Supporting Information

Accessing alkyl boronic esters via visible light-mediated decarboxylative addition reactions of redox active esters

Xianli Shu, Ruting Xu, Qiang Ma, Saihu Liao*

Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.

Table of Contents

1.	General information	S2
2.	Characterizations of redox-active esters and products	S7
3.	Reaction development	S20
4.	Mechanistic study	S24
5.	NMR spectra	\$29
6.	References	

1. General information

Unless otherwise specified, all reactions were carried out under an atmosphere of argon using standard Schlenk techniques at room temperature (r.t.). All reagents and solvents were obtained from commercial sources and were purified according to standard procedures before use. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished by flash chromatography on silica gel. The product spots on the thin layer chromatography (TLC) was identified/visualized by fluorescence quenching or by potassium permanganate, phosphomolybdic acid or dinitrophenylhydrazine staining. ¹H and ¹¹B NMR spectra were recorded on a Bruker Avance 400 (400 MHz and 128 MHz) spectrometer. ¹³C NMR spectra were recorded on a Bruker Avance 400 or a Bruker Avance 600 spectrometer operating at 101 MHz or 151MHz. Chemical shifts are referenced to residual undeuterated solvent (note: CDCl₃ referenced at 7.26 and 77.00 ppm respectively, CD₂Cl₂ at 5.32 ¹H NMR, at 53.84 ppm ¹³C NMR). Chemical shifts (δ) and coupling constants (*J*) are given in parts per million (ppm) and Hertz (Hz) respectively. The abbreviations of multiplicities: s = singlet, d = doublet, t = doublettriplet, dd = doublet of doublets, tt = triplet of triplets, br = broad, m = multiplet or unresolved, etc. High resolution mass spectra (HRMS) were recorded on Waters Micromass GCT Premier (EI) and Exactive Plus LC-MS (ESI) mass spectrometers. Gas Chromatography (GC) measurements were performed on a GCMS-QP2010SE from SHIMADZU.

General procedure for synthesis of Hantzsch ester analogues

Methyl Hantzsch ester and deuterated ethyl Hantzsch ester were synthesized according to the reported procedure.¹ An oven-dried round bottom flask was charged with paraformaldehyde (1 equiv.), ester (4 equiv.), ammonium acetate (2 equiv.) and water (0.4 - 0.5 M), then the resulting mixture was stirred at 85 °C until the reaction was complete. After about 3 hours, the reaction mixture was allowed to cool down to room temperature. The reaction mixture was filtered and sequentially washed with water and EtOAc. The precipitate was dried in vacuo to get the desired product.

Dimethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (HE-1)

Following the general method, the reaction of paraformaldehyde (0.4 g, 12.48 mmol) and methyl acetoacetate (5.4 mL, 49.92 mmol) afforded methyl Hantzsch ester as a yellow solid (1.9 g, 69% yield). Spectral data are in accordance with those reported in the literature.² **¹H NMR** (400 MHz, CDCl₃): δ 5.15 (br. s, 1H), 3.70 (s, 6H), 3.27 (s, 2H), 2.19 (s, 6H) ppm.

Diethyl 2,6-diethyl-1,4-dihydropyridine-3, 5-dicarboxylate-4,4-d2 (D2-HE)

Following the general method, the reaction of deuterated D_2 -paraformaldehyde (0.1 g, 3.12 mmol) and ethyl acetoacetate (1.6 mL, 12.48 mmol) afforded deuterated ethyl Hantzsch ester as a yellow solid (0.6 g, 75% yield). Spectral data are in accordance with those reported in the

literature.³

¹**H** NMR (400 MHz, CDCl₃): δ 5.24 (br. s, 1H), 4.16 (q, *J* = 7.1 Hz, 4H), 2.18 (s, 6H), 1.27 (t, *J* = 6.8Hz, 6H) ppm.

The *t*-Butyl Hantzsch ester was synthesized according to the reported procedure.⁴ An oven dried round Schlenk flask was charged with paraformaldehyde (1 equiv.), ester (2 equiv.) and ammonium acetate (1.5 equiv.), then the mixture was stirred at 85 °C under argon atmosphere. After 30 min, some cold water was added to the solid crude product. The precipitate was filtered and recrystallized from methanol to get the desired product.

Di-tert-butyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (HE-3)

Following the general method, the reaction of paraformaldehyde (0.15 g, 4.99 mmol) and *tert*-butyl-acetoacetate (1.6 mL, 9.98 mmol) afforded *t*-Butyl Hantzsch ester as a yellow solid (0.72 g, 47% yield). Spectral data are in accordance with those reported in the literature.⁴ **¹H NMR** (400 MHz, CDCl₃): δ 4.98 (br. s, 1H), 3.14 (s, 2H), 2.14 (s, 6H), 1.47 (s, 18H) ppm.

