Electronic Supplementary Information

Chiral Strong Brønsted Acid-Catalyzed Enantioselective Addition Reaction of Simple Olefins with Ethyl Glyoxylate

Jun Kikuchi, ${ }^{\text {a }}$ Yuki Aizawa, ${ }^{\text {a }}$ Masahiro Terada* ${ }^{\text {a }}$
e-mail: mterada@tohoku.ac.jp

${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Contents:

1. General Information
2. Preparation of Catalysts
3. Enantioselective Addition Reaction of Simple Olefins with Ethyl Glyoxylate
4. Additional Screening
5. Determination of absolute configuration
6. NMR Spectra
7. HPLC Charts

1. General Information

Unless otherwise noted, all reactions were carried out under an atmosphere of standard grade nitrogen gas in flame-dried glassware equipped with a magnetic stir bar. Toluene and tetrahydrofuran (THF) were supplied from KANTO Chemical Co., Inc. as "Dehydrated solvent system". Other solvents and reagents were purchased from commercial suppliers and used without further purification. Flash column chromatography was performed on silica gel 60 N (spherical, neutral, $40-50 \mu \mathrm{~m}$; Kanto Chemical Co., Inc.). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECA600 $(600 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard ($\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}$, TMS: $0.00 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: 3.31 \mathrm{ppm}$, acetone- $d_{6}: 2.05 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECA600 (151 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3} 77.0 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on JEOL JNM-ECA-600 (243 MHz) spectrometer with complete proton decoupling. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on JEOL JNM-ECA-600 (565 MHz) spectrometer. Optical rotations were measured on a Jasco P-1020 digital polarimeter with a sodium lamp and reported as follows; $[\alpha]^{\mathrm{T}^{\circ} \mathrm{C}_{\mathrm{D}}(c=}$ $\mathrm{g} / 100 \mathrm{~mL}$, solvent, \% ee). Infrared spectra were recorded on a Jasco FT/IR-4100 spectrometer. HPLC analysis was performed on a Jasco LC-2000 Plus system with UV and CD detectors. High resolution mass spectra analysis was performed on a Bruker Daltonics solariX 9.4T FT-ICR-MS spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

2. Preparation of Catalysts

Preparation of S2

2 (catalytic amount) 4-bromopyrene(10.0 eq) $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%)$

THF
$60^{\circ} \mathrm{C}$

In a flame dried, nitrogen-flushed two-necked round-bottom flask, equipped with a reflux condenser, magnesium ($121.5 \mathrm{mg}, 5.0 \mathrm{mmol}$) and a catalytic amount of I_{2} were suspended in THF (2.0 mL). A small amount of 4-bromopyrene $(1.4 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ was added to the mixture. The reaction was started by short heating to reflux. In order to keep the solution at reflux, further 4bromopyrene solution was added dropwise. After complete addition of the 4-bromopyrene, the mixture was stirred for 30 minutes at $40{ }^{\circ} \mathrm{C}$. To a mixture of $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(18.5 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathbf{S 1}$ ($251.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (1.5 mL) was added the 4-pyrenylmagnesium bromide solution at -78 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. After evacuated and refilled with argon twice, the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 36 h . After the resulting mixture was cooled to room temperature, 3.0 M HCl aq. was added. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure after filtration. The residual crude was purified by silica gel column chromatography (hexane to hexane $/ E t O A c=4 / 1$) to afford $\mathbf{S 2}(190.7 \mathrm{mg}, 0.22 \mathrm{mmol}$, 44%) as a white solid.

(R)-3,3'-(4-pyrenyl) $\mathbf{2}^{-} \mathbf{F}_{10}$ BINOL (S2)

S2: White solid; ($190.7 \mathrm{mg}, 0.22 \mathrm{mmol}, 44 \%$ yield) $; \mathrm{R}_{\mathrm{f}}=0.45$ (hexane $/ \mathrm{EtOAc}=$ $4 / 1) ;[\alpha]^{21.3}{ }_{\mathrm{D}}=27.4\left(c=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.40-8.00(\mathrm{~m}$, $14 \mathrm{H}), 7.90-7.60(\mathrm{~m}, 4 \mathrm{H})$, Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of protons.; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.1(\mathrm{dm}, J=267.4 \mathrm{~Hz}), 151.5$, $142.8(\mathrm{dm}, J=250.1 \mathrm{~Hz}), 142.2(\mathrm{dm}, J=260.2 \mathrm{~Hz}), 140.2(\mathrm{dm}, J=250.1 \mathrm{~Hz})$, $136.9(\mathrm{dt}, J=253.1 \mathrm{~Hz}, 15.9 \mathrm{~Hz}), 131.5,131.3,131.2,131.1,130.1,130.0,129.2,129.1,127.7,127.6$, $127.5,127.3,126.7,126.4,126.3,126.1,125.8,125.6,125.14,125.08,124.89,124.86,124.6,122.5$, $120.8,116.6,116.5,107.6,106.8,{ }^{13} \mathrm{C}$ signals could not be assigned due to the presence of the several rotamers and multiple ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -112.2 to $-112.8(2 \mathrm{~F}, \mathrm{~m})$, 144.0 to $-144.4(2 \mathrm{~F}, \mathrm{~m}),-146.2$ to $-147.1(2 \mathrm{~F}, \mathrm{~m}),-154.8$ to $-155.1(2 \mathrm{~F}, \mathrm{~m}),-160.5$ to $-160.8(2 \mathrm{~F}, \mathrm{~m})$, Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to
best account for the overall number of fluorines.; IR (ATR): 3727, 3705, 3693, 3680, 3648, 3623, 3599 3566, 2939, 1541, 1522, 1508, 1488, 1397, 1339, 1218, 1054, 1032, 1007, $772 \mathrm{~cm}^{-1}$; HRMS(ESI) Calcd for $\mathrm{C}_{52} \mathrm{H}_{19} \mathrm{~F}_{10} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} 865.1225$, Found 865.1230.
2.2 Preparation of catalyst

