Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

The Construction of Three C-P Bonds of P-Stereogenic Tertiary Phosphines Containing (*L*)-Menthyl

Jing-Jing Ye,[‡] Bing-Xia Yan,[‡] Ji-Ping Wang, Jing-Hong Wen, Yu Zhang, Mao-Ran Qiu, Qiang Li* and Chang-Qiu Zhao*

College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China

List of Contents

Part 1. The optimization of temperature for the stereoselective formation of $R_{\rm P}$ -5b/ $S_{\rm P}$ -5b'.

Part 2. Preparation of R_P -5 form the substitution of R-3 with Grignard reagents.

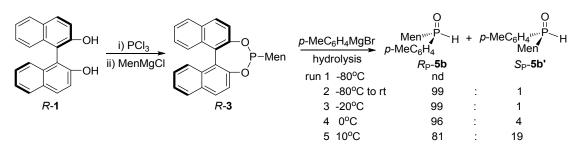
Part 3. Preparation of S_{P} -5' form the substitution of S-3a' with Grignard reagents.

Part 4. The reaction of aliphatic Grignard reagent with R-3 or S-3'.

Part 5. The reaction of borane-complex 10 or 10' with Grignard reagent.

Part 6. The preparation of 12 from the alkylation of 5 and/or 5'..

Part 7. Crystallographic information 4i, 4r' and 4s'.


Part 8. Selected photocopies of ¹H, ³¹P and ¹³C NMR spectroscopy.

General Chemistry:

¹H NMR spectrum were recorded on a 400-MHz spectrometer. Chemical shift for ¹H NMR spectrum (in parts per million) relative to internal tetramethylsilane (Me₄Si, $\delta = 0.00$ ppm) with CDCl₃. ¹³C NMR spectrum were recorded at 101 MHz. Chemical shifts for ¹³C NMR spectrum are reported (in parts per million) relative to CDCl₃ ($\delta = 77.0$ ppm). ³¹P NMR spectrum were recorded at 162 MHz, and chemical shifts reported (in parts per million) relative to external 85% phosphoric acid ($\delta = 0.0$ ppm). TLC plates were visualized by UV. All products were further characterized by HRMS (high resolution mass spectrum) or Elemental Analysis. Copies of their ¹H, ³¹P and ¹³C NMR spectrum were provided. Melting points were determined on a Reichert Thermovar melting point apparatus and are uncorrected.

Reagent and solvents:

All the solvents used were dried and freshly distilled prior to use. Toluene, chloroform and dichloromethane distilled under calcium hydride. THF, ether and hexane were distilled under sodium and benzophenone. Unless otherwise stated, the commercially available reagents were used without further purification. Some of the Grignard reagent was prepared according standard procedure in ca. 0.8 M solution in ether or THF. All reactions were carried out under N₂ atmosphere in dry glassware using Schlenk-line techniques. Air and moisture sensitive liquids and solutions were transferred *via* syringe.

Part 1. The optimization of temperature for the stereoselective formation of $R_{\rm P}$ -5b/ $S_{\rm P}$ -5b'.

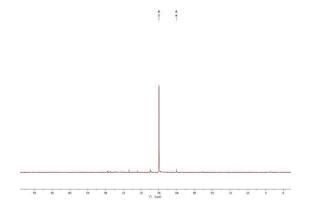
The preparation of binaphthoxy phosphorochloridate R-2

A 100 mL, single-necked round-bottomed flask charged with (*R*)-(+)-1,1'-bi(2-naphthol) (2.29 g, 8 mmol) and toluene (10 mL) followed by *N*, *N*-dimethylformamide (20 μ L, 0.26 mmol) under dry air, then the flask was cooled with ice-water added dropwise phosphorus trichloride (2 mL, 24 mmol). The mixture was stirred at 50 °C in an oil bath for 2 hours, during which time it became a colorless homogeneous solution. Toluene and excess phosphorus trichloride were removed via vacuum distillation and the DMF was azeotropically removed with toluene (2 × 10 mL) under high vacuum to afford the phosphochloridite *R*-**2** as an oily foam compound.

The preparation of binaphthoxy menthylphosphonites R-3

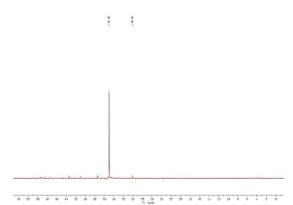
The above obtained *R*-2 (2.8 g, 8 mmol) was dissolved in tetrahydrofuran (15 mL) under the atmosphere of N₂. To the ice-water cooled solution, menthyl magnesium chloride (0.8 M solution in THF, 15 mL, 12 mol) was added. After warming to room temperature and stirring for 6 hours, the solution of *R*-3 (0.27 mol/L) was obtained, which was used in situ in the subsequent procedures. The subsequent preparation of *R*-10a from *R*-2 confirmed the yield was near to completely (vide infra).

Typical procedure for the reaction of 3 with 4b:

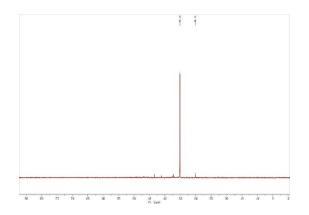

Run 1

Under the atmosphere of N₂, the solution of *R*-3 (3 mL, 0.8 mmol) was cooled to -80 °C, then a solution of *p*-tolyl magnesium bromide **4b** (0.8 M solution in THF, 1.2 mL, 0.96 mmol) was added dropwise. After the mixture was stirred at -80 °C for 4 hours, diluted hydrochloric acid (7%, 1 mL) was added, and the mixture was heated with stirring at 50 °C for 6 hours. The mixture was extracted with ether (20 mL), washed with water (3 × 10 mL), dried over magnesium sulfate. The solution was analyzed with ³¹P NMR spectrum (ca. 0.5 mL solution was transferred to a NMR

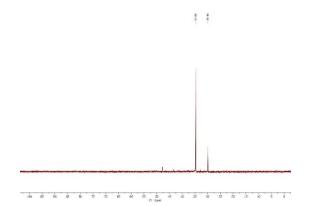
tube with syringe under nitrogen). No effective peak of 5b was detected on NMR spectrum.


Run 2

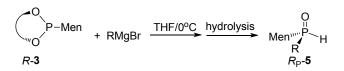
Under the atmosphere of N₂, the solution of *R*-3 (3 mL, 0.8 mmol) was cooled to -80 °C, then a solution of **4b** (0.8 M solution in THF, 1.2 mL, 0.96 mmol) was added dropwise. The mixture was stirred and warmed to room temperature within 4 hours, diluted hydrochloric acid (7%, 1 mL) was added. After stirred at 50 °C for 6 hours, the mixture was extracted with ether (20 mL), washed with water (3 × 10 mL), dried over magnesium sulfate. The solution was analyzed with ³¹P NMR spectrum, and two peaks at 34.96 (s, 99%) and 30.05 ppm (s, 1%) were observed.


Run 3

The reaction was carried out under similar procedure to Run 2, except **4b** was added at -20 °C. The solution was analyzed with 31 P NMR spectrum, and two peaks at 34.96 (s, 99%) and 30.05 ppm (s, 1%) was observed.


Run 4

The reaction was carried out under similar procedure to Run 2, except **4b** was added at 0 °C. The solution was analyzed with ³¹P NMR spectroscopy, and two peaks at 35.00 (s, 96%) and 30.09 ppm (s, 4%) were observed.



Run 5

The reaction was carried out under similar procedure to Run 2, except **4b** was added at 10 °C. The solution was analyzed with ³¹P NMR spectroscopy, and two peaks at 34.68 (s, 81%) and 29.90 ppm (s, 19%) was observed on ³¹P NMR spectrum.

Part 2. Preparation of R_P -5 form the substitution of R-3 with Grignard reagents.

Typical procedure:

Under atmosphere of N₂, the solution of *R*-3 (3 mL, 0.8 mmol) was cooled to 0 °C, then a solution of **4a** (0.8 M solution in THF, 1.2 mL, 0.96 mmol) was added dropwise. The mixture was stirred at the same temperature for 4 hours, then diluted hydrochloric acid (7%, 1mL) was added, and the mixture was stirred at 50 °C for 6 hours. After cooling to room temperature, the mixture was extracted with ether (20 mL), washed with water (3 × 10 mL), dried over magnesium sulfate. After removing solvent, the residue was analyzed with NMR spectrum, and purified with column chromatography on silica gel (petroleum ether/ ethyl acetate = 4/1) to afford **5a**.

$R_{\rm P}$ -(-)-Menthyl phenylphosphine oxide (5a)

The crude **5a** was obtained from phenyl magnesium bromide (0.8 M solution in (-)-Men $\stackrel{\text{VP}}{\text{Ph}}$ H THF) in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically pure **5a** was obtained as a white solid (152.2 mg, 72%, >99:1 dr) from column chromatography, m.p.157.2 – 158.7 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 33.88 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.70 (dd, *J*=11.9, 7.4, 2H), 7.53 (dd, *J*=14.3, 6.2, 3H), 7.46 (d, *J*=115.0, 1H), 2.08 (dd, *J*=28.5, 17.4, 3H), 1.70 (s, 2H), 1.44 (d, *J*=11.5, 2H), 1.08 (dt, *J*=27.0, 11.0, 2H), 0.87 (dt, *J*=21.9, 10.8, 7H), 0.62 (d, *J*=6.7, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 132.03 (d, *J*=2.9), 130.96 (d, *J*=90.6), 130.13 (s), 130.02 (s), 128.69 (s), 128.57 (s), 42.68 (d, *J*=2.5), 40.76 (d, *J*=67.4), 34.89 (d, *J*=1.6), 34.10 (d, *J*=1.3), 32.96 (d, *J*=14.2), 28.60 (d, *J*=4.0), 24.25 (d, *J*=12.9), 22.34 (s), 21.29 (s), 15.09 (s); HRMS (ESI⁺) Calcd. for C₁₆H₂₅OP [M⁺]: 264.1643, Found: 264.1620.

$R_{\rm P}$ -(-)-Menthyl *p*-tolylphosphine oxide (5b)

The optically pure **5b** was obtained as a white solid (178.1 mg, 80%, >99:1 dr) (-)-Men' $\stackrel{,}{\checkmark}_{A}^{H}$ from column chromatography and recrystallization with dichloromethane and petroleum ether (60-90 °C), m.p. 125.1 – 126.8 °C; ³¹P NMR (162 MHz,

CDCl₃) $\delta = 33.31$ (s); ¹**H NMR (400 MHz, CDCl₃)** $\delta = 7.58$ (dd, *J*=12.4, 7.9, 2H), 7.44 (d, *J*=115.0, 1H), 7.31 (d, *J*=6.8, 2H), 2.42 (s, 3H), 2.15 (dt, *J*=22.1, 11.1, 1H), 2.06 (dd, *J*=21.5, 10.7, 2H), 1.69 (dd, *J*=13.0, 6.4, 2H), 1.40 (dd, *J*=11.2, 3.2, 2H), 1.15 – 0.97 (m, 2H), 0.89 (t, *J*=6.7, 6H), 0.82 (dd, *J*=17.2, 7.7, 1H), 0.64 (d, *J*=6.8, 3H); ¹³**C** {¹**H**} **NMR (101 MHz, CDCl₃)** $\delta = 142.52$ (d, *J*=2.9), 130.21 (s), 130.10 (s), 129.46 (s), 129.34 (s), 127.55 (d, *J*=93.2), 42.76 (d, *J*=2.4), 40.82 (d, *J*=67.6), 34.72 (d, *J*=1.9), 34.19 (s), 33.00 (d, *J*=14.1), 28.56 (d, *J*=4.0), 25.66 (d, *J*=803.0), 24.32 (d, *J*=12.9), 22.35 (s), 21.30 (s), 15.16 (s); **HRMS (ESI**⁺) Calcd. for C₁₇H₂₇OPNa [M⁺+Na]: 301.1697, Found: 301.1694.

$R_{\rm P}$ -(-)-Menthyl *o*-tolylphosphine oxide (5c)

The crude **5c** was obtained from *o*-tolyl magnesium bromide (0.8 M solution in (-)-Men' $\stackrel{"P}{4}$ H THF) in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically o-MeC₆H₄ pure **5c** was obtained as a pale yellow oil (106.8 mg, 48%, >99:1 dr) from

column chromatography; ³¹P NMR (162 MHz, CDCl₃) δ = 38.03 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (dd, *J*=14.1, 7.3, 1H), 7.43 (t, *J*=7.4, 1H), 7.37 - 7.22 (m, 2H), 7.34 (d, *J*=114.0, 1H), 2.52 (s, 3H), 2.36 - 2.25 (m, 1H), 2.02 (dd, *J*=18.3, 7.8, 1H), 1.80 - 1.65 (m, 4H), 1.23 (ddd,

J=20.3, 12.9, 7.6, 1H), 1.08 – 1.00 (m, 1H), 0.89 (dd, *J*=13.9, 8.0, 8H), 0.50 (d, *J*=6.8, 3H); ¹³C {¹H} **NMR (101 MHz, CDCl₃)** δ = 139.81 (d, *J*=10.0), 131.81 (d, *J*=2.6), 131.66 (d, *J*=10.3), 131.05 (d, *J*=10.1), 130.18(d, *J*=89.0), 125.95 (d, *J*=11.9), 43.25 (d, *J*=3.0), 40.20 (d, *J*=67.2), 36.51 (s), 34.14 (s), 33.16 (d, *J*=15.3), 28.71 (d, *J*=2.9), 24.39 (d, *J*=13.0), 22.42 (s), 21.48 (s), 20.31 (d, *J*=5.7), 15.09 (s); **HRMS (ESI**⁺) Calcd. for C₁₇H₂₇OPNa [M+Na ⁺]: 301.1697, Found: 301.1717.