General procedure for synthesis of NHPI redox-active esters

NHPI redox-active esters were prepared according to the known procedures.⁵ In a round bottom flask equipped with a stir bar was charged with carboxylic acid (1.0 equiv.), *N*-hydroxyphthalimide (1.1 equiv.), and DMAP (0.1 equiv.). Dichloromethane (DCM) was added (0.1 – 0.2 M), and the mixture was stirred vigorously followed by DCC (1.1 equiv.). The mixture was then allowed to stir for 0.5 - 12 hours until the acid was completely consumed (checked by TLC). The mixture was filtered through thin pads of Celite or silica

gel, and then rinsed with DCM. The filtrate was collected, and the solvent was removed under reduced pressure. Purification of the resulting residue by column chromatography or recrystallization afforded the corresponding NHPI redox-active ester products.⁵⁻¹³

General procedure A for the decarboxylative borylation of redox-active ester

Under argon, to an oven-dried Schlenk tube (10 mL) equipped with a stir bar, was added NHPI redox-active ester (0.2 mmol, 1 equiv.), Eosin Y-Na₂ (6.9 mg, 0.01 mmol, 0.05 equiv.), and HE-1 or HE-2 (0.4 mmol, 2 equiv.), followed by the addition of dry DMF (2 mL) and vinyl boronic acid pinacol ester (102 μ L, 0.6 mmol, 3 equiv.). The reaction mixture was then degassed by three freeze-pump-thaw cycles. The Schlenk tube was then backfilled with argon. The reaction mixture was stirred at room temperature for 24 hours under the irradiation of 2 × 18W blue LED bulbs (at approximately 3 cm away from the light sources, ca. 25 °C). The resulting mixture was dissolved in EtOAc (12 mL for 0.2 mmol scale) and washed with saturated NaCl (3 × 12 mL for 0.2 mmol scale). The combined aqueous layers were extracted with EtOAc (12 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered before removal of the solvent by rotavapor. The product was purified by flash chromatography (SiO₂, PE : EA = 32 : 1 to 5 : 1) to give the corresponding pure product.

General procedure B: the one-opt procedure for the synthesis of amino boronic ester

To a 10-mL oven-dried round bottom flask was charged with amino acid (0.3 mmol, 1.0

equiv.), N-hydroxyphthalimid (53.8 mg, 0.33 mmol, 1.1 equiv.) and DMAP (3.7 mg, 0.03 mmol, 0.1 equiv.). Dichloromethane was added (3 mL, 0.1 M), and the mixture was stirred vigorously. DCC (68.1 mg, 0.33 mmol, 1.1 equiv.) was then added and the mixture allowed to stir until the acid was completely consumed (determined by TLC). The crude reaction mixture was concentrated under reduced pressure. The residue was dissolved in DMF (3 mL), and transferred into an oven-dried Schlenk tube (10 mL) under argon. Eosin Y-Na₂ (10.4 mg, 0.015 mmol, 0.05 equiv.), HE-1 (135.1 mg, 0.6 mmol, 2 equiv.), and vinyl boronic acid pinacol ester (153 µL, 0.9 mmol, 3 equiv.) were added. The reaction mixture was then degassed by three freeze-pump-thaw cycles, and backfilled with argon. The reaction mixture was stirred at room temperature for 24 h under the irradiation of $2 \times 18W$ blue LED bulbs (at approximately 3 cm away from the light sources, ca. 25 °C). The resulting mixture was dissolved in EtOAc (18 mL for 0.3 mmol scale) and washed with saturated NaCl (3×18 mL for 0.3 mmol scale). The combined aqueous layers were extracted with EtOAc (18 mL). The combined organic layers were dried over anhydrous Na2SO4 and filtered before removal of the solvent by rotavapor. The product was purified by flash chromatography (SiO₂, PE : EA = 18:1 to 3:1) to give the corresponding pure product.

2. Characterizations of redox-active esters and products

Compound 6s: 91% yield, white solids.

¹**H NMR** (400 MHz, CDCl₃): δ 7.89 – 7.87 (m, 2H), 7.79 – 7.77 (m, 2H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.3 Hz, 1H), 7.25 – 7.18 (m, 2H), 3.21 (t, *J* = 7.7 Hz, 2H), 3.01 (t, *J* = 7.7 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 168.7, 161.8, 136.7, 134.7, 133.9, 130.6, 129.6, 128.8, 128.3, 127.1, 123.9, 30.7, 28.6 ppm;

HRMS (**ESI**+): [M+Na]⁺ Calc. for C₁₇H₁₂ClNO₄: 334.0686; found: 334.0686.

3¹⁴

Compound 3: 81% yield (According to General procedure A), colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.28 – 7.24 (m, 2H), 7.18 – 7.14 (m, 3H), 2.61 (t, *J* = 7.5 Hz, 2H), 1.67 – 1.59 (m, 2H), 1.51 – 1.43 (m, 2H), 1.24 (s, 12H), 0.81 (t, *J* = 7.8 Hz, 2H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ 143.0, 128.4, 128.2, 125.5, 82.9, 35.8, 34.2, 24.8, 23.8 11.3 (br., C–B) ppm.

4¹⁵

Compound 4: 56% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.09 (d, *J* = 8.0 Hz, 2H), 6.81 (d, *J* = 7.9 Hz, 2H), 3.78 (s, 3H), 2.61 – 2.53 (m, 2H), 1.63 – 1.56 (m, 2H), 1.49 –1.42 (m, 2H), 1.24 (s, 12H), 0.81 (t, *J* = 7.8 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 157.5, 135.0, 129.2, 113.6, 82.9, 55.2, 34.8, 34.4, 24.8, 23.7, 11.0 (br., C–B) ppm.

Compound 5: 59% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 (d, *J* = 7.0 Hz, 2H), 7.04 (d, *J* = 7.3 Hz, 2H), 2.55 (t, *J* = 7.5 Hz, 2H), 1.63 – 1.55 (m, 2H), 1.48 – 1.40 (m, 2H), 1.24 (s, 12H), 0.80 (t, *J* = 7.7 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 141.8, 131.2, 130.2, 119.2, 82.9, 35.1, 33.9, 24.8, 23.6, 11.1 (br., C–B) ppm.