To a solution of $\mathbf{S 3}(0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ in pyridine (2.0 mL) was added $\mathrm{PBr}_{3}(0.12 \mathrm{mmol}, 1.2 \mathrm{eq})$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After stirring, $\mathrm{RfSO}_{2} \mathrm{NH}_{2}(0.2 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$, and stirred for 10 min . To the reaction mixture, ${ }^{m} \mathrm{CPBA}(0.2 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was quenched by 1 M HCl aq. $(1.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure after filtration. The residual crude product was purified by column chromatography on silica gel (hexane/EtOAc $=3: 1$ to hexane/ $\mathrm{EtOAc}=1: 1$). The resultant solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, and the solution was washed with 6 M HCl aq. (3 mLx 3). Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure after filtration to give $(R)-4$.

(R)-3,3'-(4-pyrenyl) $\mathbf{2}_{\mathbf{2}} \mathbf{F}_{10}$ BINOL-derived \boldsymbol{N}-Tf Phosphoramide (4c)

Brown solid; ($38.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 40 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane $/ \mathrm{EtOAc}=1 / 1$); $[\alpha]^{19.6}{ }_{\mathrm{D}}=26.2\left(c=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta: 7.65-7.58(\mathrm{~m}$, $4 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 6 \mathrm{H})$, Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of protons.; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{13} \mathrm{C}$ signals could not be assigned due to the presence of the several rotamers and multiple ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.64, $5.33,4.07,3.67 ;{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -79.6 to $-80.8(3 \mathrm{~F}),-103.3$ to $-110.5(2 \mathrm{~F}),-139.8$ to $-143.0(4 \mathrm{~F}),-151.9$ to $-153.2(2 \mathrm{~F}),-155.2$ to $-156.5(2 \mathrm{~F})$ Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of fluorines.; IR (ATR): 3723, 3705, 3680, 3648, 3632, 3623, 3599, $3565,3526,3503,2972,2938,2865,2843,1670,1624,1564,1541,1339,1218,1054,1032,1014$, $795 \mathrm{~cm}^{-1} ;$ HRMS(ESI) Calcd for $\mathrm{C}_{53} \mathrm{H}_{18} \mathrm{~F}_{13} \mathrm{NO}_{5} \mathrm{PS}$ [M-H-]: 1058.0436 Found: 1058.0440.

(R)-3,3'-(4-pyrenyl) $\mathbf{2}_{2}-\mathrm{F}_{10} \mathrm{BINOL}-$ derived \boldsymbol{N} - $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{2}$ Phosphoramide (4d)

Brown solid; ($33 \mathrm{mg}, 0.03 \mathrm{mmol}, 24 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.34$ (hexane $/ \mathrm{EtOAc}=$ $1 / 1) ;[\alpha]^{18.0}{ }_{\mathrm{D}}=33.2\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta$: 8.70-7.93 (m, 16H), 7.90-7.50 (m, 2H), Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of protons.; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{13} \mathrm{C}$ signals could not be assigned due to the presence of the several rotamers and multiple ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.48, 4.24, 3.49; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -106.3 to $-112.3(2 \mathrm{~F}),-136.1$ to $-146.9(6 \mathrm{~F}),-150.9$ to -152.1 (1F), -153.1 to $160.9(5 \mathrm{~F})$, Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of fluorines.; IR (ATR): 3705, 3680, 3648, 3632, 3623, 3503, 2962, 2927, 1716, 1698, 1650, 1619, 1558, 1540, 1519, 1508, 1471, 1339, 1218, 1062, 1025 $\mathrm{cm}^{-1} ;$ HRMS(ESI) Calcd for $\mathrm{C}_{58} \mathrm{H}_{18} \mathrm{~F}_{15} \mathrm{NO}_{5} \mathrm{PS}\left[\mathrm{M}-\mathrm{H}^{-}\right]: 1156.0404$, Found: 1156.0408.