$R_{\rm P}$ -(-)-Menthyl *p*-methoxyphenylphosphine oxide (5d)

(-)-Men^{v, P}, H *p*-MeOC₄H₆ The crude **5d** was obtained from *p*-methoxyphenyl magnesium bromide (0.8 M solution in THF) in a ratio of 97:3 (estimated by ³¹P-NMR spectrum), and the optically pure **5d** was obtained as a white solid (193.0 mg, 82%, 99:1 dr)


from column chromatography, m.p. 115.6-120.2 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 32.92 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.73 – 7.54 (m, 2H), 7.44 (d, *J*=114.0, 1H), 7.02 (d, *J*=8.0, 2H), 3.87 (s, 3H), 2.09 (dd, *J*=30.5, 16.9, 3H), 1.70 (s, 2H), 1.40 (s, 2H), 1.15 – 0.96 (m, 2H), 0.85 (dt, *J*=23.9, 9.3, 7H), 0.66 (d, *J*=6.7, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 162.50 (s), 131.98 (s), 131.87 (s), 121.81 (d, *J*=96.0), 114.33 (s), 114.20 (s), 55.32 (s), 42.77 (d, *J*=2.3), 40.85 (d, *J*=68.1), 34.57 (s), 34.17 (s), 32.97 (d, *J*=14.1), 28.54 (d, *J*=4.0), 24.29 (d, *J*=12.9), 22.38 (s), 21.33 (s), 15.18 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₈O₂P [M+H⁺]: 295.1827, Found: 295.1865.

$R_{\rm P}$ -(-)-Menthyl *o*-methoxyphenylphosphine oxide (5e)

The crude **5e** was obtained from *o*-methoxyphenyl magnesium bromide (0.8 M o-MeOC₆H₄ solution in THF) in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically pure **5e** was obtained as a white solid (197.7 mg, 84%, >99:1 dr) from

column chromatography, m.p. 89.5 – 94.0 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 29.83 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.84 (dd, *J*=12.7, 7.5, 1H), 7.51 (t, *J*=7.8, 1H), 7.36 (d, *J*=119.0, 1H), 7.12 (t, *J*=7.3, 1H), 6.91 (dd, *J*=8.2, 5.6, 1H), 3.89 (s, 3H), 2.16 – 1.93 (m, 3H), 1.72 (d, *J*=9.6, 3H), 1.39 (dd, *J*=11.8, 6.9, 2H), 1.01 (d, *J*=11.4, 1H), 0.93 (t, *J*=8.3, 4H), 0.85 (d, *J*=6.8, 3H), 0.37 (d, *J*=6.8, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 159.86 (d, *J*=4.9), 133.54 (s), 133.24 (d, *J*=5.0), 121.28 (d, *J*=10.7), 120.52 (s), 110.03 (d, *J*=6.0), 55.51 (s), 42.07 (d, *J*=3.5), 39.87 (d, *J*=70.1), 36.66 (s), 34.22 (s), 33.29 (d, *J*=15.8), 28.69 (d, *J*=3.5), 24.25 (d, *J*=13.2), 22.47 (s), 21.45 (s), 14.85 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₈O₂P [M+H⁺]: 295.1827, Found: 295.1870.

$R_{\rm P}$ -(-)-Menthyl *m*-methoxyphenylphosphine oxide (5f)

dr) from column chromatography; ³¹P NMR (162 MHz, CDCl₃) δ = 34.41 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.42 – 7.32 (m, 1H), 7.37 (d, *J*=116.0, 1H), 7.18 (dd, *J*=11.9, 9.2, 2H), 7.02 (d, *J*=8.1, 1H), 3.79 (s, 3H), 2.11 (d, *J*=2.3, 1H), 2.00 (dd, *J*=12.5, 8.9, 2H), 1.67 (d, *J*=10.1, 2H), 1.42 (d, *J*=3.1, 2H), 1.11 – 0.94 (m, 2H), 0.85 (dd, *J*=6.6, 3.2, 6H), 0.81 – 0.73 (m, 1H), 0.58 (d, *J*=6.8, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 159.64 (d, *J*=14.6), 132.11 (d, *J*=89.6), 129.89 (d, *J*=14.3), 122.03 (d, *J*=10.8), 118.27 (d, *J*=2.7), 114.88 (d, *J*=11.1), 55.45 (s), 42.66 (d, *J*=2.3), 40.75 (d, *J*=67.2), 34.88 (s), 34.09 (s), 32.96 (d, *J*=14.3), 28.67 (d, *J*=3.9), 24.26 (d, *J*=13.0), 22.35 (s), 21.32 (s), 15.17 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₈O₂P [M+H⁺]: 295.1827, Found: 295.1867.

*R*_P-(-)-Menthyl [1,1'-biphenyl]-4-ylphosphine oxide (5g)

The optically pure **5g** was obtained as a white solid, m.p. $184.9 - 187.3 \,^{\circ}C; \,^{31}P$ (-)-Men', H p-PhC₆H₄
NMR (162 MHz, CDCl₃) $\delta = 32.71 \,^{\circ}(s); \,^{1}H \,^{NMR}$ (400 MHz, CDCl₃) $\delta = 7.81$ $-7.70 \,^{(m, 4H)}, 7.64 \,^{(d, J=7.9, 2H)}, 7.52 \,^{(d, J=115.0, 1H)}, 7.48 \,^{(t, J=7.5, 2H)}, 7.42 \,^{(d, J=7.4, 1H)}, 2.18 \,^{(dd, J=13.7, 6.9, 1H)}, 2.09 \,^{(d, J=10.0, 2H)}, 1.72 \,^{(d, J=10.3, 2H)}, 1.45 \,^{(dd, J=20.7, 9.2, 2H)}, 1.19 - 0.98 \,^{(m, 2H)}, 0.98 - 0.77 \,^{(m, 7H)}, 0.66 \,^{(d, J=6.8, 3H)}; \,^{13}C \,^{1}H \,^{1}$ NMR (101 MHz, CDCl₃) $\delta = 145.12 - 144.49 \,^{(m)}, 139.96 - 139.58 \,^{(m)}, 130.74 \,^{(s)}, 130.63 \,^{(s)}, 129.97 - 129.84 \,^{(m)}, 128.96 \,^{(s, 2C)}, 128.20 \,^{(s)}, 127.37 \,^{(s)}, 127.23 \,^{(s, 3C)}, 42.76 \,^{(s)}, 40.87 \,^{(d, J=67.5)}, 34.77 \,^{(s)}, 34.16 \,^{(s)}, 33.04 \,^{(d, J=14.2)}, 28.69 \,^{(d, J=4.0)}, 24.33 \,^{(d, J=12.8)}, 22.39 \,^{(s)}, 21.35 \,^{(s)}, 15.21 \,^{(s)}; HRMS (ESI^+) Calcd. for C₂₂H₃₀OP [M+H^+]: 341.2034, Found: 341.2069.$

Preparation of 5g in gram scale

Under the atmosphere of N₂, the solution *R***-3** (30 mL, 8.0 mmol) was cooled to -5 °C, then a solution of 1,1'-biphenyl-4-yl magnesium bromide (0.8 M solution in THF, 15 mL, 12 mmol) was added dropwise. After stirring at the same temperature for 6 hours, diluted hydrochloric acid (7%, 5 mL) was added, and the mixture was stirred at 50 °C for 6 hours. After cooling, the mixture was extracted with dichloromethane (3 × 50 mL), washed with water (3 × 30 mL), dried over magnesium sulfate. The residue was analyzed with NMR spectrum, and the crude product was

obtained in a ratio of 99:1 (estimated by ³¹P-NMR spectrum). After recrystallization with ether, (*R*)-(+)-1,1'-bi(2-naphthol) (1.28 g, 56%) was recovered. The mother liquid was purified with column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1) to afford optically pure **5g** (1.77g, 65%, >99:1 dr), which had the same spectrum data to that obtained from the typical procedure.

*R*_P-(-)-Menthyl *p*-bromophenylphosphine oxide (5h)

The crude **5h** was obtained from *p*-bromophenyl magnesium bromide (0.8 M (-)-Men', H *p*-BrC₄H₆ solution in THF) in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically pure **5h** was obtained as a white solid (71.15 mg, 26%, >99:1 dr) from

column chromatography, m.p. 135.7 – 138.4 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 31.96 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.64 (dd, J=8.4, 2.0, 2H), 7.55 (dd, J=11.9, 8.4, 2H), 7.41 (d, J=57, 1H), 2.03 (ddd, J=23.3, 10.1, 7.4, 3H), 1.75 – 1.64 (m, 2H), 1.47 – 1.32 (m, 2H), 1.12 – 0.97 (m, 2H), 0.88 (t, J=6.3, 6H), 0.84 – 0.78 (m, 1H), 0.61 (d, J=6.8, 3H) ; ¹³C {¹H} NMR (101 MHz, CDCl₃) δ =132.07 (s), 131.95 (s), 131.70 (s), 131.59 (s), 130.43 (s), 129.53 (s), 127.08 (d, J=3.5), 42.72 (d, J=2.5), 40.75 (d, J=67.6), 34.82 (s), 34.07 (s), 32.98 (d, J=14.3), 28.73 (d, J=4.0), 24.27 (d, J=13.0), 22.33 (s), 21.30 (s), 15.17 (s); HRMS (ESI⁺) Calcd. for C₁₆H₂₅BrOP [M+H⁺]: 343.0826, Found: 343.0846.

*R*_P-(-)-Menthyl *p*-chlorophenylphosphine oxide (5i)

(-)-Men $\checkmark P$ -CIC₄H₆ The crude **5i** was obtained from *p*-chlorophenyl magnesium bromide (0.8 M solution in THF) in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically pure **5i** was obtained as a white solid (159.8 mg, 67%, >99:1 dr) from

column chromatography, m.p. 127.9 – 131.9 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 31.96 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.64 (dd, J=11.9, 8.4, 2H), 7.50 (dd, J=8.3, 1.8, 2H), 7.44 (d, J=116, 1H), 2.06 (dd, J=22.7, 9.5, 3H), 1.71 (t, J=10.1, 2H), 1.51 – 1.34 (m, 2H), 1.15 – 0.98 (m, 2H), 0.90 (t, J=6.3, 6H), 0.87 – 0.78 (m, 1H), 0.63 (d, J=6.8, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 138.58 (s), 131.58 (s), 131.47 (s), 129.95 (s), 129.15 (s), 129.02 (s), 42.75 (d, J=2.6), 40.80 (d, J=67.7), 34.88 (s), 34.09 (s), 32.99 (d, J=14.3), 28.71 (d, J=4.0), 24.28 (d, J=13.0), 22.32 (s), 21.29 (s), 15.16 (s); HRMS (ESI⁺) Calcd. for C₁₆H₂₅ClOP [M+H⁺]: 299.1332, Found: 299.1346. *R*_P-(-)-Menthyl 1-naphthalenylphosphine oxide (5j)

(-)-Men¹¹, H 1-nap 2.4mL, 0.96mmol), the mixture was stirred at the 0 °C for 4 hours, then warmed to the room temperature and stirred for 12 hours. The crude **5j** was obtained in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically pure **5j** was obtained as a white solid (145.8 mg, 58%, >99:1 dr) from column chromatography, m.p. 126.1 – 130.6 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 39.05 (s); ¹H NMR (400 MHz, CDCl₃) δ = 8.25 (d, *J*=8.4, 1H), 8.08 – 7.92 (m, 3H), 7.69 – 7.53 (m, 3H), 7.66 (d, *J*=111.0, 1H), 2.41 (d, *J*=6.6, 1H), 2.23 (d, *J*=10.0, 1H), 1.74 (dd, *J*=21.9, 8.8, 4H), 1.23 (dd, *J*=20.7, 12.2, 1H), 0.99 (d, *J*=13.5, 2H), 0.88 (dd, *J*=18.8, 6.5, 7H), 0.42 (d, *J*=6.7, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 133.39 (d, *J*=8.8), 132.84 (d, *J*=2.9), 132.63 (d, *J*=9.5), 131.61 (d, *J*=9.9), 129.30 (s), 127.92 (d, *J*=87), 127.53 (s), 126.51 (s), 124.85 (d, *J*=13.6), 124.40 (d, *J*=6.7), 43.40 (d, *J*=2.9), 40.83 (d, *J*=67.1), 36.53 (s), 34.11 (s), 33.04 (d, *J*=15.3), 28.74 (d, *J*=3.0), 24.37 (d, *J*=13.2), 22.40 (s), 21.48 (s), 15.16 (s); HRMS (ESI⁺) Calcd. for C₂₀H₂₈OP [M+H⁺]: 315.1878, Found: 315.1918.

$R_{\rm P}$ -(-)-Menthyl 2-naphthalenylphosphine oxide (5k)

Under similar procedure to **5j**, the crude **5k** was obtained from 2-naphthalenyl magnesium bromide (0.4 M solution in THF) in a ratio of 99:1 (estimated by ³¹P-NMR spectrum), and the optically pure **5k** was obtained as a white solid (173.4 mg, 69%, >99:1 dr) from column chromatography, m.p. 145.7 – 148.1 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 32.89 (s); ¹H NMR (400 MHz, CDCl₃) δ = 8.31 (d, *J*=14.4, 1H), 8.00 – 7.83 (m, 3H), 7.71 – 7.51 (m, 3H), 7.60 (d, *J*=115.0, 1H), 2.29 – 1.98 (m, 3H), 1.71 (d, *J*=10.2, 2H), 1.41 (s, 1H), 1.27 – 0.95 (m, 3H), 0.90 (d, *J*=6.6, 6H), 0.80 (dd, *J*=18.6, 8.3, 1H), 0.61 (dd, *J*=6.7, 1.6, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 134.84 (d, *J*=2.4), 132.55 (d, *J*=13.1), 132.19 (d, *J*=9.3), 128.72 (s), 128.49 (d, *J*=12.0), 128.13 (s), 127.94 (s), 127.67 (s), 127.02 (s), 124.78 (d, *J*=11.7), 42.75 (d, *J*=2.5), 40.81 (d, *J*=67.4), 34.99 (s), 34.11 (s), 33.02 (d, *J*=14.3), 28.73 (d, *J*=3.9), 24.32 (d, *J*=12.9), 22.36 (s), 21.33 (s), 15.21 (s); HRMS (ESI⁺) Calcd. for C₂₀H₂₈OP [M+H⁺]: 315.1878, Found: 315.1918.