Compound 6: 58% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.31 (d, *J* = 7.7 Hz, 1H), 7.21 – 7.08 (m, 3H), 2.71 (t, *J* = 7.6 Hz, 2H), 1.66 – 1.58 (m, 2H), 1.54 – 1.47 (m, 2H), 1.24 (s, 12H), 0.83 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 140.4, 133.9, 130.3, 129.3, 127.0, 126.6, 82.9, 33.5, 32.4, 24.8, 23.9, 10.9 (br., C–B) ppm;

¹¹**B** NMR (128 MHz, CDCl₃): δ 34.2 (br. s, 1B) ppm;

HRMS (**ESI**+): Calcd. for C₁₆H₂₅BClO₂ [M+H]⁺: 295.1631; found: 295.1630.

Compound 7: 62% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 3.39 (t, J = 6.8 Hz, 2H), 1.87 – 1.79 (m, 2H), 1.40 – 1.38 (m,

4H), 1.33 – 1.29 (m, 4H), 1.24 (s, 12H), 0.76 (t, *J* = 7.7 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 82.9, 34.0, 32.8, 32.1, 28.5, 28.1, 24.8, 23.9 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole;

¹¹**B NMR** (128 MHz, CDCl₃): δ 34.3 (br. s, 1B) ppm;

HRMS (**ESI**+): Calcd. for C₁₃H₂₆BBrNaO₂[M+Na]⁺: 327.1101; found: 327.1101.

Compound 8: 51% yield (According to General procedure A), colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.65 (s, 3H), 2.29 (t, J = 7.4 Hz, 2H), 1.66 – 1.57 (m, 2H), 1.46 – 1.38 (m, 2H), 1.35 – 1.25 (m, 2H), 1.23 (s, 12H), 0.77 (t, J = 7.6 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 174.3, 82.9, 51.4, 34.1, 31.8, 24.82, 24.80, 23.6 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole.

9¹⁸

Compound 9: 61% yield (According to General procedure A), colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 2.19 – 2.15 (m, 2H), 1.94 – 1.90 (m, 1H), 1.56 – 1.49 (m, 2H), 1.44 – 1.35 (m, 4H), 1.24 (s, 12H), 0.78 (t, *J* = 7.0 Hz, 2H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ 84.8, 82.9, 68.0, 31.5, 28.3, 24.8, 23.5, 18.3 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole.

Compound **10**: 52% yield (According to General procedure A with isopropenylboronic acid pinacol ester (3 equiv.)), colorless oil.

¹**H NMR** (400 MHz, CD₂Cl₂): δ 7.25 (t, *J* = 7.3 Hz, 2H), 7.20 – 7.12 (m, 3H), 2.58 (t, *J* = 7.9 Hz, 2H), 1.67 – 1.57 (m, 2H), 1.49 – 1.40 (m, 1H), 1.36 – 1.28 (m, 1H), 1.20 (s, 12H), 1.03 – 0.95 (m, 1H), 0.93 (d, *J* = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CD₂Cl₂): δ 143.5, 128.8, 128.5, 125.9, 83.2, 36.5, 33.4, 31.2, 25.0, 24.9, 15.7 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole;
¹¹B NMR (128 MHz, CD₂Cl₂): δ 34.3 (br. s, 1B) ppm.

12¹⁹

Compound 12: 85% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 1.74 – 1.60 (m, 5H), 1.31 – 1.26 (m, 2H), 1.24 (s, 12H), 1.23 – 1.02 (m, 4H), 0.87 – 0.82 (m, 2H), 0.77 – 0.73 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 82.8, 39.9, 33.0, 31.4, 26.8, 26.8, 24.8 ppm. The signal of α -B-carbon was not detected due to the boron quadrupole.

Compound 13: 65% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 1.76 – 1.65 (m, 3H), 1.62 – 1.45 (m, 4H), 1.43 – 1.37 (m, 2H), 1.24 (s, 12H), 1.11 – 1.03 (m, 2H), 0.77 (t, *J* = 8.2 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 82.8, 42.6, 32.3, 30.2, 25.2, 24.8 ppm. The signal of α -B-carbon was not detected due to the boron quadrupole.

14

Compound **14**: 62% yield (According to General procedure A), colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 2.22 – 2.15 (m, 1H), 2.04 – 1.96 (m, 2H), 1.83 – 1.74 (m, 2H), 1.61 – 1.53 (m, 2H), 1.50 – 1.44 (m, 2H), 1.24 (s, 12H), 0.68 – 0.64 (m, 2H) ppm; ¹³C **NMR** (101 MHz, CDCl₃): δ 82.8, 38.3, 31.0, 27.9, 24.8, 18.1, 8.2 (br., C–B) ppm; ¹¹**B NMR** (128 MHz, CDCl₃): δ 34.2 (br. s, 1B) ppm; **HRMS** (**ESI**+): Calcd. for C₁₂H₂₄BO₂ [M+H]⁺: 211.1864; found: 211.1864.

Compound 15: 72% yield (According to General procedure A), colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 4.05 (br., 2H), 2.64 (t, *J* = 12.7 Hz, 2H), 1.65 – 1.58 (m, 3H), 1.44 (s, 9H), 1.39 – 1.31 (m, 2H), 1.24 (s, 12H), 1.10 – 0.96 (m, 2H), 0.76 (t, *J* = 8.0 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 155.0, 83.0, 79.1, 44.3 (br.), 38.2, 31.8, 30.5, 28.5, 24.8 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole;

¹¹**B NMR** (128 MHz, CDCl₃): δ 34.5 (br. s, 1B) ppm;

HRMS (ESI+): Calcd. for C₁₈H₃₄BNNaO₄[M+Na]⁺: 362.2473; found: 362.2473.