(R)-3,3'-(4-pyrenyl) $\mathbf{2}_{2}-\mathrm{F}_{10} \mathrm{BINOL}-$ derived $\mathrm{N}^{\boldsymbol{n}}{ }^{\boldsymbol{n}} \mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{SO}_{2}$ Phosphoramide (4e)

Brown solid; ($36.3 \mathrm{mg}, 0.03 \mathrm{mmol}, 32 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.32$ (hexane/EtOAc $=1 / 1) ;[\alpha]^{25.0}{ }_{\mathrm{D}}=28.7\left(c=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta:$ $8.67-7.82(\mathrm{~m}, 15 \mathrm{H}), 7.76-7.29(\mathrm{~m}, 3 \mathrm{H})$, Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of protons.; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{13} \mathrm{C}$ signals could not be assigned due to the presence of the several rotamers and multiple ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 5.43, 3.79, 3.49; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -80.9 to $-81.0(3 \mathrm{~F}),-106.4$ to $-109.6(2 \mathrm{~F}),-113.2$ to $-114.7(2 \mathrm{~F}),-121.0$ to -122.6 (2F), -126.2 to $-126.5(2 \mathrm{~F}),-139.7$ to $-140.8(2 \mathrm{~F}),-142.1$ to -142.7 (2F), -152.1 to $-152.9(2 \mathrm{~F}),-155.4$ to $-156.2(2 \mathrm{~F})$ Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of fluorines.; IR (ATR): 3731, 3722, 3705, 3692, 3680, 3649, 3622, 3598, 2973, 2921, 2864, 1564, 1540, 1508, 1489, 1374, 1053, 1032, 1011, $795 \mathrm{~cm}^{-}$ ${ }^{1}$; $\operatorname{HRMS}(E S I)$ Calcd for $\mathrm{C}_{56} \mathrm{H}_{18} \mathrm{~F}_{19} \mathrm{NO}_{5} \mathrm{PS}$ [M-H-]: 1208.0340, Found: 1208.0342.

(R)-3,3'-(9-phenanthryl) $\mathbf{2}_{2}-\mathrm{F}_{10} \mathrm{BINOL}-$ derived \boldsymbol{N} - $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{2}$ Phosphoramide (4f)

($\mathrm{Ar}=9$-phenanthryl)

Brown solid; ($36.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 37 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.34$ (hexane/EtOAc $=1 / 1) ;[\alpha]^{25.0}{ }_{\mathrm{D}}=-6.36\left(c=0.73, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta:$ 8.90-8.69 (m, 4H), 8.38-7.31 (m, 18H), Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of protons.; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ${ }^{13} \mathrm{C}$ signals could not be assigned due to the presence of the several
rotamers and multiple ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings; ${ }^{31} \mathrm{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.94, 3.00, 2.75, 2.29; ${ }^{19} \mathrm{~F}$ NMR (565 MHz, CDCl_{3}): -104.9 to -110.7 (2F), -138.0 to -142.9 (6 F), -148.0 to $-151.0(1 \mathrm{~F}),-151.9$ to $-153.4(2 \mathrm{~F}),-155.3$ to $-156.9(2 \mathrm{~F}),-159.6$ to $-161.4(2 \mathrm{~F})$, Due to the presence of the several rotamers, the integrations are non-integer and have been rounded to best account for the overall number of fluorines.; IR (ATR): 3731, 3704, 3693, 3680, 3648, 3623, 3599, 2972, 2940, 2863, 2843, 1647, 1564, $1540,1523,1508,1032,1008,795 \mathrm{~cm}^{-1} ;$ HRMS(ESI) Calcd for $\mathrm{C}_{54} \mathrm{H}_{18} \mathrm{~F}_{15} \mathrm{NO}_{5} \mathrm{PS}\left[\mathrm{M}_{-} \mathrm{H}^{-}\right]: 1108.0404$, Found: 1108.0407.

3. Enantioselective Addition Reaction of Simple Olefins with Ethyl Glyoxylate

Reprsentative procedure for the enantioselective addition reaction of 1,1,2-trisubstituted olefins with ethyl glyoxylate

To a solution of $(R)-4 \mathbf{e}(6.0 \mathrm{mg}, 0.005 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added a $\mathbf{1 a}(33.1 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ and freshly distilled ethyl glyoxylate $2(10.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ at room temperature, and the resulting solution was stirred for indicated time at this temperature. The mixture was directly passed through flash colum chromatography (Hexane $/ \mathrm{AcOEt}=6 / 1$) to give 3a $(12.1 \mathrm{mg}, 0.06$ $\mathrm{mmol}, 57 \%$ yield) as a colorless oil. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.
ethyl (2S,3S)-3-(cyclohex-1-en-1-yl)-2-hydroxybutanoate (3a)