(R_P/S_P) -(-)-Menthyl 2- chlorobenzylphosphine oxide (5l/5l')

o-CIC₆H₄H₂C^{WP}₄H₄C^{WP}₄H₄C

obtained as a pale yellow oil (199.8 mg, 80%, 14:86 dr), ³¹P NMR (162 MHz, CDCl₃) δ = 35.03

(s, 14%), 33.67 (s, 86%); ¹**H** NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ = 7.43 – 7.38 (m, 1H), 7.36 (d, *J* = 7.3 Hz, 1H), 7.26 – 7.19 (m, 2H), 7.02 (dt, *J* = 115 Hz, 3.8 Hz, 1H), 3.52 – 3.36 (m, 1H), 3.33 (dt, *J* = 6.7, 4.2 Hz, 1H), 2.20 (dd, *J* = 13.1, 6.3 Hz, 1H), 1.93 (d, *J* = 7.3 Hz, 1H), 1.77 (d, *J* = 11.1 Hz, 2H), 1.68 (d, *J* = 7.7 Hz, 2H), 1.38 (d, *J* = 17.1 Hz, 1H), 1.35 – 1.21 (m, 1H), 1.06 (d, *J* = 12.3 Hz, 1H), 0.94 (dd, *J* = 16.0, 6.6 Hz, 7H), 0.85 (d, *J* = 6.8 Hz, 1H), 0.64 (d, *J* = 6.8 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 133.68 (s), 131.64 (d, *J*=5.1), 130.33 (d, *J*=6.9), 129.87 (d, *J*=2.8), 128.63 (d, *J*=3.3), 127.41 (d, *J*=2.8), 77.18 (d, *J*=32.0), 77.02 – 76.79 (m), 76.71 (s), 41.66 (d, *J*=3.6), 39.36 (s), 38.72 (s), 34.32 (s), 32.63 (dd, *J*=14.0, 8.2), 31.96 (s), 31.39 (s), 28.07 (d, *J*=4.9), 24.35 (d, *J*=11.9), 22.44 (d, *J*=13.8), 21.28 (s), 15.40 (s), 15.07 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₇CIOP [M+H⁺]: 313.1488, Found: 313.1526.

(*R*_P/*S*_P)-(-)-Menthyl 3-methoxybenzylphosphine oxide (5m/5m')

The crude **5m/5m**' was obtained from 3-methoxybenzyl magnesium m-MeOC₆H₄H₂C^{··P}₄H₁ (-)-Men⁻ The crude **5m/5m**' was obtained from 3-methoxybenzyl magnesium bromide (0.8 M solution in Et₂O) in a ratio of 38:62 (estimated by ³¹P-NMR spectrum). After isolation with column chromatography, **5m/5m**' was obtained as a pale yellow oil (207.1 mg, 84%, 39:61 dr), ³¹P NMR (162 MHz, CDCl₃) δ = 41.46 (s, 38%), 37.15 (s, 62%); ¹H NMR (400 MHz, CDCl₃) δ = 7.24 (t, *J* =7.7, 1H), 6.88 (m, 1H), 6.80 (dd, *J*=19.1, 10.9, 3H), 3.78 (s, 2H), 3.57 (s, 2H), 3.32 (d, *J*=38.0, 1H), 3.15 – 3.00 (m, 1H), 2.04 – 1.83 (m, 3H), 1.70 (d, *J*=29.2, 2H), 1.47 (s, 1H), 1.38 – 1.16 (m, 2H), 1.10 – 0.99 (m, 1H), 0.97 – 0.80 (m, 9H), 0.61 (d, *J*=6.5, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 159.97 (s), 133.14 (d, *J*=6.4), 130.00 (dd, *J*=7.2, 2.6), 121.57 (dd, *J*=17.5, 5.7), 114.96 (dd, *J*=21.1, 5.6), 112.61 (s), 77.41 (s), 77.10 (s), 76.78 (s), 55.21 (s), 50.39 (s), 43.24 (d, *J*=2.2), 41.50 (d, *J*=3.5), 39.41 (s), 38.79 (s), 38.21 (s), 37.56 (s), 35.14 (s), 34.43 (d, *J*=31.2), 34.20 – 34.10 (m), 34.07 (s), 33.50 (s), 32.78 (dd, *J*=30.5, 13.6), 32.30 (s), 28.58 (d, *J*=4.1), 27.90 (d, *J*=5.0), 24.34 (dd, *J*=23.6, 12.2), 22.40 (d, *J*=18.1), 21.32 (d, *J*=10.3), 15.49 (s), 15.11 (s); HRMS (ESI⁺) Calcd. for C₁₈H₃₀O₂P [M+H⁺]: 309.1983, Found: 309.1998.

(R_P/S_P) -(-)-Menthyl 2-methylbenzylphosphine oxide (5n/5n')

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} O \\ H_{4}H_{2}C \\ (-)-Men \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{The crude 5n/5n' was obtained from 2-methylbenzyl magnesium} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{bromide (0.8 M solution in Et}_{2}O) \text{ in a ratio of 40:60 (estimated by ^{31}P-} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{NMR spectrum).} \end{array} \\ \begin{array}{l} \text{After isolation with column chromatography, 5n/5n' was obtained as a pale} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{yellow oil (137.9 mg, 59\%, 35:65 dr), $^{31}P \ NMR (162 \ MHz, CDCl_3) \ \delta = 38.50 \ (s, 35\%), 35.16 \ (s, 35\%) \end{array} \\ \end{array}$

65%); ¹H NMR (400 MHz, CDCl₃) δ = 7.16 (dd, *J*=10.1, 5.4, 4H), 6.92 (dt, *J*=113.0,4.0, 0.6H), 6.88 (dt, *J*=114.0 3.8, 0.4H), 3.40 – 3.21 (m, 1H), 3.11 (ddd, *J*=19.1, 13.2, 6.1, 1H), 2.38 (s, 1H), 2.36 (s, 2H), 2.24 – 2.15 (m, 1H), 2.09 – 1.97 (m, 1H), 1.92 (s, 1H), 1.76 (d, *J*=9.6, 2H), 1.65 (dd, *J*=22.9, 10.7, 1H), 1.37 (d, *J*=10.8, 1H), 1.33 – 1.20 (m, 1H), 1.13 – 0.99 (m, 1H), 0.98 – 0.89 (m, 7H), 0.86 (d, *J*=6.8, 1H), 0.60 (d, *J*=6.8, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 136.45 (d, *J*=5.4), 130.96 – 130.51 (m), 130.42 (d, *J*=6.7), 130.01 (dd, *J*=10.7, 5.3), 127.27 (s), 126.53 (d, *J*=3.1), 77.36 (s), 77.04 (s), 76.73 (s), 43.40 (s), 41.62 (d, *J*=3.5), 39.98 (s), 39.36 (s), 38.83 (s), 38.19 (s), 34.33 (s), 33.16 – 32.36 (m), 31.62 (s), 31.05 (s), 28.57 (d, *J*=4.4), 27.95 (d, *J*=4.9), 24.41 (dd, *J*=18.8, 12.0), 22.45 (d, *J*=16.2), 21.35 (d, *J*=11.6), 20.16 (d, *J*=11.6), 15.48 (s), 15.06 (s); HRMS (ESI⁺) Calcd. for C₁₈H₃₀OP [M+H⁺]: 293.2034, Found: 293.2084.

Part 3. Preparation of S_{P} -5' form the substitution of S-3a' with Grignard reagents.

The preparation of binaphthoxy phosphorochloridate S-2'

A 100-mL, single-necked round-bottomed flask charged with *S*-1 (2.29 g, 8 mmol) and toluene (10 mL) followed by *N*, *N*-dimethylformamide (20 μ L, 0.26 mmol) under dry air, then the flask was cooled with ice-water added dropwise phosphorus trichloride (2 mL, 24 mmol). The mixture was stirred at 50 °C in an oil bath for 2 hours, during which time it became a colorless homogeneous solution. Toluene and excess phosphorus trichloride were removed via vacuum distillation and the DMF was azeotropically removed with toluene (2×10 mL) under high vacuum to afford the phosphochloridite *S*-2' as an oily foam compound.

The preparation of binaphthoxy menthylphosphonites S-3'

The above obtained *R*-2' (2.8 g, 8 mmol) was dissolved in tetrahydrofuran (15 mL) under the atmosphere of N_2 . To the ice-cooled solution, menthyl magnesium chloride (0.8 M solution in THF, 15 mL, 12 mol) was added dropwise. After warming to room temperature and stirring for 6 hours, the solution of *S*-3' (0.27 mol/L) was used in situ in the subsequent procedures.

The substitution of S-3' with Grignard reagents to afford S_P-5'.

Typical procedure: Under the atmosphere of N₂, the solution of *S*-3 (3 mL, 0.8 mmol) was cooled to 0 °C, a solution of phenyl magnesium bromide (0.8 M solution in THF, 1.2 mL, 0.96 mmol) was added dropwise. After stirring at the same temperature for 4 hours, diluted hydrochloric acid (7%, 1 mL) was added, and the mixture was stirred at 50 °C for 6 hours. After cooling to room temperature, the mixture was extracted with ether (3×20 mL), washed with water (3×10 mL), dried over magnesium sulfate. After removing solvent, the residue was analyzed with NMR spectroscopy, then was purified with column chromatography on silica gel (petroleum ether/ ethyl acetate = 4/1) to afford 5a'.

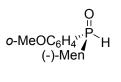
$S_{\rm P}$ -(-)-Menthyl phenylphosphine oxide 5a'

The crude **5a**' was obtained in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure **5a**' was obtained as a white solid (143.7 mg, 68%, <1:99 dr) from column chromatography, m.p. 94.3–97.2 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 27.95 (s); ¹H NMR (400 MHz, CDCl₃) 7.67 (dd, *J*=12.0, 7.4, 2H), 7.62 (d, *J*=115.0, 1H)7.61 – 7.46 (m, 3H), 2.48 (d, *J*=6.1, 1H), 2.05 (s, 1H), 1.86 – 1.64 (m, 4H), 1.48 (s, 1H), 1.25 (s, 1H), 1.18 – 1.05 (m, 2H), 1.01 (dd, *J*=6.7, 1.4, 3H), 0.92 (dd, *J*=13.1, 11.6, 3H), 0.82 (dd, *J*=6.3, 1.2, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 132.06 (s), 130.32 (s), 130.22 (s), 128.80 (s), 129.92 (d, *J*=93.0) 128.68 (s), 41.75 (d, *J*=3.4), 41.08 (d, *J*=68.7), 34.31 (s), 32.72 (d, *J*=14.1), 31.97 (s), 28.16 (d, *J*=4.8), 24.31 (d, *J*=12.3), 22.37 (s), 21.41 (s), 15.55 (s); HRMS (ESI⁺) Calcd. for C₁₆H₂₅OPNa [M+Na⁺]: 287.1541, Found: 287.1584.

*S*_P-(-)-Menthyl *p*-tolylphosphine oxide (5b')

The crude **5b**' was obtained from *p*-tolyl magnesium bromide (0.8 M solution $p-MeC_4H_6$, P in THF) in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure **5b**' was obtained as a pale yellow solid (164.5 mg, 74%, <1:99 dr) from column chromatography, m.p. 81.0 – 87.1 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 28.27 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.60, (d, *J*=115 Hz, 1H), 7.55 (dd, *J*=12.4, 7.8 Hz, 2H), 7.33 (d, *J*=6.3 Hz, 2H), 2.43 (s, 3H), 1.83 – 1.61 (m, 5H), 1.48 (d, *J*=7.1 Hz, 1H), 1.25 (s, 1H), 1.17 – 1.02 (m, 2H), 0.98 (t, *J*=8.2 Hz, 3H), 0.93 (d, *J*=6.8 Hz, 4H), 0.82 (d, *J*=6.4 Hz, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 142.50 (s), 130.32 (s), 130.21 (s), 129.55 (s), 129.42 (s), 126.52 (d, *J*=96.0), 41.78 (d, *J*=3.3), 41.16 (d, *J*=68.8), 34.33 (s), 32.74 (d, *J*=14.2), 32.00 (s), 28.13 (d, *J*=4.8), 24.32 (d, *J*=12.3), 22.37 (s), 21.66 (s), 21.40 (s), 15.55 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₇OPNa [M+Na⁺]:

*S*_P-(-)-Menthyl *o*-tolylphosphine oxide (5c')


o-MeC₆H₄ $\stackrel{\text{WP}}{_{(-)}}$ H in THF) in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure **5c'** was obtained as a pale yellow oil (191.4 mg, 86%, <1:99 dr)

from column chromatography; ³¹P NMR (162 MHz, CDCl₃) $\delta = 21.52$ (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.84$ (d, *J*=114.0, 1H), 7.79 (dd, *J*=13.2, 7.5, 1H), 7.45 (t, *J*=7.5, 1H), 7.36 (t, *J*=7.5, 1H), 7.24 (d, *J*=7.0, 1H), 2.47 (s, 3H), 1.93 – 1.68 (m, 5H), 1.34 (s, 1H), 1.25 (dt, *J*=11.9, 5.4, 2H), 1.10 (s, 1H), 1.05 (d, *J*=6.8, 3H), 0.99 (d, *J*=10.3, 1H), 0.92 (d, *J*=6.9, 3H), 0.80 (d, *J*=5.8, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 139.42$ (d, *J*=10.0), 132.55 (d, *J*=8.8), 131.79 (d, *J*=2.6), 131.03 (d, *J*=10.2), 128.15 (d, *J*=91.8), 126.09 (d, *J*=11.4), 41.79 (d, *J*=3.6), 40.06 (d, *J*=69.1), 34.34 (s), 32.82 (d, *J*=13.6), 31.76 (d, *J*=3.7), 27.98 (d, *J*=5.1), 24.31 (d, *J*=12.0), 22.37 (s), 21.52 (s), 20.13 (d, *J*=6.2), 15.74 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₇OPNa [M+Na⁺]:301.1697, Found: 301.1701.

S_P-(-)-Menthyl *p*-methoxyphenylphosphine oxide (5d')

The crude **5d'** was obtained from *p*-methoxyphenyl magnesium bromide (-)-Men H (0.8 M solution in THF) in a ratio of 4:96 (estimated by ³¹P-NMR spectrum), and the optically pure **5d'** was obtained as a pale yellow solid (200.0 mg, 85%, 3:97 dr) from column chromatography, m.p. 37.5 - 42.7 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 32.62$ (s, 3%), 28.24 (s, 97%); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.72$ (d, *J*=89.0, 1H), 7.59 (dd, *J*=12.0, 8.7, 2H), 7.03 (dd, *J*=8.7, 1.8, 2H), 3.87 (s, 3H), 2.48 (dd, *J*=6.5, 4.1, 1H), 1.76 (ddd, *J*=24.9, 12.4, 9.2, 4H), 1.50 (s, 1H), 1.26 (s, 1H), 1.12 – 1.04 (m, 2H), 0.99 (d, *J*=6.8, 3H), 0.91 (dd, *J*=13.8, 9.3, 4H), 0.83 (d, *J*=6.4, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 162.56$ (d, *J*=2.7), 132.09 (s), 131.97 (s), 120.83 (d, *J*=98.5), 114.43 (s), 114.30 (s), 55.33 (s), 41.84 (d, *J*=3.3), 41.27 (d, *J*=69.5), 34.35 (s), 32.76 (d, *J*=14.1), 32.09 (s), 28.13 (d, *J*=4.7), 24.34 (d, *J*=12.2), 22.38 (s), 21.40 (s), 15.56 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₈O₂P [M+H⁺]: 295.1827, Found: 295.1874.