16

Compound 16: 75% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 1.39 – 1.32 (m, 2H), 1.28 – 1.14 (m, 9H), 1.24 (s, 12H), 0.87

(t, J = 6.2 Hz, 3H), 0.82 (t, J = 6.9 Hz, 3H), 0.74 – 0.70 (m, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 82.8, 40.9, 32.4, 29.0, 27.1, 25.4, 24.8, 23.1, 14.1, 10.9, 7.9 (br., C–B) ppm;

¹¹**B NMR** (128 MHz, CDCl₃): δ 34.3 (br. s, 1B) ppm;

HRMS (ESI+): Calcd. for C₁₅H₃₂BO₂ [M+H]⁺: 255.2490; found: 255.2489.

Compound 17: 73% yield (According to General procedure A), colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 1.92 (s, 3H), 1.68 (d, J = 11.5 Hz, 3H), 1.60 (d, J = 11.7 Hz,

3H), 1.42 (s, 6H), 1.24 (s, 12H), 1.19 – 1.14 (m, 2H), 0.70 – 0.65 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 82.8, 41.9, 38.1, 37.3, 32.6, 28.8, 24.8, 3.4 (br., C–B) ppm.

18²⁰

Compound 18: 65% yield (According to General procedure A), colorless oil.

¹**H** NMR (400 MHz, CDCl₃): δ 1.31 – 1.27 (m, 2H), 1.24 (s, 12H), 0.84 (s, 9H), 0.71 (t, *J* = 8.0 Hz, 2H) ppm;

8.0 HZ, 2H) ppin;

¹³C NMR (101 MHz, CDCl₃): δ 82.9, 37.7, 30.8, 28.9, 24.8, 5.7 (br., C–B) ppm.

Compound 19: 76% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 1.43 – 1.35 (m, 2H), 1.31 – 1.25 (m, 32H), 1.24 (s, 12H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.76 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 82.8, 32.4, 31.9, 29.70 – 29.65 (10C), 29.6, 29.42, 29.36, 24.8, 24.0, 22.7, 14.1 ppm. The signal of α -B-carbon was not detected due to the boron quadrupole;

¹¹**B NMR** (128 MHz, CDCl₃): δ 34.2 (br. s, 1B) ppm;

HRMS (ESI+): Calcd. for C₂₅H₅₂BO₂ [M+H]⁺: 395.4055; found: 395.4053.

Compound **20**: 66% yield (According to General procedure A), colorless oil. **¹H NMR** (400 MHz, CDCl₃): δ 5.38 – 5.31 (m, 2H), 2.03 – 1.98 (m, 4H), 1.43 – 1.25 (m, 26H), 1.24 (s, 12H), 0.88 (t, *J* = 6.9 Hz, 3H), 0.76 (t, *J* = 7.6 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 129.92, 129.88, 82.8, 32.4, 31.9, 29.80 (2C), 29.77, 29.69, 29.55 (2C), 29.52, 29.4, 29.3, 27.2 (2C), 24.8, 24.0, 22.7, 14.1 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole;

¹¹**B NMR** (128 MHz, CDCl₃): δ 34.0 (br. s, 1B) ppm;

HRMS (ESI+): Calcd. for C₂₅H₅₀BO₂ [M+H]⁺: 393.3898; found: 393.3898.

Compound 21: 72% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.00 (d, *J* = 7.3 Hz, 1H), 6.65 (d, *J* = 7.4 Hz, 1H), 6.62 (s, 1H), 3.90 (t, *J* = 6.4 Hz, 2H), 2.31 (s, 3H), 2.18 (s, 3H), 1.78 – 1.71 (m, 2H), 1.38 – 1.32 (m, 4H), 1.26 (s, 12H), 0.87 (s, 6H), 0.74 – 0.70 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 157.1, 136.4, 130.2, 123.6, 120.5, 112.0, 82.9, 68.7, 37.5, 35.5, 33.0, 26.6, 24.8, 24.3, 21.4, 15.8, 5.2 (br., C–B) ppm.

Compound 22: 48% yield (According to General procedure A), white semi-solid.

¹**H** NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.43 – 7.34 (m, 1H), 3.00 (t, J = 7.4 Hz, 2H), 1.82 – 1.72 (m, 2H), 1.57 – 1.50 (m, 2H), 1.24 (s, 12H), 0.90 – 0.80 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 200.2, 145.5, 140.0, 135.8, 128.9, 128.7, 128.1, 127.3, 127.2, 83.0, 38.6, 27.1, 24.8, 23.9 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole;

¹¹**B** NMR (128 MHz, CDCl₃): δ 34.5 (br. s, 1B) ppm;

HRMS (ESI+): Calcd. for C₂₃H₂₉BNaO₃ [M+Na]⁺: 387.2102; found: 387.2101.

Compound 23: 67% yield (According to General procedure A), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.18 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.88 (s, 1H), 2.91 – 2.78 (m, 3H), 2.26 (d, *J* = 11.9 Hz, 1H), 1.84 – 1.76 (m, 1H), 1.73 – 1.68 (m, 1H), 1.65 – 1.55 (m, 2H), 1.45 (s, 1H), 1.42 – 1.33 (m, 4H), 1.25 – 1.21 (m, 10H), 1.24 (s, 12H), 0.90 (s, 3H), 0.72 – 0.59 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 147.8, 145.3, 135.0, 126.8, 124.3, 123.7, 82.8, 47.0, 38.7, 37.7, 37.5, 36.4, 35.9, 33.4, 30.4, 25.3, 24.8, 23.98, 23.96, 20.4, 19.0, 18.5, 4.3 (br., C–B) ppm.