57% yield; colorless liquid: $\mathrm{R}_{\mathrm{f}}=0.49$ (Hexane/EtOAc $=4 / 1$); Diastereomers could be separated by flash column chromatography (Hexane/AcOEt $=9 / 1$).; $[\alpha]^{22.4}{ }_{\mathrm{D}}=-$ $3.5\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 5.55-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $1.92(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 150 MHz) $\delta ; 174.8,138.02,123.0,73.0,61.5,45.0,26.8,25.3,23.0,22.4,14.2,12.7$; IR (ATR): 3525, 2977, 2929, 2836, 1729, 1541, 1508, 1456, 1374, 1258, 1198, 1099, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$235.1310, Found: 235.1305.; HPLC analysis CHIRALPAK AS-H (hexane $/ \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$) 8.8 min (major), 14.1 min (minor). Configuration Assignment: The relative and absolute configurations were assigned as $(2 S, 3 S)$ by comparison with the reported literature. ${ }^{1}$

[^0]ethyl (2S,3S)-3-(cyclohex-1-en-1-yl)-2-hydroxypentanoate (3b)

3b
67% yield; colorless liquid: $\mathrm{R}_{\mathrm{f}}=0.47$ (Hexane/EtOAc $=4 / 1$); Diastereomers could be separated by flash column chromatography (Hexane/AcOEt $=9 / 1$).; $[\alpha]^{23.8}{ }_{\mathrm{D}}=$ $1.8\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 5.51-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.16$ (m, 2H), $4.07(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}$, $2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 174.9,136.0,125.1,73.8,61.3,54.4,25.8,25.4,22.9,22.5,20.5,14.2,11.9$; IR (ATR): 2961, 2927, 2874, 2837, 1728, 1455, 1260, 1191, 1106, 1064, $1027 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$249.1467, Found: 249.1461.; HPLC analysis CHIRALPAK AS-H (hexane $/{ }^{\prime} \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$) 8.6 min (major), 11.6 min (minor). Configuration Assignment: The relative and absolute configuration was assigned as $(2 S, 3 S)$ by analogy with compound 3a.

ethyl (2S,3S)-3-(cyclohept-1-en-1-yl)-2-hydroxybutanoate (3c)

3c
98% yield; colorless liquid: $\mathrm{R}_{\mathrm{f}}=0.47$ (Hexane/EtOAc $=4 / 1$); Diastereomers could be separated by flash column chromatography (Hexane/AcOEt $=9 / 1$).; $[\alpha]^{22.6}{ }^{\mathrm{D}}=$ $5.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 5.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=6.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.14-$ $2.07(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 174.7,144.8,128.1,72.7$, 61.4, 46.6, 32.7, 31.2, 28.3, 27.0, 26.9, 14.2, 12.8; IR (ATR): 2972, 2920, 2849, 1728, 1445, 1256, 1198, 1096, 1024, 784, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$249.1467, Found: 249.1461.; HPLC analysis CHIRALPAK AS-H (hexane $/ \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$) 7.8 \min (major), 11.1 min (minor). Configuraation Assignment: The relative and absolute configuration was assigned as $(2 S, 3 S)$ by analogy with compound 3a.

ethyl (S)-2-hydroxy-2-((R)-2-methylcyclohex-2-en-1-yl)acetate (3d)

69% yield; colorless liquid: $\mathrm{R}_{\mathrm{f}}=0.42$ (Hexane/EtOAc $=4 / 1$); Diastereomers could not be separated.; $[\alpha]^{23.2}{ }_{\mathrm{D}}=-9.2\left(c=0.6, \mathrm{CHCl}_{3}\right)$; Major Diastereomer $($ syn $):{ }^{1} \mathrm{H}$

3d NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 5.68-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H})$, $1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 175.0$, 132.2, 126.6, 70.6, 61.8, 42.4, 25.2, 22.7, 21.5, 21.3, 14.3; Minor diastereomer (anti): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $600 \mathrm{MHz}) \delta: 5.58-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.18(\mathrm{~m}, 3 \mathrm{H}), 2.84(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ $1.93(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 175.0,132.1,126.1,72.5,61.6,43.3,26.3,25.3,22.3,20.6,14.1$; IR (ATR):

2969, 2929, 2861, 1727, 1249, 1215,1110, 1093, 1065, $1024 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}$221.1154, Found: 221.1148.; HPLC analysis CHIRALPAK AS-H (hexane $/ \mathrm{PrOH}=99 / 1$, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$) 9.4 min (major), 15.3 min (minor). Configuration Assignment: The relative configuration was determined by comparison with the reported literature. ${ }^{2}$ The absolute configuration was assigned as $(1 R, 2 S)$ by analogy with compound $\mathbf{3 a}$.

ethyl (S)-2-hydroxy-2-(1-methyl-3,4-dihydronaphthalen-2-yl)acetate (3'e)

 $\mathrm{Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dq}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-$ $2.67(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{t}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150\right.$ $\mathrm{MHz}) \delta: 174.3,136.3,136.2,131.5,130.8,127.1,127.0,126.4,123.7,70.0,62.1,28.4,22.2,14.3$, 14.1; IR (ATR): 3502, 2986, 2930, 2901, 2835, 1727, 1487, 1450, 1394, 1382, 1253, 1208, 1080, 1065, 1051, 1018, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$269.1154, Found: 269.1148.; HPLC analysis CHIRALPAK AS-H (hexane $/{ }^{\circ} \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$) 21.5 min (major), 26.7 min (minor). Configuration Assignment: The absolute configuration was assigned as (S) by analogy with compound $\mathbf{3} \mathbf{} \mathbf{j}$.