*S*_P-(-)-Menthyl *o*-methoxyphenylphosphine oxide (5e')

The crude **5e**' was obtained from *o*-methoxyphenyl magnesium bromide (0.8 M solution in THF) in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure **5e**' was obtained as a pale yellow oil (190.6 mg, 81%,

<1:99 dr) from column chromatography; ³¹P NMR (162 MHz, CDCl₃) δ = 16.83 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (ddd, *J*=12.1, 7.4, 1.6, 1H), δ = 7.83 (d, *J*=120.0, 1H), 7.52 (dd, *J*=11.3, 4.3, 1H), 7.13 (t, *J*=7.1, 1H), 6.92 (dd, *J*=7.9, 5.7, 1H), 3.86 (s, 3H), 2.50 – 2.38 (m, 1H), 2.08 – 1.92 (m, 1H), 1.90 – 1.68 (m, 3H), 1.34 (s, 1H), 1.22 (dd, *J*=14.8, 9.2, 2H), 1.14 – 1.06 (m, 1H), 1.03 (d, *J*=6.7, 3H), 0.94 (d, *J*=6.9, 4H), 0.83 – 0.73 (m, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 159.38 (d, *J*=4.7), 134.23 (d, *J*=4.1), 133.52 (d, *J*=1.8), 121.15 (d, *J*=10.6), 117.63 (d, *J*=93.8), 110.07 (d, *J*=6.1), 55.40 (s), 41.35 (d, *J*=3.5), 39.16 (d, *J*=71.1), 34.44 (s), 32.60 (d, *J*=14.0), 31.69 (d, *J*=3.9), 28.02 (d, *J*=5.6), 24.26 (d, *J*=12.5), 22.35 (s), 21.38 (s), 15.31 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₈O₂P [M+H⁺]: 295.1827, Found: 295.1869.

$S_{\rm P}$ -(-)-Menthyl *m*-methoxyphenylphosphine oxide (5f')

The crude **5f**^{*} was obtained from *m*-methoxyphenyl magnesium bromide (0.8 M solution in THF) in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure **5f**^{*} was obtained as a pale yellow oil (190.62 mg, 81%, <1:99 dr) from column chromatography; ³¹P NMR (162 MHz, CDCl₃) $\delta = 27.84$ (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.60$ (d, *J*=115.0 1H), 7.47 – 7.38 (m, 1H), 7.29 – 7.14 (m, 2H), 7.09 (d, *J*=8.1, 1H), 3.87 (s, 3H), 2.48 (s, 1H), 1.87 – 1.63 (m, 4H), 1.49 (s, 1H), 1.25 (s, 1H), 1.11 (dd, *J*=21.7, 9.2, 2H), 1.01 (d, *J*=6.7, 3H), 0.92 (t, *J*=12.5, 4H), 0.82 (d, *J*=6.3, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 159.73$ (d, *J*=15.0), 131.40 (d, *J*=91.0), 129.96 (d, *J*=14.4), 121.95 (d, *J*=10.8), 118.16 (d, *J*=2.7), 115.27 (d, *J*=10.9), 55.47 (s), 41.74 (s), 41.12 (d, *J*=68.5), 34.31 (s), 32.72 (d, *J*=14.2), 32.01 (s), 28.17 (d, *J*=4.9), 24.32 (d, *J*=12.3), 22.36 (s), 21.41 (s), 15.54 (s); HRMS (ESI⁺) Calcd. for C₁₇H₂₈O₂P [M+H⁺]: 295.1827, Found: 295.1869.

S_P-(-)-Menthyl [1,1'-biphenyl]-4-ylphosphine oxide (5g')

The crude 5g' was obtained from [1,1'-biphenyl]-4-yl magnesium bromide ρ -PhC₆H₄, P H (-)-Men H (0.8 M solution in THF) in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure 5g' was obtained as a white solid (145.0 mg, 54%, <1:99 dr) from column chromatography, m.p. 157.9-161.3 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 27.83 (s); ¹H NMR (400 MHz, CDCl₃) δ = 8.25 (s, 0.5H), 7.73 (dd, *J*=9.9, 6.9, 4H), 7.67 – 7.60 (m, 2H), 7.48 (t, *J*=7.4, 2H), 7.41 (t, J=7.3, 1H), 7.10 (s, 0.5H), 2.51 (dd, J=8.6, 4.6, 1H), 1.90 – 1.80 (m, 1H), 1.79 – 1.66 (m, 3H), 1.54 (s, 1H), 1.27 (d, J=7.0, 1H), 1.13 (ddd, J=14.8, 9.9, 4.5, 2H), 1.02 (d, J=6.8, 3H), 0.95 (d, J=6.8, 3H), 0.90 (s, 1H), 0.84 (d, J=6.4, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 144.90 - 144.81$ (m), 139.87 – 139.79 (m), 130.85 (s), 130.75 (s), 128.97 (s, 2C), 128.18 (s), 128.04 (s), 127.47 (s), 127.35 (s), 127.25 (s, 2C), 41.80 (d, J=3.3), 41.20 (d, J=6.9), 34.33 (s), 32.77 (d, J=14.2), 32.05 (s), 28.21 (d, J=4.9), 24.35 (d, J=12.2), 22.39 (s), 21.43 (s), 15.59 (s); HRMS (ESI⁺) Calcd. for C₂₂H₃₀OP [M+H⁺]: 341.2034, Found: 341.2071.

S_P-(-)-Menthyl *p*-chlorophenylphosphine oxide (5i')

The crude **5i'** was obtained from *p*-chlorophenyl magnesium bromide (0.8 M solution in THF) in a ratio of 1:99 (estimated by ³¹P-NMR spectrum). After isolation, **5i'** was obtained as a white solid (207.5 mg, 87%, 5:99 dr) from column chromatography, m.p. 99.4-101.9 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 31.97 (s, 5%), 26.91 (s, 95%); ¹H NMR (400 MHz, CDCl₃) δ = 8.20 (s, 0.5H), 7.61 (dd, J=11.9, 8.4, 2H), 7.51 (dd, J=8.3, 2.0, 2H), 7.04 (s, 0.5H), 2.45 (d, J=2.6, 1H), 1.87 – 1.62 (m, 5H), 1.44 (s, 1H), 1.31 – 1.20 (m, 1H), 1.16 – 1.05 (m, 2H), 1.00 (d, J=6.8, 3H), 0.93 (d, J=6.9, 3H), 0.83 (d, J=6.4, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 138.61 (s), 131.73 (s), 131.62 (s), 129.23 (s), 129.11 (s), 128.93 – 127.89 (m), 41.80 (d, J=3.5), 41.12 (d, J=69.2), 34.27 (s), 32.73 (d, J=14.2), 31.99 (d, J=2.7), 28.22 (d, J=4.8), 24.31 (d, J=12.4), 22.32 (s), 21.37 (s), 15.55 (s); HRMS (ESI⁺) Calcd. for C₁₆H₂₅CIOP [M+H⁺]: 299.1332, Found: 299.1343.

S_P-(-)-Menthyl 1-naphthalenylphosphine oxide (5j')

After addition of 1-naphthalenyl magnesium bromide (0.4 M solution in THF, 2.4 1-nap¹/₁ H mL, 0.96 mmol), the mixture was stirred at the 0 °C for 4 hours, then warmed to the room temperature and stirred for 12 hours. The crude **5j**¹ was obtained in a ratio of 1:99 (estimated by ³¹P-NMR spectrum), and the optically pure **5j**¹ was obtained as a white solid (113.1 mg, 45%, <1:99 dr) from column chromatography, m.p. 110.6 – 106.1 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 22.54$ (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.20$ (d, *J*=115.0, 1H), 8.16 (d, *J*=8.1, 1H), 8.11 – 7.99 (m, 2H), 7.94 (s, 1H), 7.62 – 7.54 (m, 3H), 2.59 (d, *J*=6.4, 1H), 1.95 (s, 2H), 1.82 (d, *J*=9.3, 1H), 1.69 (d, *J*=12.3, 1H), 1.23 (d, *J*=17.4, 2H), 1.08 (dd, *J*=6.1, 3.3, 5H), 1.01 (dt, *J*=11.1, 5.6, 3H), 0.97 – 0.88 (m, 1H), 0.74 – 0.62 (m, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 133.32$ (d, *J*=8.9), 132.77 (d, *J*=2.9), 132.66 (d, *J*=9.6), 132.43 (d, *J*=8.4), 129.33 (s), 127.41 (s), 126.45 (s), 125.81 (d, *J*=90.8), 125.04 (d, *J*=13.0), 123.80 (d, *J*=7.3), 41.95 (d, *J*=3.5), 40.95 (d, *J*=69.4),
34.28 (s), 32.59 (d, *J*=13.6), 32.06 (d, *J*=3.6), 28.08 (d, *J*=5.1), 24.27 (d, *J*=12.1), 22.29 (s), 21.55 (s), 15.97 (s); HRMS (ESI⁺) Calcd. for C₂₀H₂₈OP [M+H⁺]:315.1878, Found: 315.1918.

*S*_P-(-)-Menthyl 2-naphthalenylphosphine oxide (5k')

2-nap[™]P_−H Under the similar procedure to prepare 5j', the crude 5k' was obtained from 2naphthalenyl magnesium bromide (0.4 M solution in THF) in a ratio of 1:99 (-)-Men (estimated by ³¹P-NMR spectrum), and the optically pure **5k**' was obtained as a white solid (165.9 66%. <1:99 dr) from column chromatography and recrystallization with mg, dichloromethane/petroleum ether (60-90 °C), m.p. 138.4 – 141.3 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 27.23$ (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.30$ (d, J=14.3, 1H), 7.94 (dd, J=21.7, 7.5, 3H), 7.78 (d, J=115.0, 1H), 7.67 - 7.54 (m, 3H), 2.67 - 2.46 (m, 1H), 1.88 (d, J=11.7, 1H), 1.81 - 1.63 (m, 3H), 1.49 (s, 1H), 1.34 – 1.10 (m, 3H), 1.01 (dd, J=17.6, 6.8, 6H), 0.91 (d, J=11.7, 1H), 0.78 (d, J=6.0, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 134.89$ (s), 132.72 (s), 132.63 (s), 128.70 (s), 128.60 (d, J=12.1), 128.11 (s), 127.97 (s), 127.05 (s), 124.69 (s), 124.57 (s), 41.80 (d, J=3.1), 41.11 (d, J=68.0), 34.34 (s), 32.74 (d, J=14.1), 31.99 (s), 28.21 (d, J=4.9), 24.35 (d, J=12.2), 22.33 (s), 21.44 (s), 15.63 (s); **HRMS (ESI**⁺) Calcd. for $C_{20}H_{28}OP$ [M+H⁺]: 315.1878, Found: 315.1921.

(R_P/S_P) -(-)-Menthyl 2- chlorobenzylphosphine oxide (5l/5l')

The crude **51/51'** in a ratio of 84:16 (estimated by ³¹P-NMR spectrum). **o-CIC₆H₄H₂C^{WP}** After isolation, **51/51'** was obtained as a pale yellow oil (89.9 mg, 36%, (-)-Men After isolation, **51/51'** was obtained as a pale yellow oil (89.9 mg, 36%, 26:74 dr) from column chromatography. ³¹P NMR (162 MHz, CDCl₃) δ =35.01 (s, 26%), 37.08 (s, 74%). Other spectrum data of the compound was similar to that obtained from *R*_P-3. HRMS (ESI⁺) Calcd. for C₁₈H₃₀OP [M+Na⁺]: 335.1307, Found: 335.1285.

(*R*_P/*S*_P)-(-)-Menthyl 3-methoxybenzylphosphine oxide (5m/5m')

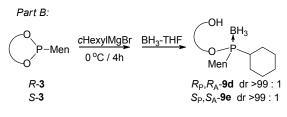
The crude **5m/5m**' was obtained from 3-methoxybenzyl magnesium (-)-Men', H m-MeOC₆H₄H₂C bromide (0.8 M solution in Et₂O) 72:28 (estimated by ³¹P-NMR spectrum). After isolation, **5m/5m**' was obtained as a pale yellow oil (202.2 mg, 82%, 75:25 dr) from column chromatography; ³¹P NMR (162 MHz, CDCl₃) δ = 41.38 (s, 75%), 37.08 (s, 25%). Other spectrum data of the compound was similar to that obtained from *R*_P-3. HRMS (ESI⁺) Calcd. for C₁₈H₃₀OP [M+Na⁺]: 331.1803, Found: 331.1784.

(R_P/S_P) -(-)-Menthyl 2-methylbenzylphosphine oxide (5n/5n')

The crude 5n/5n' was obtained from 2-methylbenzyl magnesium bromide (-)-Men' P H (0.8 M solution in Et₂O) in a ratio of 80:20 (estimated by ³¹P-NMR spectrum). After isolation, 5o/5o' was obtained as a pale yellow oil (177.7

mg, 76%, 80:20 dr); ³¹P NMR (162 MHz, CDCl₃) δ = 38.58 (s, 80%), 35.26 (s, 20%); ¹H NMR (400 MHz, CDCl₃) 7.18 (dt, *J*=8.1, 4.2, 4H), 6.94 (dt, *J*=115.0, 3.7, 0.2H), 6.90 (dt, *J*=114.0 4.7, 0.4H), 3.38 – 3.21 (m, 1H), 3.15 – 3.04 (m, 1H), 2.39 (s, 2H), 2.38 (s, 1H), 2.10 (d, *J*=9.3, 1H), 2.03 (dd, *J*=16.9, 6.5, 1H), 1.84 – 1.72 (m, 2H), 1.58 – 1.49 (m, 1H), 1.42 (dd, *J*=14.8, 7.2, 1H), 1.21 (t, *J*=7.0, 1H), 1.07 (dt, *J*=15.9, 10.0, 2H), 0.99 – 0.90 (m, 7H), 0.87 (d, *J*=6.9, 2.64H), 0.61 (d, *J*=6.8, 0.66H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 136.52 (d, *J*=5.1), 130.72 (dd, *J*=11.9, 5.3), 130.07 (d, *J*=5.2), 128.81 (s), 127.28 (d, *J*=3.3), 126.47 (d, *J*=2.9), 77.38 (s), 77.06 (s), 76.74 (s), 43.42 (s), 39.95 (s), 39.34 (s), 34.30 (d, *J*=9.1), 32.84 (dd, *J*=32.6, 16.4), 32.10 (s), 31.53 (s), 28.57 (d, *J*=4.3), 27.98 (s), 24.50 (d, *J*=12.3), 22.46 (d, *J*=16.3), 21.35 (d, *J*=11.6), 20.17 (d, *J*=11.9), 15.49 (s), 15.07 (s); HRMS (ESI⁺) Calcd. for C₁₈H₃₀OP [M+Na⁺]: 315.1854, Found: 315.1832.