24¹⁹

Compound **24**: 82% yield (According to General procedure A), 78% yield (According to General procedure B), colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 3.78 – 3.59 (m, 1H), 3.48 – 3.21 (m, 2H), 1.94 – 1.64 (m, 5H), 1.45 (s, 9H), 1.39 – 1.29 (m, 1H), 1.23 (s, 12H), 0.73 – 0.68 (m, 2H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ 154.7, 83.0, 78.8, 59.1, 46.3, 29.7, 28.6, 28.3, 24.81, 24.78, 23.3, 7.6 (br., C–B) ppm.

Compound 23: 56% yield (According to General procedure B), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 – 7.26 (m, 5H), 5.14 – 5.08 (m, 2H), 3.86 – 3.74 (br. s, 1H), 3.51 – 3.30 (m, 2H), 1.97 – 1.62 (m, 5H), 1.47 – 1.38 (m, 1H), 1.22 (s, 12H), 0.76 – 0.64 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 155.1 + 154.8 (rotameric peaks), 137.2, 128.3, 127.7, 83.0, 66.4 + 66.3 (rotameric peaks), 59.7 + 59.0 (rotameric peaks), 46.6 + 46.2 (rotameric peaks), 29.9 + 29.1 (rotameric peaks), 28.5 + 27.8 (rotameric peaks), 24.8, 24.7, 23.6 + 23.0 (rotameric peaks), 7.6 (br., C–B) ppm.

Compound **26**: 24% yield (According to General procedure B), colorless oil. (The low isolated yield is due to the difficult separation from the pyridine by-product of Hantzsch ester by chromatography.)

¹**H NMR** (400 MHz, CDCl₃): δ 4.11 (s, 1H), 3.94 (d, *J* = 13.5 Hz, 1H), 2.76 (t, *J* = 12.8 Hz, 1H), 1.82 – 1.71 (m, 1H), 1.60 – 1.48 (m, 6H), 1.44 (s, 9H), 1.40 – 1.30 (m, 1H), 1.24 (s, 12H), 0.70 (t, *J* = 8.3 Hz, 2H) ppm;

¹³**C NMR** (151 MHz, CDCl₃): δ 155.2, 83.0, 78.9, 52.5 (br.), 38.6 (br.), 28.5, 28.0 (br.), 25.7, 24.8, 23.9, 19.0, 8.0 (br., C–B) ppm.

27¹⁹

Compound 27: 48% yield (According to General procedure B), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 4.72 + 4.35 (2 × br. s, 1H), 3.12 – 3.07 (m, 2H), 1.65 – 1.57 (m, 2H), 1.43 (s, 9H), 1.24 (s, 12H), 0.79 (t, *J* = 7.6 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 156.0, 83.2, 78.8, 42.6, 28.4, 24.8, 24.1, 8.4 (br., C–B) ppm.

Compound **28**: 73% yield (According to General procedure B), colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 4.5 (br. s, 1H), 3.62 – 3.43 (br. m, 1H), 1.59 – 1.45 (m, 2H), 1.42 (s, 9H), 1.24 (s, 12H), 1.09 (d, *J* = 6.1 Hz, 3H), 0.79 (t, *J* = 7.6 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 155.5, 83.1, 78.7, 48.4, 30.9, 28.4, 24.9, 24.8, 21.2, 7.8 (br., C–B) ppm.

Compound **29**: 65% yield (According to General procedure B), white waxy semi-solid. ¹**H NMR** (400 MHz, CDCl₃): δ 4.39 (d, J = 9.4 Hz, 1H) + 4.04 (br. s, 1H), 3.33 (tt, J = 9.5, 4.6 Hz, 1H) + 3.22 (br. s, 1H), 1.80 – 1.67 (m, 1H), 1.67 – 1.54 (m, 1H), 1.42 (s, 9H), 1.38 – 1.28 (m, 1H), 1.24 (s, 12H), 0.93 – 0.83 (m, 6H), 0.83 – 0.74 (m, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 156.0, 83.1, 78.6, 57.6, 32.1, 28.4, 25.9, 25.0, 24.8, 19.0, 17.8 ppm. The signal of α-B-carbon was not detected due to the boron quadrupole.

Compound 30: 61% yield (According to General procedure B), white solid.

¹**H** NMR (400 MHz, CDCl₃): δ (85:15 ratio of rotamers) 4.24 (d, J = 10.1 Hz, 0.85H), 3.97 (d, J = 10.3 Hz, 0.15H), 3.25 (t, J = 10.9 Hz, 0.85H), 3.09 (t, J = 10.4 Hz, 0.15H), 1.77 - 1.69 (m, 1H), 1.44 (s, 1.35H), 1.42 (s, 7.65H), 1.25 (s, 12H), 1.17 – 1.09 (m, 1H), 0.87 (s, 9H), 0.78 – 0.71 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 156.3, 83.0, 78.5, 61.1, 35.0, 28.4, 26.4, 24.9, 24.8, 24.1 ppm. The signal of α -B-carbon was not detected due to the boron quadrupole.