ethyl (S)-2-hydroxy-2-(3-phenyl-1H-inden-2-yl)acetate (3'f)

3'f
91% yield; yellow liquid: $\mathrm{R}_{\mathrm{f}}=0.26$ (Hexane/EtOAc $=4 / 1$); $[\alpha]^{23.9}{ }_{\mathrm{D}}=115.7(c=$ $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.54-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.41(\mathrm{tt}, J=9.0$ $\mathrm{Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.18(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (d, $J=22.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=13.8 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 174.0,145.1,144.1,142.5,138.6,133.9,129.2,128.5,127.9$, $126.4,125.6,124.0,120.8,67.7,62.4,36.6,14.1$; IR (ATR): 3058, 3019, 2982, 2900, 1730, 1272, 1208, $1070 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$317.1154, Found: 317.1148.; HPLC analysis CHIRALPAK AS-H (hexane $/$ / $\mathrm{PrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$)) 27.9 min (major), 38.2 min (minor). Configuration Assignment: The absolute configuration was assigned as (S) by analogy with compound $\mathbf{3} \mathbf{\prime} \mathbf{j}$.

[^1]Reprsentative procedure for the enantioselective addition reaction of 1,1-disubstituted olefins with ethyl glyoxylate

To a solution of $(R)-4 \mathbf{e}(3.0 \mathrm{mg}, 0.0025 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added freshly distilled ethyl glyoxylate $\mathbf{2} 51.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{1 g}(13.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ at room temperature, and the resulting solution was stirred for indicated time at this temperature. The mixture was directly passed through flash colum chromatography (Hexane $/ \mathrm{AcOEt}=3 / 1$) to give $\mathbf{6 a}(17.0 \mathrm{mg}, 0.073$ $\mathrm{mmol}, 73 \%$ yield) as a colorless oil. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.

ethyl (S)-2-(3,4-dihydronaphthalen-2-yl)-2-hydroxyacetate (3'g)

 $\left.=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.22-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 173.4,136.9,135.2,133.6$, $127.4,127.3,126.5,126.4,74.1,62.2,27.9,23.0,14.2$; IR (ATR): 2930, 1747, 1480, 1317, 1263, 1104 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, Found 255.0992.; HPLC analysis CHIRALPAK AS-H (hexane $/ 2 \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$) 27.4 min (major), 38.2 min (minor). Configuration Assignment: The absolute configuration was assigned as $(S$) by analogy with compound $\mathbf{3}^{\mathbf{\prime}} \mathbf{j}$.

ethyl (S)-2-(6-bromo-3,4-dihydronaphthalen-2-yl)-2-hydroxyacetate (3'h)

3'h
44% yield; colorless liquid: $\mathrm{R}_{\mathrm{f}}=0.24$ (Hexane/EtOAc $=4 / 1$); $[\alpha]^{23.6}{ }_{\mathrm{D}}=242.4$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.26$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 173.2,137.5,137.2,132.4,130.3,129.5,127.9,125.3,120.8$, 73.9, 62.3, 27.7, 22.8, 14.1; IR (ATR): 2932, 1733, 1480, 1263, 1113, 1074, 882, $802 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$333.0102, Found: 335.0096.; HPLC analysis CHIRALPAK AS-H (hexane $/ 2 \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$) 18.9 min (major), 27.2 min (minor). Configuration Assignment: The absolute configuration was assigned as $(S$) by analogy with compound $\mathbf{3}^{\mathbf{\prime}} \mathbf{j}$.
ethyl (S)-2-(6,7-dihydro-5H-benzo[7]annulen-8-yl)-2-hydroxyacetate (3'i)
 $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.18(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16-7.10 (m, 2H), $6.63(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.30$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{dt}, J=6.0 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 174.0,141.6$, $139.4,135.6,130.8,130.6,129.0,127.1,126.0,62.2,34.8,29.1,28.6,14.1$; IR (ATR): 2981, 2929, 2857, 1730, 1258, 1198, 1105, 1075, $1023 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 269.1154, Found: 269.1148.; HPLC analysis CHIRALPAK AS-H (hexane $/ \mathrm{PrOH}=96 / 4,1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$) 22.1 min (major), 26.7 min (minor). Configuration Assignment: The absolute configuration was assigned as (S) by analogy with compound $\mathbf{3} \mathbf{\prime} \mathbf{j}$.

ethyl (\boldsymbol{S})-2-hydroxy-2-(1H-inden-2-yl)acetate ($\mathbf{3} \mathbf{\prime} \mathbf{j}$)

(| 39% yield; colorless liquid: $\mathrm{R}_{\mathrm{f}}=0.22(\mathrm{Hexane} / \mathrm{EtOAc}=4 / 1) ;[\alpha]^{24.3}{ }_{\mathrm{D}}=47.2(c=$ |
| :--- |
| $\left.0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J$ |

