-C5-C6	113.9(4)	C19-C20-C21	119.9(3)
C7-C6-C5	120.2(4)	C20-C21-C22	117.0(3)
C7-C6-C11	117.5(4)	C20-C21-C26	124.2(3)
C11-C6-C5	122.1(4)	C26-C21-C22	118.8(3)
C6-C7-C8	121.6(4)	C21-C22-C23	119.5(3)
C7-C8-C9	121.4(4)	N2-C22-C21	122.5(3)
C8-C9-C12	120.6(3)	N2-C22-C23	118.0(2)
C10-C9-C8	117.2(4)	C24-C23-C22	119.4(3)
C10-C9-C12	122.1(3)	C24-C23-N1	125.8(3)
C9-C10-C11	121.7(4)	N1-C23-C22	114.8(2)
C10-C11-C6	120.4(4)	C23-C24-C25	119.7(3)
C13-C12-C9	121.4(3)	C26-C25-C24	122.4(3)
C17-C12-C9	122.1(4)	C25-C26- C21	120.1(3)
C17-C12-C13	116.5(4)	C1-N1-C23	129.1(2)
C14-C13-C12	121.8(4)	C18-N2-C22	117.7(3)

3. References

- M. Liu, P. Yang, M. K. Karunananda, Y. Wang, P. Liu and K. M. Engle, J. Am. Chem. Soc., 2018, 140, 5805.
- E. Larionov, M. Nakanishi, D. Katayev, C. Besnard and E. P. Kündig, *Chem. Sci.*, 2013, 4, 1995.
- 3. I. I. Strambeanu and M. C. White, J. Am. Chem. Soc., 2013, 135, 12032.
- 4. N. Duguet, A. M. Z. Slawin and A. D. Smith, Org. Lett., 2009, 11, 3858.
- 5. C. Wang, G. Xiao, T. Guo, Y. Ding, X. Wu and T.-P. Loh, *J. Am. Chem. Soc.*, 2018, **140**, 9332.
- 6. R. Brimioulle, A. Bauer and T. Bach, J. Am. Chem. Soc., 2015, 137, 5170.
- 7. K. Rode, M. Palomba, S. Ortgies, R. Rieger and A. Breder, Synthesis, 2018, 50, 3875.
- 8. F. V. Singh and T. Wirth, Org. Lett., 2011, 13, 6504.

4. NMR Spectra

S75