Compound 31: 59% yield (According to General procedure B), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.30 – 7.23 (m, 2H), 7.22 – 7.12 (m, 3H), 4.61 (d, *J* = 8.4 Hz, 1H), 3.70 (s, 1H), 2.88 – 2.80 (m, 1H), 2.70 – 2.65 (m, 1H), 1.67 – 1.59 (m, 1H), 1.44 – 1.30 (m, 1H), 1.39 (s, 9H), 1.23 (s, 12H), 0.80 (t, *J* = 7.3 Hz, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 155.5, 138.6, 129.5, 128.2, 126.0, 83.1, 78.8, 53.7, 41.5, 28.4, 27.7, 24.9, 24.7, 7.8 (br., C-B) ppm.

Compound 32: 69% yield (According to General procedure B), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 4.51 (d, *J* = 7.5 Hz, 1H), 3.55 (s, 1H), 2.55 – 2.39 (m, 2H), 2.08 (s, 3H), 1.79 – 1.70 (m, 1H), 1.66 – 1.57 (m, 2H), 1.50 – 1.40 (m, 1H), 1.41 (s, 9H) 1.23 (s, 12H), 0.83 – 0.77 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 155.7, 83.2, 78.9, 52.0, 35.3, 30.7, 29.0, 28.4, 24.9, 24.7, 15.5, 7.4 (br., C–B) ppm.

Compound **33**: 52% yield (According to General procedure B), colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 – 7.30 (m, 5H), 5.20 – 5.08 (m, 2H), 5.00 (d, *J* = 8.5 Hz, 1H), 4.34 – 4.28 (m, 1H), 1.78 (s, 1H), 1.70 – 1.55 (m, 2H), 1.43 (s, 9H), 1.39 – 1.29 (m, 3H), 1.23 (s, 12H), 0.73 (t, *J* = 7.5 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 172.9, 155.4, 135.5, 128.6, 128.3, 128.2, 83.0, 79.7, 66.9, 53.6, 32.3, 28.3, 27.8, 24.8, 23.6, 11.1 (br., C–B) ppm;

¹¹**B** NMR (128 MHz, CDCl₃): δ 34.1 (br. s, 1B) ppm;

HRMS (ESI+): Calc. for C₂₄H₂₈BNNaO₆[M+Na]⁺: 470.2684; found: 470.2684.

3. Reaction development

Table S1: Screening of photocatalyst.^a

4	Rhodamine B	<2
5	Rhodamine 6G	<2
6	Fluorescein	6
7	Riboflavin	<2

^aReaction condition: on 0.05 mmol scale, vinyl boronic acid pinacol ester **2** (3 eq), photocatalyst (5 mol%), in MeCN (0.5 mL) at room temperature, under the irradiation of $2 \times 18W$ blue LED bulbs, yields were determined by GC-MS using methoxybenzine as an internal standard.

	+ B,0	EosinY-Na ₂ (5 mol%), Reductant (2 eq) Solvent (0.1 M), 24 h Blue LED	- B-O
1	2		3

Table S2: Screening of solvent and reductant.^a

Entry	Solvents	Reductant	Yield (%)
1	MeCN	DIPEA	12
2	MeCN	HE-2/DIPEA (1:1)	31
3	MeCN	HE-2	40
4	DMF	HE-2	70
5	DMA	HE-2	60
6	DCM	HE-2	14
7	Tert-Butanol	HE-2	39
8	Dimethoxyehane	HE-2	49
9	DMF	DIPEA	12
10	$DMF (0.45 \text{ ml}) + H_2O (0.05 \text{ ml})$	HE-2	44
11	DMF $(0.4 \text{ ml}) + \text{H}_2\text{O} (0.1 \text{ ml})$	HE-2	37
12^b	DMF	HE-2	38
13	DMF	HE-2 (1 eq)	49
14	DMF	HE-2 (1.5 eq)	58

^aReaction condition: on 0.05 mmol scale, vinyl boronic acid pinacol ester **2** (3 eq), Eosin Y-Na₂ (5 mol%), in Solvent (0.5 mL) at room temperature, under the irradiation of 2 × 18W blue LED bulbs, yields were determined by GC-MS using methoxybenzine as an internal standard. ^bWithout degassing.

\bigcirc		B O O O C C EosinY-Na ₂ (5 mol%), HE-2 (2 eq) DMF(0.1 M), 24 h light source	
	1 Entry	2 Light Source	3 Yield (%)
	1	15W blue LED bulb	64
	2	18W blue LED bulb	70
	3	24W blue photo-reactor	54
	4	72W blue Photo-reactor	44
	5^b	18W blue LED bulb	51
	6 ^{<i>c</i>}	18W blue LED bulb	70
	7^d	18W blue LED bulb	56
	8^e	18W blue LED bulb	43

Table S3: Screening of light source and component ratio.^a

^aReaction condition: on 0.05 mmol scale, vinyl boronic acid pinacol ester **2** (3 eq), Eosin Y-Na₂ (5 mol%), in DMF (0.5 mL) at room temperature, under the irradiation of blue LED, yields were determined by GC-MS using methoxybenzine as an internal standard. ^bWith 2 equivalent of **2**. ^cWith 5 equivalent of **2**. ^dUsing 2.5 mol% of Eosin Y-Na₂. ^eUsing 10 mol% of Eosin Y-Na₂.

Table S4: Screening of Hantzsch ester analogue and control experiments.^a

^aReaction condition: on 0.05 mmol scale, vinyl boronic acid pinacol ester **2** (3 eq), Eosin Y-Na₂ (5 mol%), in DMF (0.5 mL) at room temperature, under the irradiation of 2 × 18W blue LED bulbs, yields were determined by GC-MS using methoxybenzine as an internal standard. ^{*b*}Without Eosin Y-Na₂. ^cIn dark. NP = no product was observed.