$\left.{ }_{3}{ }^{\prime} \mathrm{j} \quad=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}$, $1 \mathrm{H}), 5.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=20.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.23(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 173.0,145.0,143.9$, $143.2,129.9,126.5,125.0,123.8,121.2,70.3,62.3,38.2,14.2$; IR (ATR): 2980, 2923, 1730, 1460, 1394, 1255, 1195, 1131, 1096, 1066, 1017, 751, $716 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}$241.0841, Found: 241.0835.; HPLC analysis CHIRALPAK AS-H (hexane $/ \mathrm{PrOH}=98 / 2$, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$) 34.2 min (major), 56.3 min (minor). Configuration Assignment: The absolute configuration was assigned as (S) by the Mosher's method after the derivatization.
ethyl (S)-2-(6-bromo-1H-inden-2-yl)-2-hydroxyacetate (3'k)

$$
\begin{aligned}
& \begin{array}{ll}
& 51 \% \text { yield; white solid: } \mathrm{R}_{\mathrm{f}}=0.27(\text { Hexane } / \mathrm{EtOAc}=4 / 1) ;[\alpha]^{21.2}{ }_{\mathrm{D}}=41.9(c= \\
\hline
\end{array} \\
& \left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.4 \mathrm{~Hz} \text {, } \\
& 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \text {, } \\
& \text { 4.34-4.24 (m, 2H), } 3.54(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26 \\
& (\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 172.8,145.5,145.2 \text {, } \\
& 142.8,129.6,129.1,127 . .1,122.4,119.0,70.1,62.5,38.3,14.2 \text {; IR (ATR): 3524, 2972, 2928, 1729, } \\
& \text { 1260, 1210, } 1066 \mathrm{~cm}^{-1} \text {; HRMS (ESI) Calcd for } \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} \text {318.9946, Found: 318.9941.; } \\
& \text { HPLC analysis CHIRALPAK AS-H (hexane } /{ }^{\circ} \mathrm{PrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C} \text {) } 17.9 \mathrm{~min} \\
& \text { (major), } 26.7 \mathrm{~min} \text { (minor). Configuration Assignment: The absolute configuration was assigned as }(S) \\
& \text { by analogy with compound } \mathbf{3}^{\mathbf{\prime}} \mathbf{j} \text {. }
\end{aligned}
$$

Experimental procedure for the enantioselective addition reaction of $\mathbf{1 f}$ with $\mathbf{2}$ on a large scale

To a solution of $(R)-\mathbf{4 f}(11.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ was added a $\mathbf{1 f}(0.58 \mathrm{~g}, 3.0 \mathrm{mmol})$ and freshly distilled ethyl glyoxylate $2(0.10 \mathrm{~g}, 1.0 \mathrm{mmol})$ at room temperature, and the resulting solution was stirred for indicated time at this temperature. The mixture was directly passed through flash colum chromatography (Hexane $/ \mathrm{AcOEt}=6 / 1$) to give $\mathbf{3} \mathbf{\prime} \mathbf{f}(0.24 \mathrm{~g}, 0.82 \mathrm{mmol}, 82 \%$ yield $)$ as a colorless oil. The enantiomeric excess was determined by chiral stationary phase HPLC analysis.

4. Additional Screening

4-1. Screening of catalysts

Table S1.

entry	catalyst	yield ${ }^{\text {a }}$ (\%)	dr	ee (\%)	note
1	(R)-7 ($\mathrm{Ar}=9$-phenanthryl)	26	89/11	55	Table 1, entry 3
2	(R)-7b $\left(\mathrm{Ar}=2,4,6-\mathrm{Pr}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$	27	76/24	18	
3	(R)-4a ($\mathrm{Ar}=9$-phenanthryl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	62	87/13	58	Table 1, entry 4
4	(R)-4g ($\mathrm{Ar}=9$-phenanthryl, $\mathrm{Rf}={ }^{\mathrm{n}} \mathrm{C}_{4} \mathrm{~F}_{9}$)	67	88/12	70	
5	(R)-4b ($\mathrm{Ar}=1$-pyrenyl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	72	89/11	55	Table 1, entry 5
6	(R)-4h ($\mathrm{Ar}=1$-pyrenyl, $\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}$)	43	90/10	68	
7	(R)-4c ($\mathrm{Ar}=4$-pyrenyl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	58	90/10	69	Table 1, entry 6
8	(R)-4i ($\mathrm{Ar}=4$-pyrenyl, $\mathrm{Rf}=\mathrm{C}_{2} \mathrm{~F}_{5}$)	29	88/12	59	
9	(R)-4e ($\mathrm{Ar}=4$-pyrenyl, $\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}$)	47	90/10	80	Table 1, entry 8
10	$(\mathrm{R})-4 \mathrm{j}\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{Rf}=\mathrm{CF}_{3}\right)$	43	89/11	54	
11	(R)-4k ($\mathrm{Ar}=2$-naphthyl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	48	91/9	57	
12	(R)-4I ($\mathrm{Ar}=6$-methoxy-2-naphthyl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	48	87/13	42	
13	(R)-8 ($\mathrm{Ar}=2$-naphthyl, $\mathrm{X}=\mathrm{S}$)	<1	--	--	
14	(R)-9 $\left(\mathrm{Ar}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$	48	62/38	30	

${ }^{\text {a }}$ NMR yield.