Part 4. The reaction of aliphatic Grignard reagent with R-3 or S-3'.


The reaction of R-3 with methyl magnesium bromide, formation of 8a

Under the atmosphere of N₂, the solution of *R*-3 (3 mL, 0.8 mmol) was cooled to 0 °C. A solution of methyl magnesium bromide (3.0 M solution in diethyl ether, 0.32mL, 0.96mmol) was added dropwise. The mixture was stirred at 0 °C for 4 hours. After warmed to room temperature, the solution of BH₃-THF (1.0 M solution in THF, 1 mL, 1 mmol) was added dropwise, and the mixture was stirred for 6 hours. Diluted hydrochloric acid (7%, 1 mL) was added to quench the reaction, and the solvent was removed in vacuo. The mixture was extracted with ether (20 mL), washed with water (3×10 mL), dried over magnesium sulfate. After removing solvent, the residue was purified with column chromatography on silica gel (petroleum ether/ dichloromethane = 2/1) to afford **8a**.

Dimethyl menthyl phosphine oxide 8a

CDCl₃) ¹**H NMR (400 MHz, CDCl₃)** $\delta = 2.23 - 2.09$ (m, 1H), 1.74 (d, J = 9.2 Hz,

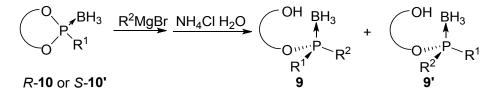
3H), 1.70 - 1.65 (m, 1H), 1.48 - 1.38 (m, 1H), 1.34 (d, J = 9.8 Hz, 3H), 1.25 (d, J = 9.9 Hz, 3H), 1.04 (d, J = 10.5 Hz, 1H), 1.01 - 0.97 (m, 1H), 0.95 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.89 - 0.84 (m, 1H), 0.78 (d, J = 6.8 Hz, 3H), 0.45 (dd, J = 138.6, 45.7 Hz, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 44.38$ (s), 36.31 (d, J=32.1), 35.99 (s), 34.27 (s), 33.28 (d, J=10.7), 28.39(d, J = 3.9), 24.75 (d, =10.9), 22.47 (s), 21.34 (s), 15.43 (s), 12.92 (d, J=36.6), 10.71 (d, J=37.9); HRMS (ESI⁺) Calcd. for C₁₂H₂₂P [M-BH₃+H⁺]: 201.1727, Found: 201.1769.

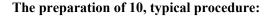
The reaction of *R*-3 with cyclohexyl magnesium bromide, protected with borane.

Under the atmosphere of N₂, the solution of *R*-3 (3 mL, 0.8 mmol) was cooled to 0 °C. A solution of *cyclo*-hexyl magnesium bromide (0.8 M solution in ether, 1.2 mL, 0.96 mmol) was added dropwise. The mixture was stirred at 0 °C for 4 hours, then warmed to room temperature. The solution of BH₃-THF (1.0 M solution in THF, 1 mL, 1 mmol) was added dropwise. After stirred for 6 hours, diluted hydrochloric acid (7%, 1 mL) was added. The mixture was extracted with ether (20 mL), washed with water (3 × 10 mL), dried over magnesium sulfate. After removing solvent in vacuo, the residue was analyzed with NMR spectrum, and was purified with column chromatography on silica gel (petroleum ether/ dichloromethane = 2/1) to afford **9d**.

R_AR_P- (-)-Menthyl cyclohexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9d

The crude **9d** was formed in a ratio of 99:1 (estimated by ¹H-NMR spectrum), the optically pure **9d** was obtained as a pale yellow oil (256.3 mg, 58%, >99:1 dr); ³¹P NMR (**162 MHz, CDCl₃**) $\delta = 138.47 - 138.11$ (broad m); ¹H NMR (**400 MHz, CDCl₃**) δ = 8.00 (d, *J*=9.1, 1H), 7.92 (t, *J*=8.7, 2H), 7.86 (d, *J*=9.3, 2H), 7.48 - 7.40 (m, 1H), 7.38 - 7.28 (m, 4H), 7.27 - 7.20 (m, 1H), 7.10 (d, *J*=8.4, 1H), 4.88 (s, 1H), 2.08 - 1.92 (m, 2H), 1.80 (s, 1H), 1.73 - 1.58 (m, 4H), 1.44 (dd, *J*=40.5, 21.3, 5H), 1.22 (d, *J*=24.6, 2H), 0.96 (ddd, *J*=47.2, 22.5, 11.9, 7H), 0.82 (d, *J*=6.5, 3H), 0.76 (d, *J*=6.8, 3H), 0.65 (d, *J*=6.7, 3H), 0.55 - 0.32 (m, 2H); ¹³C {¹H} **NMR (101 MHz, CDCl₃)** $\delta = 151.27$ (s), 151.07 - 150.96 (m), 133.66 (s), 133.34 (s), 130.56 (s), 130.39 (s), 130.03 (s), 129.06 (s), 128.32 (s), 127.99 (s), 127.51 (s), 126.33 (s), 125.30 (s), 124.94 (s), 124.76 (s), 123.40 (s), 120.33 (s), 118.75 - 118.45 (m), 117.67 (s), 114.56 (s), 43.32 (s), 39.95 (d, *J*=27.4), 38.60 (s), 35.24 (s), 34.16 (s), 33.34 (d, *J*=11.6), 28.60 (s), 26.60 (s), 26.37 (d, *J*=10.4), 26.01 (s), 25.41 (s), 24.85 (d, *J*=11.0), 24.33 (s), 22.42 (s), 21.21 (s), 15.64 (s); **HRMS (ESI**⁺) Calcd. for $C_{36}H_{42}O_2P$ [M - BH₄]: 537.2922, Found: 537.3430.


S_AS_P- (-)-Menthyl cyclohexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9e


O P....,Mer

^{H3} Under similar procedure to **9d**, the crude **9e** was obtained from the reaction of *cyclo*-^{hw}Men hexyl magnesium bromide (0.8 M solution in ether) with **S-3**, in a ratio of 1:99 (estimated by ¹H-NMR spectrum), and the optically pure **9e** was obtained as a pale

yellow oil (137.0 mg, 31%, <99:1 dr) from column chromatography; ³¹P NMR (162 MHz, CDCl₃) $\delta = 139.83 - 139.24$ (broad m); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.00$ (d, *J*=9.1, 1H), 7.92 (dd, *J*=8.3, 5.7, 2H), 7.85 (d, *J*=8.1, 1H), 7.76 (d, *J*=9.1, 1H), 7.44 (dd, *J*=10.6, 4.0, 1H), 7.37 - 7.27 (m, 4H), 7.26 - 7.20 (m, 1H), 7.13 (d, *J*=8.4, 1H), 4.94 (s, 1H), 2.20 - 2.07 (m, 1H), 1.94 (dd, *J*=21.1, 10.0, 1H), 1.63 (d, *J*=8.4, 6H), 1.54 (d, *J*=12.7, 2H), 1.36 (d, *J*=13.0, 1H), 1.26 (s, 1H), 1.05 (d, *J*=13.8, 3H), 1.00 - 0.90 (m, 5H), 0.88 (d, *J*=6.7, 4H), 0.79 (t, *J*=6.3, 3H), 0.66 (d, *J*=6.7, 3H), 0.47 (d, *J*=12.4, 2H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 151.20$ (s), 150.44 (d, *J*=5.8), 133.64 (s), 133.38 (s), 130.69 (s), 130.29 (s), 130.03 (s), 129.04 (s), 128.28 (s), 127.90 (s), 127.48 (s), 126.61 (s), 125.39 (s), 125.32 (s), 125.06 (s), 123.49 (s), 120.99 (s), 119.27 - 119.01 (m), 117.81 (s), 114.68 (s), 43.41 (s), 40.03 (d, *J*=28.9), 37.18 (d, *J*=36.6), 35.38 (s), 34.11 (s), 33.10 (d, *J*=10.8), 28.68 (d, *J*=2.9), 26.55 (d, *J*=13.6), 26.37 (d, *J*=9.9), 25.33 (s), 25.22 (s), 24.94 (d, *J*=11.0), 24.78 (d, *J*=4.7), 22.43 (s), 21.43 (s), 15.99 (s); HRMS (ESI⁺) Calcd. for C₃₆H₄₂O₂P [M - BH₄]; 537.2922, Found: 537.2845.

Part 5. The reaction of borane-complex 10 or 10' with Grignard reagent.

To the ice-water cooled solution of *S*-2 (2.80 g, 8 mmol) in tetrahydrofuran (15 mL), was added dropwise the solution of menthyl magnesium chloride (0.8 M solution in THF, 15 mL, 12 mmol). The mixture was stirred and warmed to room temperature within 4 hours. BH₃-THF (1.0 M solution in THF, 10 mL, 10 mmol) was added, and the mixture was stirred for 2 hours. Diluted hydrochloric acid (7%, 5 mL) was added to quench the reaction, and then the mixture was extracted with ether (3×50 mL), washed with water (3×30 mL), dried over magnesium sulfate. After removing solvents, the residue was analyzed with NMR spectroscopy, and purified with recrystallization or column chromatography (dichloromethane/petroleum ether = 1:4) to afford **10a'**.

S-Binaphthoxy menthylphosphonites borane, 10a'

^O, ^BH₃ The crude **10a**' was obtained in 99% yield based on *S*-2 (estimated by ³¹P-NMR spectrum, only one peak at 185.51 – 185.11 ppm was observed). The pure compound was obtained from recrystallization as a white solid (2.52 g, 69%), m.p. 186.4 – 193.3 °C; ³¹P NMR (**162 MHz, CDCl₃**) δ = 185.46 – 185.06 (broad m); ¹H NMR (**400 MHz, CDCl₃**) δ = 8.01 (d, *J*=8.8, 2H), 7.95 (t, *J*=7.9, 2H), 7.55 – 7.48 (m, 2H), 7.48 – 7.44 (m, 2H), 7.37 (d, *J*=8.9, 1H), 7.30 (dd, *J*=13.7, 6.1, 1H), 7.25 (t, *J*=5.0, 2H), 2.44 (dd, *J*=3.7, 2.8, 1H), 2.36 – 2.27 (m, 1H), 2.06 – 1.88 (m, 1H), 1.78 (d, *J*=9.3, 3H), 1.40 (dd, *J*=7.4, 3.1, 2H), 1.04 (d, *J*=5.4, 3H), 0.99 (dt, *J*=19.6, 9.7, 4H), 0.93 – 0.83 (m, 1H), 0.63 (dd, *J*=6.7, 2.8, 3H), 0.56 – 0.15 (m, 2H); ¹³C {¹H} NMR (**101 MHz, CDCl₃**) δ = 147.65 (s), 147.55 (d, *J*=4.2), 132.62 (d, *J*=21.3), 131.64 (d, *J*=54.4), 130.71 (s), 128.47 (d, *J*=22.2), 127.15 (d, *J*=39.3), 126.63 (d, *J*=20.5), 125.66 (d, *J*=16.2), 122.75 (s), 122.54 (s), 121.85 (s), 120.18 (s), 43.45 (s), 41.02 (d, *J*=28.1), 35.00 (s), 34.51 (s), 32.85 (d, *J*=12.4), 29.09 (s), 24.49 (d, *J*=13.4), 22.76 (s), 21.72 (s), 15.53 (s). HRMS (ESI⁺) Calcd. for C₃₀H₃₂O₂P [M-BH₃]; 455.2140, Found: 455.2129.

*R***-Binaphthoxy menthylphosphonites borane**, 10a

^O BH₃ The crude **10a** was obtained in 99% yield based on *R*-2 (estimated by ³¹P-NMR men spectrum, only one peak at 186.00 – 185.47 ppm was observed). The pure compound was obtained from recrystallization as a white solid (2.03 g, 56%), m.p. 121.8– 127.4 °C; ³¹P NMR (**162 MHz, CDCl₃**) δ = 186.00 – 185.47 (broad m); ¹H NMR (**400 MHz, CDCl₃**) δ = 8.06 – 7.98 (m, 2H), 7.95 (dd, *J*=7.9, 3.8, 2H), 7.57 – 7.42 (m, 4H), 7.38 – 7.20 (m, 4H), 2.56 – 2.38 (m, 1H), 2.13 – 1.96 (m, 2H), 1.87 – 1.67 (m, 4H), 1.32 – 1.19 (m, 2H), 1.10 – 1.00 (m, 8H), 0.97 - 0.87 (m, 4H), 0.78 - 0.12 (m, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 152.78$ (s), 147.47 (d, *J*=9.0), 132.62 (d, *J*=33.3), 131.68 (d, *J*=38.3), 130.54 (d, *J*=24.6), 128.44 (d, *J*=24.7), 127.01 (d, *J*=55.5), 126.68 (d, *J*=38.3), 125.62 (d, *J*=18.9), 124.12 (d, *J*=41.8), 122.80 (s), 121.48 (d, *J*=136.5), 117.86 (s), 110.64 (d, *J*=130.5), 42.03 (d, *J*=7.0), 39.57 (d, *J*=27.3), 34.63 (s), 34.01 (s), 32.62 (d, *J*=10.5), 28.96 (s), 24.60 (d, *J*=14.8), 22.41 (s), 21.58 (s), 17.16 (s). HRMS (ESI⁺) Calcd. for C₃₀H₃₂O₂P [M-BH₃]: 455.2159, Found: 455.2140.