4. Mechanistic study

Figure S1. Fluorescence quenching of Eosin Y-Na₂ (30 μ M in DMF) upon titration with Hantzsch ester (HE) (100 mM in DMF).

Figure S2. Fluorescence response of Eosin Y-Na₂ (30 μ M in DMF) upon successive addition of redox-active ester 1 (100 mM in DMF).

TEMPO trapping experiment

To an oven-dried Schlenk tube (10 mL) equipped with stir bar were added NHPI redox-active ester **1** (29.5 mg, 0.1 mmol, 1.0 equiv.), Eosin Y-Na₂ (3.5 mg, 0.005 mmol, 0.05 equiv.), HE-2 (50.6 mg, 0.2 mmol, 2.0 equiv.), TEMPO (31.3 mg, 0.2 mmol, 2.0 equiv.). After addition of dry DMF (1 mL), vinyl boronic acid pinacol ester (51 μ L, 0.3 mmol, 3.0 equiv.) was added via syringe. The reaction mixture was degassed with three freeze-pump-thaw cycles. The reaction mixture was stirred and irradiated with 2 × 18W blue LED bulbs at room temperature for 24 hours (at approximately 3 cm away from the light sources, ca. 25 °C). Then a sample of the reaction mixture was submitted to HRMS analysis, which indicated the phenylethyl radical formed after decarboxylation and was trapped by TEMPO.

Chemical Formula: $C_{17}H_{27}NO$ $C_{17}H_{28}NO[M+H]^+$ m/z: 261.2165 (100.0%), 263.2199

HRMS (ESI+): C₁₇H₂₈NO[M+H]⁺ Calcd. for C₁₇H₂₈NO: 262.2165; found: 262.2165.

Figure S3. HRMS spectra for the TEMPO trapping reaction

Isotope-labeling experiment 1

Following the General procedure A with NHPI redox-active ester **1** (59.1 mg, 0.2 mmol, 1 equiv.), Eosin Y-Na₂ (6.9 mg, 0.01 mmol, 0.05 equiv.), deuterated ethyl Hantzsch ester (102.1 mg, 0.4 mmol, 2 equiv.), vinyl boronic acid pinacol ester (102 μ L, 0.6 mmol, 3 equiv.) and dry DMF (2 mL), which was irradiated with 2 × 18W blue LED bulbs for 24 hours. Purification by flash column chromatography (hexanes : EtOAc = 15 : 1) afforded the deuterated product as a colorless oil.

From the ¹**H NMR** (400 MHz, CDCl₃): δ 7.28 – 7.24 (m, 2H), 7.18 – 7.14 (m, 3H), 2.60 (t, *J* = 7.5 Hz, 2H), 1.67 – 1.59 (m, 2H), 1.49 – 1.43 (m, 2H), 1.24 (s, 12H), 0.81 (t, *J* = 8.0 Hz, 1H) ppm; ¹¹**B NMR** (128 MHz, CDCl₃): δ 34.5 (br. s, 1B) ppm, we could see the interatration of the H₂C-Bpin (δ 0.79-0.83 ppm) is only 1 proton, which meaned that the other proton was deuterium, coming from the deuterated Hantzsch ester.

Figure S4. ¹H and ¹¹B NMR spectra of the deuterium-labeled product

Isotope-labeling experiment 2

Under argon, to an oven-dried Schlenk tube (10 mL) equipped with stir bar were added NHPI redox-active ester **1** (59.1 mg, 0.2 mmol, 1.0 equiv.), Eosin Y-Na₂ (6.9 mg, 0.01 mmol, 0.05 equiv.), HE-2 (101.2 mg, 0.4 mmol, 2.0 equiv.), D₂O (18 μ L, 1.0 mmol, 5.0 equiv.). After addition of dry DMF (1 mL), vinyl boronic acid pinacol ester (102 μ L, 0.60 mmol, 3.0 equiv.) was added via syringe. The reaction mixture was then degassed by three freeze-pump-thaw cycles. The Schlenk tube was then backfilled with argon. The reaction mixture was stirred at room temperature for 24 hours under the irradiation of 2 × 18W blue LED bulbs (at approximately 3 cm away from the light sources, ca. 25 °C). The resulting mixture was dissolved in EtOAc (12 mL for 0.2mmol scale) and washed with saturated NaCl (3 ×12 mL for 0.2mmol scale). The combined aqueous layers were extracted with EtOAc (12 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered before removal of the solvent by rotavapor. The product was formed with 100% H-incorporation α to the boronic ester group, as determined by ¹H NMR. It showed that no intermediate α -boryl anion was formed. Therefore, this result further demonstrated the formation of an intermediate α -boryl radical.