Table S2.

entry	catalyst	yield ${ }^{\text {a }}$ (\%)	ee (\%)	note
1	(R)-4a (G = 9-phenanthryl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	26	63	
2	$(R)-\mathbf{4 f}$ ($\mathrm{G}=9$-phenanthryl, $\mathrm{Rf}=\mathrm{C}_{6} \mathrm{~F}_{5}$)	49	81	Table 2, entry 5
3	$(R)-\mathbf{4 g}\left(\mathrm{G}=9\right.$-phenanthryl, $\left.\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}\right)$	29	67	
4	$(R)-4 h\left(\mathrm{G}=9\right.$-phenanthryl, $\mathrm{Rf}=\mathrm{C}_{10} \mathrm{~F}_{7}$)	35	75	
5	$(R)-4 \mathrm{~m}$ (G $=9$-phenanthryl, $\mathrm{Rf}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{~F}_{4}$)	20	62	
6	$(R)-\mathbf{4 b}$ ($\mathrm{G}=1$-pyrenyl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	69	47	
7	(R)-4c (G = 4-pyrenyl, $\mathrm{Rf}=\mathrm{CF}_{3}$)	42	60	
8	(R)-4d ($\mathrm{G}=4$-pyrenyl, $\mathrm{Rf}=\mathrm{C}_{6} \mathrm{~F}_{5}$)	43	71	
9	(R)-4e (G = 4-pyrenyl, $\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}$)	38	67	Table 2, entry 4

${ }^{\text {a }}$ Isolated yield

Table S3.

entry	catalyst	yield $^{\mathrm{a}}(\%)$	ee $(\%)$	note
1	$(R)-\mathbf{4 a}\left(\mathrm{G}=9\right.$-phenanthryl, $\left.\mathrm{Rf}=\mathrm{CF}_{3}\right)$	30	66	
2	$(R)-\mathbf{4 f}\left(\mathrm{G}=9\right.$-phenanthryl, $\left.\mathrm{Rf}=\mathrm{C}_{6} \mathrm{~F}_{5}\right)$	<1	-	
3	$(R)-\mathbf{4 g}\left(\mathrm{G}=9\right.$-phenanthryl, $\left.\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}\right)$	41	74	
4	$(R)-\mathbf{4 b}\left(\mathrm{G}=\right.$ 1-pyrenyl, $\left.\mathrm{Rf}=\mathrm{CF}_{3}\right)$	48	52	
5	$(R)-\mathbf{4 c}\left(\mathrm{G}=4\right.$-pyrenyl, $\left.\mathrm{Rf}=\mathrm{CF}_{3}\right)$	57	66	
6	$(R)-\mathbf{4 e}\left(\mathrm{G}=4\right.$-pyrenyl, $\left.\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}\right)$	67	72	
7^{b}	$(R)-\mathbf{4 e}\left(\mathrm{G}=4-\right.$ pyrenyl, $\left.\mathrm{Rf}={ }^{n} \mathrm{C}_{4} \mathrm{~F}_{9}\right)$	73	72	Table 3, entry 1

${ }^{\text {a }}$ Isolated yield, ${ }^{\mathrm{b}}$ 2: 5.0 eq.

4-2. Control experiment

5. Determination of absolute configuration

The absolute configuration of $\mathbf{3} \mathbf{\prime} \mathbf{j}$ was determined by the Mosher's method after the derivatization of $\mathbf{3}$ ' \mathbf{j} to $\mathbf{S 4}$. S4 were converted into the (\mathbf{S}) - and ($\boldsymbol{R})$-MTPA esters by treatment with (R) - and (S)-MTPA chloride, respectively. The $\Delta \delta$ values $\left(\delta^{S}-\delta^{R}(\mathrm{ppm})\right)$ calculated for the two esters (Figure S 1) indicated that 3'j had an S configuration.

Figure S1. NMR spectra and Chemical shifts of MTPA esters

Experimental procedure of $\mathbf{3} \mathbf{\prime} \mathbf{j}$ to $\mathbf{S 4}$

To a solution of $\mathbf{3}^{\prime} \mathbf{j}(21.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 86 \%$ ee $)$ in THF $(0.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.1 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(11.3 \mathrm{mg}, 0.3 \mathrm{mmol})$ in one portion at $0{ }^{\circ} \mathrm{C}$. After stirring for 16 h at the ambient temperature, $\mathrm{H}_{2} \mathrm{O}$ was added. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure after filtration to give $\mathbf{S 3}$. To a solution of $\mathbf{S 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was added $\mathrm{TBSCl}(15.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and imidazole ($13.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) at ambient temperature. After stirring for 2 h at the ambient temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by silica gel column chromatography (hexane/EtOAc $=8 / 1$) to afford the corresponding alcohol $\mathbf{S 4}(80 \%$ yield, 2 teps $)$.