S-Binaphthoxy p-methyoxyphenylphosphonites borane, 10b'

BH₃ The crude **10b**' was obtained in 99% yield based on *S*-2 (estimated by $^{O}C_{6}H_{4}OMe-p$ ³¹P-NMR spectrum, only one peak at 157.08 – 156.53 ppm was observed). The pure compound was obtained from column chromatography as a white solid (2.13 g, 61%), m.p. 97.1– 103.4 °C; ³¹P NMR (**162** MHz, CDCl₃) δ = 157.30 – 156.95 (broad m); ¹H NMR (**400** MHz, CDCl₃) δ = 8.06 (d, *J*=8.8, 1H), 7.97 (d, *J*=8.2, 1H), 7.91 (d, *J*=8.1, 1H), 7.79 (d, *J*=8.8, 1H), 7.61 (d, *J*=8.8, 1H), 7.55 (t, *J*=9.3, 2H), 7.52 – 7.41 (m, 3H), 7.33 (t, *J*=9.0, 2H), 7.28 (d, *J*=8.4, 1H), 6.89 (d, *J*=8.8, 1H), 6.84 (d, *J*=7.0, 2H), 3.81 (s, 3H), 1.26 – 0.67 (m, 3H); ¹³C {¹H} NMR (**101** MHz, CDCl₃) δ = 164.02 (d, *J*=1.8), 147.22 (s), 147.13 (d, *J*=3.4), 133.65 (d, *J*=15.2), 132.54 (d, *J*=4.3), 131.78 (d, *J*=43.1), 130.68 (d, *J*=59.2), 128.55 (d, *J*=8.0), 127.06 (d, *J*=15.2), 126.64 (d, *J*=3.9), 125.67 (d, *J*=3.3), 122.90 (d, *J*=2.7), 122.52 (d, *J*=2.9), 121.76 (d, *J*=2.2), 121.18 (d, *J*=1.2), 119.66 (d, *J*=66.4), 114.73 (d, *J*=11.5), 114.02 (d, *J*=12.1), 55.41 (s). HRMS (ESI⁺) Calcd. for C₂₇H₁₉O₃PNa [M-BH₃+Na⁺]: 445.0970, Found: 445.0977.

R-Binaphthoxy *p*-methyoxyphenylphosphonites borane, 10b

The crude **10b**' was obtained in 99% yield based on *R*-2 (estimated by C_6H_4OMe-p ³¹P-NMR spectrum, only one peak at 157.21 – 156.66 ppm was observed). The pure compound was obtained from column chromatography as a white solid (1.89 g, 56%), m.p. 124.5 – 130.2 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 157.15 – 156.60 (broad m); ¹H NMR (400 MHz, CDCl₃) δ = 8.06 (d, *J*=8.9, 1H), 7.98 (d, *J*=8.1, 1H), 7.92 (d, *J*=7.8, 1H), 7.80 (d, *J*=8.8, 1H), 7.64 – 7.53 (m, 3H), 7.48 (dd, *J*=13.9, 7.0, 2H), 7.44 (s, 1H), 7.37 – 7.27 (m, 3H), 6.90 (d, *J*=8.8, 1H), 6.85 (dd, *J*=8.8, 1.9, 2H), 3.83 (s, 3H), 1.15 – 0.85 (m, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 164.03 (d, *J*=2.0), 147.22 (s), 147.12 (d, *J*=4.3), 133.66 (d, *J*=15.1), 132.54 (d, *J*=4.7), 131.79 (d, *J*=42.4), 131.01 (s), 130.44 (s), 128.58 (d, *J*=7.1), 127.06 (d, *J*=14.4), 126.68 (d, *J*=4.2), 125.71 (d, *J*=3.9), 122.90 (d, *J*=2.8), 122.53 (d, *J*=2.9), 121.78 (s), 121.19 (s),

119.60 (d, *J*=66.4), 114.04 (d, *J*=12.1), 55.43 (s). **HRMS (ESI**⁺) Calcd. for C₂₇H₁₉P [M-BH₃]: 423.1150, Found: 423.1155.

The reaction of 10 or 10' with Grignard reagent, typical procedure:

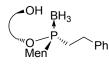
To the ice-water cooled solution of *R***-10a** (93.7 mg, 0.2 mmol), was add a solution of ethyl magnesium bromide (0.1 mL, 3.0 M solution in ether) was added. After the mixture was warmed and stirred at 50 °C for 6 hours, saturated solution of ammonium chloride (3 mL) was added. The mixture was extracted with ether (3 × 10 mL), washed with water (3 × 5 mL), dried over magnesium sulfate. After removing solvents, the residue was analyzed with NMR spectrum, and purified with flash chromatography on silica gel (petroleum ether/dichloromethane = 2/1) to afford **9a**.

R_A,R_P-(-)-Menthyl ethyl (2'-hydroxyl-1,1'-binaphthalen-2-oxy)phosphine borane, 9a

OH BH₃

OH _{BH3}

The crude **9a** was obtained in 99:1 dr (estimated by ¹H-NMR spectrum), and the optically pure **9a** was obtained as a white solid (61 mg, 61%, >99:1 dr), m.p. 82.5 – 85.5 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 139.17 – 138.42 (broad m); ¹H


NMR (400 MHz, CDCl₃) $\delta = 8.01$ (d, J=8.9, 1H), 7.92 (dd, J=12.6, 8.7, 2H), 7.85 (d, J=8.0, 1H), 7.72 (d, J=9.0, 1H), 7.46 (t, J=7.0, 1H), 7.35 (dd, J=14.5, 9.3, 4H), 7.29 – 7.23 (m, 1H), 7.12 (d, J=8.1, 1H), 4.92 (s, 1H), 2.06 – 1.87 (m, 2H), 1.79 (s, 1H), 1.58 (d, J=13.9, 4H), 1.45 (dd, J=14.0, 7.1, 2H), 1.26 (s, 2H), 1.13 (s, 1H), 0.95 (dd, J=23.9, 11.5, 2H), 0.81 (d, J=6.5, 3H), 0.73 – 0.62 (m, 9H), 0.58 – 0.40 (m, 2H); ¹³C {¹H} **NMR (101 MHz, CDCl₃)** $\delta = 151.24$ (s), 150.11 (s), 133.61 (s), 133.22 (s), 130.97 (s), 130.51 (s), 130.24 (s), 129.03 (s), 128.36 (s), 127.99 (s), 127.55 (s), 126.49 (s), 125.54 (s), 125.10 (s), 124.89 (s), 123.46 (s), 121.09 (d, J=2.9), 120.11 – 119.90 (m), 117.58 (s), 114.46 (s), 43.35 (d, J=2.7), 39.89 (d, J=31.5), 35.02 (s), 34.17 (s), 33.17 (d, J=12.6), 28.18 (d, J=2.5), 24.72 (d, J=10.4), 22.28 (s), 21.15 (s), 20.22 (d, J=35.5), 15.67 (s), 5.73 (s). **HRMS (ESI⁺)** Calcd. for C₃₂H₃₈O₂P [M-BH₃+H⁺]: 485.2609, Found: 485.2649.

R_A,R_P-(-)-Menthyl butyl (2'-hydroxyl-1,1'-binaphthalen-2-oxy) phosphine borane, 9b

The crude **9b** was obtained from butyl magnesium bromide (0.8 M solution in ether) in 99:1r (estimated by ¹H-NMR spectra), and the optically pure **9b** was obtained as a white solid (63 mg, 60%, >99:1 dr) from recrystallization with

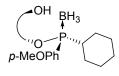
dichloromethane/petroleum ether (60-90 °C); m.p. 166.2–170.2 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 137.33 - 137.02$ (broad m); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.01$ (d, *J*=9.1, 1H), 7.92 (dd, *J*=11.5, 8.7, 2H), 7.85 (d, *J*=7.8, 1H), 7.68 (d, *J*=9.0, 1H), 7.45 (t, *J*=7.0, 1H), 7.33 (d, *J*=8.7, 4H), 7.26 (t, *J*=7.0, 1H), 7.12 (d, *J*=8.4, 1H), 4.90 (s, 1H), 1.99 (d, *J*=10.7, 2H), 1.84 (s, 1H), 1.64 (d, *J*=12.1, 2H), 1.42 – 1.24 (m, 4H), 1.17 (s, 1H), 1.04 (dd, *J*=14.0, 6.9, 3H), 0.96 (d, *J*=7.5, 3H), 0.83 (d, *J*=6.4, 4H), 0.75 – 0.64 (m, 10H), 0.52 (dd, *J*=12.2, 5.7, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 151.27 (s), 150.12 (d, *J*=6.0), 133.37 (d, *J*=40.4), 130.98 (s), 130.38 (d, *J*=25.8), 129.00 (s), 128.37 (s), 127.78 (d, *J*=44.1), 126.45 (s), 125.34 (d, *J*=45.5), 124.17 (d, *J*=143.4), 121.21 (d, *J*=3.0), 120.10 (d, *J*=4.4), 117.65 (s), 114.47 (s), 43.47 (d, *J*=2.6), 40.22 (d, *J*=31.2), 35.17 (s), 34.21 (s), 33.23 (d, *J*=12.9), 28.19 (d, *J*=2.5), 26.77 (d, *J*=35.6), 24.75 (d, *J*=10.1), 24.20 (d, *J*=14.4), 23.36 (s), 22.35 (s), 21.17 (s), 15.68 (s), 13.32 (s). HRMS (ESI⁺) Calcd. for C₃₄H₄₄BNaO₂P [M+Na⁺]: 549.3070, Found: 549.3079.

R_A, R_P -(-)-Menthyl \Box -phenylethyl (2'-hydroxyl-1,1'-binaphthalen-2-oxy)phosphine borane, 9c

The crude **9c** was obtained from phenylethyl magnesium bromide (0.8 M solution in THF) in 99:1 dr (estimated by ¹H-NMR spectra), and the optically pure **9c** was obtained as a white solid (80 mg, 72%, >99:1 dr) from flash

chromatography), m.p. 75.1 – 79.2 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 136.70 – 136.28 (broad m); ¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, *J*=9.1, 1H), 7.95 (d, *J*=8.2, 1H), 7.83 (t, *J*=8.4, 2H), 7.73 (d, *J*=9.1, 1H), 7.46 (d, *J*=8.2, 1H), 7.35 (t, *J*=6.9, 3H), 7.31 – 7.22 (m, 4H), 7.17 (dd, *J*=12.9, 7.2, 2H), 6.86 (d, *J*=7.6, 2H), 4.93 (s, 1H), 2.48 (d, *J*=8.1, 1H), 2.12 (dd, *J*=30.3, 15.5, 2H), 1.89 (s, 1H), 1.72 – 1.53 (m, 4H), 1.35 – 1.10 (m, 4H), 0.98 (dd, *J*=23.7, 11.1, 1H), 0.87 (d, *J*=6.8, 1H), 0.82 (d, *J*=6.3, 3H), 0.69 (dd, *J*=15.4, 6.6, 6H), 0.63 – 0.39 (m, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 151.28 (s), 149.90 (s), 141.16 (s), 133.40 (d, *J*=31.3), 130.98 (s), 130.48 (d, *J*=18.9), 129.03 (s), 128.45 – 128.30 (m), 128.09 (s), 128.01 (s), 127.63 (s), 126.30 (d, *J*=29.9), 125.37 (d, *J*=48.9), 124.84 (s), 123.52 (d, *J*=2.1), 120.79 – 120.47 (m), 117.74 (d, *J*=2.1), 114.34 (s), 43.53 (d, *J*=3.8), 40.98 (d, *J*=30.4), 35.36 – 35.16 (m), 34.38 – 33.90 (m), 33.34 (s), 33.26 – 33.18 (m), 28.22 – 28.13 (m), 27.46 – 27.21 (m), 24.76 (d, *J*=9.8), 22.32 (dd, *J*=3.9, 2.3), 21.19 (dd, *J*=4.1, 1.8), 15.81 (dd, *J*=3.4, 1.6). HRMS (ESI⁺) Calcd. for C₃₈H₄₄BNaO₂P [M+Na⁺]: 597.3070, Found: 597.3083.

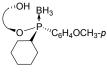
(R_P/S_P) -(-)-*p*-Methyoxyphenyl ethyl (2'-hydroxyl-1,1'-binaphthalen-2-oxy)phosphine borane, 9f/9f'


S24

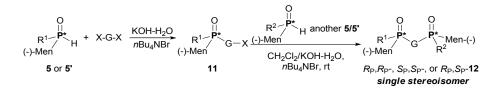
The crude **9f/9f'** was obtained from **10b** and ethyl magnesium bromide (3.0 M p-MeOPh^P. "Et^P solution in ether) in a ratio of 63:37 (estimated by ¹H-NMR spectrum, based on the peak of *para*-MeO on phenyl around 3.8 ppm). After isolation, **9f/9f'** was obtained as a white solid (81mg, 73%, 60:40 dr); ³¹P NMR (**162 MHz, CDCl₃**) $\delta = 121.33 - 120.64$ (broad m); ¹H NMR (**400 MHz, CDCl₃**) $\delta = 7.98 - 7.85$ (m, 3H), 7.80 (dd, J = 8.0, 3.4 Hz, 2H), 7.42 (dd, J =7.9, 4.3 Hz, 2H), 7.35 (d, J = 8.9 Hz, 2H), 7.28 (d, J = 6.8 Hz, 2H), 7.17 (t, J = 8.7 Hz, 2H), 6.97 (d, J = 8.3 Hz, 1H), 6.81 - 6.75 (m, 1H), 6.73 - 6.70 (m, 1H), 3.82 (s, 1H), 3.79 (s, 2H), 1.80 -1.44 (m, 3H), 0.72 - 0.56 (m, 4H); ¹³C {¹H} NMR (**101 MHz, CDCl₃**) $\delta = 162.57$ (s), 151.41 (d, J=10.9), 149.77 (d, J=5.6), 133.77 - 133.31 (m), 132.70 (t, J=12.0), 131.13 (s), 130.48 (d, J=3.4), 130.14 (d, J=8.9), 128.98 (s), 128.27 (d, J=4.7), 127.86 (d, J=6.4), 127.37 (d, J=8.6), 126.68 (s), 126.43 (s), 125.76 - 125.32 (m), 125.11 (d, J=9.3), 124.21 (s), 123.48 (s), 123.24 (s), 121.65 (s), 121.32 - 120.92 (m), 120.64 (s), 117.78 (s), 117.48 (s), 114.14 (dd, J=22.6, 13.3), 55.27 (d, J=8.0), 29.68 (s), 25.10 (s), 24.62 (s), 24.15 (s), 5.70 (s).