5. NMR spectra

3.23 3.21 3.21 3.03 3.01 3.01

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound $\mathbf{6s}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound $\boldsymbol{8}$

 ^1H and ^{13}C NMR spectra for compound 10

¹H and ¹³C NMR spectra for compound **12**

 ^1H and ^{13}C NMR spectra for compound 13

S47

¹¹B NMR spectra for compound **19**

 ^1H and ^{13}C NMR spectra for compound **20**

 ^1H and ^{13}C NMR spectra for compound 24

 1 H and 13 C NMR spectra for compound 26

¹H and ¹³C NMR spectra for compound **29**

 1 H and 13 C NMR spectra for compound 30

 1 H and 13 C NMR spectra for compound **32**

6. References

- M. Das, M. D. Vu, Q. Zhang and X.-W. Liu, Metal-free visible light photoredox enables generation of carbyne equivalents via phosphonium ylides C-H activation, *Chem. Sci.*, 2019, 10, 1687–1691.
- J. Zhang, Y. Li, R. Xu and Y. Chen, Donor-Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free C(sp³)–C(sp³) Cleavage and Allylation/Alkenylation, *Angew. Chem., Int. Ed.*, 2017, **56**, 12619–12623.
- R. Xu, T. Xu, M. Yang, T. Cao and S. Liao, A rapid access to aliphatic sulfonyl fluorides, *Nat. Commun.*, 2019, 10, 3752–3758.
- A. F. G. Maier, S. Tussing, T. Schneider, U. Flörke, Z.-W. Qu, S. Grimme and J. Paradies, Frustrated Lewis Pair Catalyzed Dehydrogenative Oxidation of Indolines and Other Heterocycles, *Angew. Chem., Int. Ed.*, 2016, 55, 12219–12223.
- J. Cornella, J. T. Edwards, T. Qin, S. Kawamura, J. Wang, C.-M. Pan, R. Gianatassio, M. Schmidt, M. D. Eastgate and P. S. Baran, Practical Ni-catalyzed aryl–alkyl cross-coupling of secondary redox-active esters, *J. Am. Chem. Soc.*, 2016, **138**, 2174–2177.
- M. C. Sheikh, S. Takagi, M. Sakai, T. Mori, N. Hayashi, T. Fujie, S. Ono, T. Yoshimura and H. Morita, Syntheses and reactivities of non-symmetrical "active ester" bi-dentate cross-linking reagents having a phthalimidoyl and acid chloride, 2-benzothiazole, or 1-benzotriazole group, *Org. Biomol. Chem.*, 2011, 9, 1244–1254.
- A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers and V. K. Aggarwal, Photoinduced decarboxylative borylation of carboxylic acids, *Science*, 2017, 357, 283–286.
- L. Yu, M.-L. Tang, C.-M. Si, Z. Meng, Y. Liang, J. Han and X. Sun, Zinc-mediated decarboxylative alkylation of gem-difluoroalkenes, *Org. Lett.*, 2018, 20, 4579–4583.
- X.-G. Liu, C.-J. Zhou, E. Lin, X.-L. Han, S.-S. Zhang, Q. Li and H. Wang, Decarboxylative Negishi coupling of redox-active aliphatic esters by cobalt catalysis, *Angew. Chem., Int. Ed.*, 2018, **57**, 13096–13100.
- W. Zhao, R. P. Wurz, J. C. Peters and G. C. Fu, Photoinduced, copper-catalyzed decarboxylative C–N coupling to generate protected amines: an alternative to the Curtius rearrangement, *J. Am. Chem. Soc.*, 2017, **139**, 12153–12156.
- J. Schwarz and B. König, Metal-free, visible-light-mediated, decarboxylative alkylation of biomass-derived compounds, *Green Chem.*, 2016, 18, 4743–4749.
- C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters, M. Kumar, A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan and P. S. Baran, Decarboxylative borylation, *Science*, 2017, 356, eaam7355.
- T. Qin, L. R. Malins, J. T. Edwards, R. R. Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M. Yan, C. Yuan, M. D. Eastgate and P. S. Baran, Nickel-Catalyzed Barton Decarboxylation and Giese Reactions: A Practical Take on Classic Transforms, *Angew. Chem., Int. Ed.*, 2016, 55, 1–7.
- J. Wang, M. Shang, H. Lundberg, K. S. Feu, S. J. Hecker, T. Qin, Donna G. Blackmond and Phil S. Baran, Cu-Catalyzed Decarboxylative Borylation, ACS Catal., 2018, 8, 9537–9542.
- C. Zarate, M. Nakajima and R. Martin, A Mild and Ligand-Free Ni-Catalyzed Silylation via C-OMe Cleavage, *J. Am. Chem. Soc.*, 2017, **139**, 1191–1197.

- 16. M. D. Greenhalgh and S. P. Thomas, Chemo-, regio-, and stereoselective iron-catalysed hydroboration of alkenes and alkynes, *Chem. Commun.*, 2013, **49**, 11230–11232.
- J. V. Obligacion and P. J. Chirik, Bis(imino)pyridine Cobalt-Catalyzed Alkene Isomerization–Hydroboration: A Strategy for Remote Hydrofunctionalization with Terminal Selectivity, J. Am. Chem. Soc., 2013, 135, 19107–19110.
- Y. Cheng, C. Mgck-Lichtenfeld and A. Studer, Metal-Free Radical Borylation of Alkyl and Aryl Iodides, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 16832–16836.
- A. Noble, R. S. Mega, D. Pflästerer, E. L. Myers and V. K. Aggarwal, Visible-Light-Mediated Decarboxylative Radical Additions to Vinyl Boronic Esters: Rapid Access to γ-Amino Boronic Esters, *Angew. Chem., Int. Ed.*, 2018, **57**, 2155–2159.
- 20. S. Kisan, V. Krishnakumar and C. Gunanathan, Ruthenium-Catalyzed Anti-Markovnikov Selective Hydroboration of Olefins, *ACS Catal.*, 2017, **7**, 5950–5954.
- S. K. Bose, S. Brand, H. O. Omoregie, M. Haehnel, J. Maier, G. Bringmann and Todd B. Marder, Highly Efficient Synthesis of Alkylboronate Esters via Cu(II)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides in Air, ACS Catal., 2016, 6, 8332–8335.