Experimental procedure of S4 to MTPA ester

To a solution of $\mathbf{S} 4(11.6 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{Et} 3 \mathrm{~N}(4.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ and DMAP $(0.5 \mathrm{mg}, 0.004 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added (R) - or $(S)-\mathrm{MTPACl}(15.2 \mathrm{mg}, 0.06 \mathrm{mmol})$ at room temperature, and the resulting solution was stirred for 4 h at this temperature. The mixture was directly passed through column chromatography (Hexane/EtOAc/Et ${ }_{3} \mathrm{~N}=10 / 1 / 0.1$) to give the (R) - or (S)-MTPA ester.

(S)-2-((tert-butyldimethylsilyl)oxy)-1-(1H-inden-2-yl)ethan-1-ol (S4)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta: 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=22.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta: 147.8,144.5,143.1,127.9,126.3,124.4,123.6,120.8,71.4,67.3,38.4$, $25.9,18.3,-5.36,-5.38$; IR (ATR): 2956, 2928, 2857, 1099, 1056, 836, 802, $777 \mathrm{~cm}^{-1}$.

6. NMR Spectra

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{S} 2$

${ }^{19}$ F NMR (565 MHz) spectra of $\mathbf{S} 2$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $(R)-4 \mathbf{c}$

${ }^{31} \mathrm{P}$ NMR (565 MHZ) and ${ }^{19}$ F NMR (243 MHz) spectra of $(R)-\mathbf{4 c}$

${ }^{31} \mathrm{P}$ NMR (565 MHZ) and ${ }^{19} \mathrm{~F}$ NMR (243 MHz) spectra of $(R)-4 d$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $(R)-\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $(R)-\mathbf{4 f}$

${ }^{31} \mathrm{P}$ NMR (565 MHZ) and ${ }^{19} \mathrm{~F}$ NMR (243 MHz) spectra of $(R)-\mathbf{4 f}$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of 3a

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of 3b

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of 3c

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of 3d

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{3}$ 'e

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{3}$ ' \mathbf{g}

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{3}{ }^{\prime} \mathbf{h}$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{3} \mathbf{}{ }^{\mathbf{i}}$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{3}^{\mathbf{\prime} \mathbf{j}}$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{3}^{\prime} \mathbf{k}$

${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra of $\mathbf{S 4}$

7. HPLC charts

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3a	9.1	14.6	597638	609057	49.5	50.5
$\mathbf{3 a}$	8.9	14.6	3938391	410594	90.6	9.4

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3b	8.5	11.4	3710039	3705847	50.0	50.0
3b	8.6	11.6	1815433	444113	80.3	19.7

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3c	7.8	11.1	2718633	2706062	50.1	49.9
3c	7.8	11.1	5605263	643648	89.7	10.3

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3d	9.1	14.1	1317089	1325345	49.8	50.2
$\mathbf{3 d}$	9.4	15.3	1802997	96311	94.9	5.1

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3'e	21.4	26.9	15957340	15913035	50.0	50.0
3'e	21.7	27.1	17358285	1468132	92.2	7.8

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3'f	27.8	36.6	19532278	19487740	50.1	49.9
3'f	27.9	38.2	34671443	2769387	92.6	7.4

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3' \mathbf{g}	26.6	38.3	6993023	6914226	50.3	49.7
$\mathbf{3 '}^{\prime} \mathbf{g}$	27.4	38.2	15334990	2510944	85.9	14.1

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac-3'h	17.8	26.4	3125272	3125360	50.0	50.0
$\mathbf{3 ' h}^{\prime} \mathbf{h}$	19.0	27.2	4654914	788503	85.5	14.5

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
$r a c-\mathbf{3}^{\mathbf{}} \mathbf{i}$	22.7	27.2	1730811	1722753	50.1	49.9
$\mathbf{3}^{\mathbf{i}} \mathbf{i}$	22.1	26.7	15699141	2147896	88.0	12.0

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
$r a c-\mathbf{3} \mathbf{j} \mathbf{j}$	34.2	55.2	7800559	7834443	49.9	50.1
$\mathbf{3}^{\mathbf{j}}$	34.2	56.3	28499751	2109903	93.1	6.9

	Retention time (1)	Retention time (2)	Area (1)	Area (2)	\% Area (1)	\% Area (2)
rac- $\mathbf{3}^{\prime} \mathbf{k}$	17.8	26.4	3125272	3125360	50.0	50.0
$\mathbf{3 '}^{\prime} \mathbf{k}$	18.0	26.7	7316440	378935	95.1	4.9

[^0]: ${ }^{1}$ B.-C. Hong, S.-H. Chen, E. S. Kumar, G.-H. Lee and K.-J. Lin, J. Chin. Chem. Soc., 2003, 50, 917-926.

[^1]: ${ }^{2}$ D. A. Evans, S. W. Tregay, C. S. Burgey, N. A. Paras and T. Vojkovsky, J. Am. Chem. Soc. 2000, 122, 7936-7943.