(R_P/S_P) -(-)-*p*-Methyoxyphenyl ethyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9g/9g'

The crude **9g/9g'** was obtained from **10b'** and ethyl magnesium bromide (3.0 M solution in ether) in a ratio of 51:49 (estimated by ¹H-NMR spectrum, based on the peak of *para*-MeO on phenyl around 3.8 ppm). After isolation, **9g/9g'** was obtained as a white solid (57 mg, 60%, 51:49 dr); m.p. 66.7 – 72.3 °C; ³¹P NMR (**162 MHz**, **CDCl₃**) $\delta = 121.05 - 120.58$ (broad m); ¹H NMR (400 MHz, **CDCl₃**) $\delta = 7.94 - 7.86$ (m, 2H), 7.80 (dd, *J*=11.0, 5.5, 1H), 7.53 (d, *J*=9.0, 1H), 7.42 (d, *J*=10.7, 2H), 7.39 – 7.33 (m, 2H), 7.33 – 7.26 (m, 3H), 7.21 (d, *J*=6.2, 1H), 7.16 (dd, *J*=10.9, 5.1, 1H), 6.97 (d, *J*=8.1, 1H), 6.77 (d, *J*=8.5, 1H), 6.71 (d, *J*=8.5, 1H), 3.81 (s, 1H), 3.79 (s, 2H), 1.80 – 1.61 (m, 1H), 1.51 (ddd, *J*=30.3, 15.2, 7.5, 1H), 0.88 (s, 1H), 0.64 (ddd, *J*=25.3, 16.5, 7.6, 4H). HRMS (ESI⁺) Calcd. for C₂₉H₂₈BNaO₃P [M+Na⁺]: 489.1767, Found: 489.1771.


R_{A} -(-)-*p*-Methyoxyphenyl *cyclo*hexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9h

During the reaction of **10b** with *cyclo*-hexyl magnesium bromide (0.8 M solution in ether), crude **9h/9h'** was observed in yield of 11% and in 99:1dr as seen the peaks on ³¹P-NMR spectrum at $\delta = 157.34 - 156.85$ (broad m,


89%, assigned as 10b), 121.42 – 121.30 (broad m, 11%). Pure product wass not isolated because of the low yield.

*S*_A-(-)-*p*-Methyoxyphenyl *cyclo*hexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9i

During the reaction of 10b' with cyclo-hexyl magnesium bromide (0.8 M solution in ether), crude 9i/9i' was observed in yield of 29% and in 99:1 dr as seen the peaks on ³¹P-NMR spectrum at $\delta = 157.43 - 157.05$ (broad m, 71%, assigned as **10b'**), 121.36 – 121.05 (broad m, 29%). After isolation, **9i/9i'** was obtained as a white solid (25 mg, 24%, >99:1 dr), m.p. 75.6–78.9 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 121.61 -121.13 (broad m); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.90$ (d, J=9.1, 2H), 7.83 (dd, J=7.9, 2.8, 2H), 7.46 (d, J=9.0, 1H), 7.44 - 7.40 (m, 2H), 7.37 (d, J=6.7, 1H), 7.35 - 7.29 (m, 3H), 7.19 (t, J=7.0, 1H), 6.89 – 6.79 (m, 2H), 4.83 (s, 1H), 3.84 (s, 3H), 1.57 (s, 1H), 1.43 (d, J=17.1, 3H), 1.26 (s, 4H), 1.14 (s, 1H), 0.81 (d, J=5.8, 4H), 0.62 (s, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta =$ 162.68 - 162.14 (m), 151.43 - 150.74 (m), 133.44 (s), 132.98 (d, J=11.8), 130.90 (s), 130.24 (d, J=37.2), 129.06 (s), 127.87 (d, J=87.2), 127.29 (d, J=97.1), 125.49 (s), 125.29 (s), 123.55 (s), 120.83 (d, J=4.0), 120.82 (d, J=55.1), 120.02 (d, J=4.7), 117.32 (s), 114.34 (s), 114.06 (d, J=11.0), 55.31 (s), 40.06 (d, J=44.8), 29.70 (s), 26.07 (d, J=13.6), 25.44 (s), 24.60 (d, J=22.6), 14.14 (s). HRMS (ESI⁺) Calcd. for C₃₃H₃₄BNaO₃P [M+Na⁺]: 543.2236, Found: 543.2244.

Part 6. The preparation of 12 from the alkylation of 5 and/or 5'.

Typical procedure for preparation of 12a:

The reaction could be carried out under air. To the solution of $R_{\rm P}$ -5a (50 mg, 0.190 mmol) and tetra(n-butyl)ammonium bromide (6 mg, 0.019 mmol, 10% mol) in dichloromethane (0.2 mL), 1,3-dichloromethylbenzene (0.014 ml, 0.095 mmol) was added. The potassium hydroxide solution in water (50%, 0.5 mL) was added and the mixture was stirred at room temperature for 10 h, with the monitoring by TLC (silica gel, petroleum ether/ethyl acetate = 1/1 as eluent, **11a**, Rf = 0.7; **12a**, Rf = 0.3). After the reaction was completed, the mixture was extracted with dichloromethane $(3 \times 10 \text{ mL})$, washed with water $(3 \times 5 \text{ mL})$, dried over magnesium sulfate. After removing the solvents, the residue was purified with flash chromatography on silica gel (petroleum ether/ethyl acetate = 1/1) to afford **12a**.

(*R*_P,*R*_P)-1,3-Phenylenebis(methylene) bis[(-)-menthylphenylphosphine oxide], 12a

The pure compound **12a** was obtained as a white solid (43 mg, 71%, >99:1 dr), m.p. 121.3 – 123.6 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 40.06$ (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.50 - 7.41$ (m, 4H), 7.35 (d, *J*=6.3, 2H), 7.33 – 7.27 (m, 4H), 6.91 (s, 1H), 6.71 (dd, *J*=27.7, 7.3, 3H), 3.40 (t, *J*=15.6, 2H), 2.93 (dd, *J*=14.1, 7.8, 2H), 2.13 – 1.99 (m, 5H), 1.92 (s, 2H), 1.72 (s, 6H), 1.41 – 1.24 (m, 4H), 0.95 (t, *J*=8.2, 9H), 0.76 (d, *J*=6.6, 6H), 0.35 (d, *J*=6.6, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta =$ 133.73 (d, *J*=89.6), 132.26 (t, *J*=5.1), 131.66 – 131.41 (m), 130.68 (s), 130.52 (d, *J*=8.7), 127.98 (s), 127.87 (s), 127.58 (s) 43.41 (s), 40.73 (d, *J*=66.0), 35.82 (s), 35.44 (s), 35.22 (s), 34.25 (s), 33.22 (d, *J*=13.1), 28.12 (s), 24.64 (d, *J*=12.2), 22.61 (s), 21.42 (s), 15.17 (s). HRMS (ESI⁺) Calcd. for C₄₀H₅₇O₂P₂ [M+H⁺]: 631.3834, Found: 631.3858.

The preparation of 11a

The reaction could be carried out under air. To the solution of R_{P} -5a (300 mg, 1.136 mmol) and *tetra*(*n*-butyl)ammonium bromide (36 mg, 0.1136 mmol, 10% mol) in dichloromethane (1.2 mL), 1,3-dichloromethylbenzene (0.33 ml, 2.27 mmol) was added. Then the potassium hydroxide solution in water (50%, 3 mL) was added and the mixture was stirred at room temperature for 7 h, with the monitoring by TLC (**11a**, Rf = 0.7; **12a**, Rf = 0.3, petroleum ether/ethyl acetate = 1/1). After the reaction was finished, the mixture was extracted with dichloromethane (3×20 mL), washed with water (3 × 10 mL), dried over magnesium sulfate. After removing the solvents, the residue was purified with flash chromatography on silica gel (petroleum ether/ethyl acetate = 1/1) to afford **11a**.

$R_{\rm P}$ -(-)-Menthyl phenyl (3-chloromethylbenzyl) phosphine oxide, 11a

The optically pure **11a** was obtained as a white solid (300 mg, 66%, >99:1 dr); m.p. 154.1–163.8 °C; **³¹P NMR (162 MHz, CDCl₃)** δ = 39.88 (s); ¹H **NMR (400 MHz, CDCl₃)** δ = 7.50 (dd, *J*=9.4, 8.0, 2H), 7.41 – 7.30 (m, 3H), 7.13 – 7.05 (m, 2H), 6.98 – 6.89 (m, 2H), 4.39 (q, *J*=11.5, 2H), 3.51 (dd, *J*=16.9, 14.4, 1H), 3.01 (dd, *J*=14.2, 7.5, 1H), 2.12 (d, *J*=4.1, 1H), 2.00 (dd, *J*=11.9, 6.3, 2H), 1.78 (d, *J*=28.6, 4H), 1.46 (dd, *J*=20.6, 8.5, 2H), 0.98 (d, *J*=5.7, 4H), 0.77 (d, *J*=6.8, 3H), 0.30 (d, *J*=6.7, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 137.01 (s), 133.72 (d, *J*=89.4), 132.47 (d, *J*=7.6), 130.87 (d, *J*=2.8), 130.39 (s), 130.31 (s), 130.06 (d, *J*=4.8), 128.28 (s), 128.04 (d, *J*=11.2), 126.45 (d, *J*=2.5), 46.03 (s), 43.32 (d, *J*=3.7), 40.37 (d, *J*=66.3), 36.27 (d, *J*=60.0), 35.20 (s), 34.18 (d, *J*=4.0), 33.30 (t, *J*=8.3), 28.13 (d, *J*=7.2), 24.60 (t, *J*=7.3), 22.64 (s), 21.45 (d, *J*=2.1), 15.12 (d, *J*=2.1). HRMS (ESI⁺) Calcd. for C₂₄H₃₃ClOP₂[M+H⁺]: 403.1958, Found: 403.1955.

(S_P,S_P)-(1,3-Phenylenebismethylene) bis[(-)-menthylphenylphosphine oxide], 12b

The pure compound **12b** was obtained as a white solid (41 mg, 70%, >99:1 dr); m.p. 181.0 – 184.4 °C; ³¹P NMR (**162 MHz, CDCl₃**) $\delta =$ 42.47 (s); ¹H NMR (**400 MHz, CDCl₃**) $\delta =$ 7.57 (dd, *J*=9.3, 7.7, 4H), 7.41 (dq, *J*=12.2, 6.4, 6H), 7.14 (s, 1H), 6.91 (t, *J*=3.2, 3H), 3.45 (t, *J*=14.4, 2H), 3.21 (dd, *J*=14.5, 10.3, 2H), 2.67 – 2.55 (m, 2H), 2.05 – 1.94 (m, 2H), 1.84 (d, *J*=9.2, 2H), 1.66 (d, *J*=9.3, 4H), 1.38 – 1.13 (m, 5H), 1.11 – 1.01 (m, 2H), 0.95 (ddd, *J*=18.6, 12.4, 6.2, 3H), 0.86 (d, *J*=6.4, 6H), 0.82 (d, *J*=6.7, 6H), 0.77 (d, *J*=6.9, 6H); ¹³C {¹H} NMR (**101 MHz, CDCl₃**) $\delta =$ 132.24 (dd, *J*=9.2, 4.0), 131.77 (dd, *J*=7.5, 2.2), 131.13 (s), 131.05 (s), 130.92 (s), 128.16 (s), 128.05 (s), 127.94 (s), 43.39 (s), 41.11 (d, *J*=65.3), 36.40 (s), 34.28 (s), 33.10 (d, *J*=13.6), 28.38 (s), 24.69 (d, *J*=12.9), 22.63 (s), 21.46 (s), 15.77 (s). HRMS (ESI⁺) Calcd. for C₄₀H₅₇O₂P₂ [M+H⁺]: 631.3834, Found: 631.3849.

(S_P,S_P)-(1,2-Phenylenebismethylene) bis[(-)-menthyl phenyl phosphine oxide], 12c

The pure compound **12c** was obtained as a white solid (43 mg, 72%, Physed Phy

(R_P,R_P)-(-)-Methylene-bis[(-)-menthyl(biphenyl) phosphine oxide], 12d

The pure compound **12d** was obtained as a white solid (34mg, 66%, (-)-Men'', P, C_6H_4Ph-p $p-PhC_6H_4$, PhC_6H_4Ph-p , PhC_6H_4Ph-p , PhC_6H_4Ph-p , PhC_6H_4 , P

7.72 – 7.67 (m, 4H), 7.63 (d, *J*=7.2, 4H), 7.47 (t, *J*=7.4, 4H), 7.40 (d, *J*=7.3, 2H), 2.29 – 2.19 (m, 2H), 1.96 (dd, *J*=20.1, 8.9, 2H), 1.76 (s, 5H), 1.70 (s, 3H), 1.67 (s, 3H), 1.33 (s, 2H), 1.15 (dd, *J*=12.0, 6.6, 2H), 1.10 – 0.96 (m, 3H), 0.91 (d, *J*=6.3, 6H), 0.87 (d, *J*=6.8, 6H), 0.47 (d, *J*=6.7, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 143.75 (d, *J*=2.9), 139.97 (d, *J*=0.7), 134.36 (d, *J*=92.4), 130.57 (d, *J*=9.1), 128.89 (s), 128.00 (s), 127.18 (s), 127.00 (d, *J*=11.4), 43.50 (s), 41.26 (d, *J*=69.1), 35.73 (s), 34.35 (s), 33.20 (d, *J*=13.6), 28.37 (s), 24.61 (d, *J*=12.3), 22.57 (s), 21.56 (s), 15.23 (s), 14.55 (s). HRMS (ESI⁺) Calcd. for C₄₅H₅₉O₂P₂ [M+H⁺]: 693.3990, Found: 693.3995. (*S*_P,*S*_P)-(-)-Methylene-bis[(-)-menthyl(biphenyl) phosphine oxide], 12e

The pure compound **12e** was obtained as a white solid (33mg, 65%, p-PhC₆H₄^{wv}, C₆H₄Ph-p >99:1 dr); m.p. 121.3 – 123.6 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 42.74 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.74 (dt, *J*=8.1, 6.9, 8H), 7.68 – 7.61 (m, 4H), 7.47 (t, *J*=7.4, 4H), 7.39 (t, *J*=7.3, 2H), 2.57 – 2.48 (m, 1H), 1.99 (t, *J*=10.6, 1H), 1.84 (s, 4H), 1.81 (s, 2H), 1.78 (s, 2H), 1.72 (d, *J*=2.9, 5H), 1.34 (s, 3H), 1.01 (ddd, *J*=18.5, 16.7, 8.5, 4H), 0.84 (dt, *J*=17.5, 8.3, 18H).; ¹³C {¹H} NMR (101 MHz, CDCl₃) δ = 143.92 (d, *J*=2.8), 139.95 (s), 132.40 (d, *J*=91.8), 130.96 (d, *J*=9.0), 128.91 (s), 128.03 (s), 127.20 (s), 127.04 (d, *J*=11.2), 43.48 (s), 41.98 (d, *J*=68.3), 36.28 (s), 34.32 (s), 33.19 (d, *J*=13.5), 28.60 (s), 24.66 (d, *J*=12.7), 22.54 (s), 21.50 (s), 16.55 (d, *J*=67.1), 15.64 (s). HRMS (ESI⁺) Calcd. for C₄₅H₅₉O₂P₂ [M+H⁺]: 693.3990, Found: 693.4045.

(*R*_P,*R*_P)-Propane-1,3-diylbis[(–)-menthyl 2-methylphenylphosphine oxide], 12f

The pure compound **12f** was obtained as a white solid (33mg, 61%, -)-Mer(-) Men(-) >99:1 dr) from flash chromatography (silica gel, petroleum ether/ethylacetate = 2/1 as eluent); m.p. 70.6 – 78.6 °C; ³¹P NMR (**162 MHz, CDCl**₃) δ = 47.95 (s); ¹H NMR (**400 MHz, CDCl**₃) δ = 7.60 – 7.46 (m, 3H), 7.28 (s, 2H), 7.12 (dd, *J*=16.4, 9.4, 3H), 2.56 (d, *J*=4.3, 1H), 2.49 (s, 6H), 2.25 (d, *J*=7.4, 2H), 2.09 (dd, *J*=15.0, 7.6, 3H), 2.01 (s, 3H), 1.70 (s, 15H), 1.55 (s, 2H), 0.89 (d, *J*=6.2, 6H), 0.82 (d, *J*=6.7, 6H), 0.32 (dd, *J*=12.7, 5.6, 6H); ¹³C {¹H} NMR (**101 MHz, CDCl**₃) δ = 140.12 (d, *J*=8.5), 132.20 (d, *J*=8.7), 131.52 (s), 130.37 (d, *J*=84.8), 130.86 (d, *J*=2.6), 125.56 (d, *J*=10.8), 43.10 (d, *J*=3.4), 40.61 (d, *J*=66.1), 35.28 (s), 34.21 (s), 33.32 (d, J=13.1), 28.11 (d, J=2.7), 27.51 (s), 24.53 (d, J=12.0), 22.56 (s), 21.51 (s), 14.94 (s),
14.68 – 14.53 (m). HRMS (ESI⁺) Calcd. for C₃₇H₅₉O₂P₂ [M+H⁺]: 597.3990, Found: 597.4001.
(*R*_P,*R*_P)-Propane -1,3-diylbis[(-)-menthyl *p*-methoxyphenylphosphine oxide], 12g

The pure compound **12g** was obtained as a white solid (35mg, $_{p-MeOC_6H_4}^{(-)-Men_{men-(-)}}^{(-)}$ 66%, >99:1 dr); m.p. 180.5 – 185.4 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 44.10$ (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.43$ (t, *J*=9.3, 4H), 6.90 – 6.78 (m, 4H), 3.83 (s, 6H), 2.05 (dt, *J*=22.1, 7.4, 5H), 1.88 (s, 1H), 1.82 – 1.76 (m, 3H), 1.69 (d, *J*=11.1, 4H), 1.62 (s, 2H), 1.41 (s, 2H), 1.25 (s, 4H), 1.19 (d, *J*=6.5, 2H), 0.96 (s, 2H), 0.90 (t, *J*=7.6, 7H), 0.82 (d, *J*=6.8, 6H), 0.33 (d, *J*=6.7, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 161.50$ (d, *J*=2.5), 132.24 (d, *J*=9.7), 124.58 (dd, *J*=91.9, 1.5), 113.83 (d, *J*=11.9), 55.12 (s), 43.20 (d, *J*=3.4), 41.14 (d, *J*=67.6), 34.75 (d, *J*=105.6), 33.19 (d, *J*=12.9), 28.34 (d, *J*=10.2), 28.10 (d, *J*=3.0), 27.68 (d, *J*=9.0), 24.55 (d, *J*=11.8), 22.02 (d, *J*=100.6), 15.10 (s), 14.48 – 14.40 (m). HRMS (ESI⁺) Calcd. for C₃₇H₅₉O₄P₂ [M+H⁺]: 629.3889, Found: 629.3908.

(S_P,S_P)-Propane -1,3-diylbis[(-)-menthyl *p*-methoxyphenylphosphine oxide], 12h

The pure compound **12h** was obtained as a white solid (31mg, 52%, >99:1 dr); m.p. 223.0 – 224.7 °C; ³¹P NMR (**162 MHz, CDCl₃**) $\delta =$ 45.44 (s); ¹H NMR (**400 MHz, CDCl₃**) $\delta =$ 7.49 (t, *J*=9.1, 4H), 6.90 (d, *J*=7.3, 4H), 3.84 (s, 6H), 2.62 – 2.50 (m, 2H), 2.24 (dd, *J*=14.5, 7.3, 2H), 2.11 – 2.01 (m, 2H), 1.94 (dd, *J*=24.2, 11.7, 2H), 1.71 (s, 6H), 1.64 (d, *J*=13.1, 4H), 1.27 (s, 2H), 1.02 (dd, *J*=23.1, 10.8, 4H), 0.86 – 0.80 (m, 12H), 0.73 (dd, *J*=22.1, 9.3, 8H); ¹³C {¹H} NMR (**101 MHz, CDCl₃**) $\delta =$ 161.78 (d, *J*=2.8), 132.74 (d, *J*=9.4), 122.03 (d, *J*=92.6), 113.91 (d, *J*=11.7), 55.19 (s), 43.31 (s), 41.76 (d, *J*=66.6), 35.21 (d, *J*=189.2), 33.12 (d, *J*=13.4), 29.24 (d, *J*=10.3), 28.59 (d, *J*=9.9), 28.36 (s), 24.62 (d, *J*=12.8), 22.02 (d, *J*=119.1), 15.73 (s), 14.86 – 14.68 (m). HRMS (ESI⁺) Calcd. for C₃₇H₅₉O₄P₂ [M+H⁺]: 629.3889, Found:629.3904.

(*R*_P,*R*_P)-Butane-1,4-diylbis[(-)-menthyl *p*-tolylphosphine oxide], 12i

The pure compound **12i** was obtained as a white solid (35mg, $^{(-)-Men_{p}-MeC_{6}H_{4}}$ $^{(-)-Men_{e}-p}_{Men-(-)}$ $^{(-)-Men_{e}-p}_{65\%, >99:1 dr}$; m.p. 206.1 – 208.5 °C; ³¹P NMR (**162 MHz**, **CDCI**₃) $\delta = 42.90$ (s); ¹H NMR (**400 MHz, CDCI**₃) $\delta = 7.55 - 7.45$ (m, 4H), 7.22 (d, *J*=7.4, 4H), 2.38 (s, 6H), 2.08 (dd, *J*=14.0, 7.7, 2H), 2.04 – 1.92 (m, 4H), 1.86 (s, 2H), 1.78 (s, 2H), 1.70 (d, *J*=11.5, 4H), 1.61 (s, 5H), 1.30 (s, 2H), 1.17 (dd, *J*=15.7, 9.2, 4H), 0.99 (d, *J*=10.8, 3H), 0.90 (d, J=5.7, 6H), 0.82 (d, J=6.4, 6H), 0.36 (d, J=6.7, 6H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 141.29$ (d, J=2.7), 130.56 (d, J=90.9), 130.46 (d, J=8.8), 129.16 (d, J=11.3), 43.26 (d, J=3.3), 40.91 (d, J=67.2), 35.33 (d, J=2.2), 34.23 (s), 33.66 (d, J=13.1), 33.22 (d, J=13.0), 32.79 (s), 28.17 (d, J=2.7), 26.87 (d, J=65.9), 24.58 (d, J=12.0), 22.61 (s), 21.54 (s), 20.19 (d, J=3.6), 15.19 (s). HRMS (ESI⁺) Calcd. for C₃₈H₆₁O₂P₂ [M+H⁺]: 611.4147, Found: 611.4153.

(S_P,S_P)-Butane-1,4-diylbis[(-)-menthyl *p*-tolylphosphine oxide], 12j

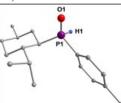
The pure compound **12i** was obtained as a white solid (37mg, 66%, $P^{\text{MeC}_{\text{(-)-Men}}}$ >99:1 dr); m.p. 80.3 – 84.6 °C; ³¹P NMR (**162 MHz, CDCl**₃) $\delta =$ 45.15 (s); ¹H NMR (**400 MHz, CDCl**₃) $\delta =$ 7.49 (dd, *J*=9.6, 8.4, 4H), 7.24 (d, *J*=6.7, 4H), 2.63 – 2.51 (m, 2H), 2.41 (d, *J*=9.8, 6H), 2.16 (s, 1H), 2.11 – 1.99 (m, 2H), 1.90 – 1.81 (m, 2H), 1.72 – 1.60 (m, 9H), 1.37 (dd, *J*=31.7, 26.9, 4H), 1.14 – 0.99 (m, 5H), 0.88 – 0.80 (m, 14H), 0.77 (q, *J*=5.5, 7H); ¹³C {¹H} NMR (**101 MHz, CDCl**₃) $\delta =$ 141.44 (d, *J*=2.5), 130.93 (d, *J*=8.5), 129.11 (d, *J*=11.1), 128.31 (d, *J*=88.9), 43.30 (d, *J*=2.9), 41.43 (d, *J*=66.1), 36.22 (s), 34.30 (s), 33.16 (d, *J*=13.3), 28.72 (s), 28.40 (s), 28.19 (s), 24.68 (d, *J*=12.6), 23.14 – 22.74 (m), 22.57 (s), 21.45 (d, *J*=11.7), 15.70 (s), 15.41 (d, *J*=59.6). **HRMS (ESI+)** Calcd. for C₃₈H₆₁O₂P₂ [M+H⁺]: 611.4147, Found: 611.4160.

(*R*_P,*S*_P)-(1,3-Phenylenebismethylene) bis[(-)-menthylphenylphosphine oxide], 12k

The crude product 12k was obtained from 11a in a yield of 99% (estimated by ³¹P-NMR spectra), and the pure compound 12k was obtained as a white solid (96mg, 81%, >99:1 dr); m.p. 199.5 – 201.2 °C; ³¹P NMR (162 MHz, CDCl₃) $\delta = 42.42$ (s), 40.25 (s); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.61 - 7.54$ (m, 2H), 7.50 – 7.42 (m, 3H), 7.41 – 7.34 (m, 3H), 7.31 (t, *J*=6.0, 2H), 6.89 – 6.79 (m, 3H), 6.70 (d, *J*=7.0, 1H), 3.26 (ddt, *J*=24.2, 14.6, 12.3, 3H), 2.94 (dd, *J*=14.4, 7.2, 1H), 2.60 – 2.50 (m, 1H), 2.01 (d, *J*=5.1, 4H), 1.92 (d, *J*=10.2, 1H), 1.81 (d, *J*=9.5, 1H), 1.70 (dd, *J*=27.4, 12.7, 5H), 1.40 – 1.28 (m, 3H), 1.20 (s, 1H), 1.09 – 0.93 (m, 7H), 0.85 (dd, *J*=19.2, 6.6, 6H), 0.76 (dd, *J*=9.2, 7.0, 6H), 0.30 (d, *J*=6.7, 3H); ¹³C {¹H} NMR (101 MHz, CDCl₃) $\delta = 137.00$ (d, *J*=2.2), 134.17 (s), 133.28 (s), 132.47 (d, *J*=7.6), 130.87 (d, *J*=2.5), 46.03 (s), 45.98 (s), 45.77 (s), 43.33 (d, *J*=3.6), 42.81 – 42.74 (m), 41.70 (s), 40.71 (s), 40.05 (s), 36.58 (s), 35.98 (s), 35.24 (s), 34.57 (s), 34.18 (s), 33.28 (d, *J*=13.0), 28.10 (s), 24.58 (d, *J*=11.9), 22.64 (s), 21.45 (s), 15.45 (s), 15.13 (s). HRMS (ESI⁺)

Calcd. for C₄₀H₅₇O₂P₂ [M+H⁺]: 631.3834, Found: 631.3848.

(*R*_P,*R*_P)-1,3-Di(menthyl phenyl phosphinylmethyl)benzene, 121


Under similar procedure to 12k, The pure compound 12l was O −P∵′′C₆H₄Ph-*p* Men-(-) O (-)-Men^{\\}P ₽► obtained as a white solid (105mg, 79%, >99:1 dr); m.p. 111.1 -114.8 °C; ³¹P NMR (162 MHz, CDCl₃) δ = 40.51 (s), 39.97 (s); ¹H NMR (400 MHz, CDCl₃) δ = 7.57 (dd, J=14.3, 10.8, 7H), 7.45 – 7.41 (m, 2H), 7.37 (d, J=7.1, 3H), 7.22 (d, J=5.5, 2H), 6.91 (s, 1H), 6.82 - 6.75 (m, 2H), 6.59 (s, 1H), 3.42 (d, J=18.9, 2H), 3.00 (s, 1H), 2.88 (s, 1H), 2.03 (s, 3H), 1.92 (s, 2H), 1.72 (s, 7H), 1.36 (s, 3H), 0.95 (d, J=4.1, 9H), 0.77 (dd, J=13.8, 6.7, 8H), 0.41 $(d, J=6.6, 3H), 0.31 (d, J=6.6, 3H); {}^{13}C {}^{1}H NMR (101 MHz, CDCl_3) \delta = 143.23 (s), 139.95 ($ 134.16 (s), 133.26 (dd, J=3.8, 2.1), 132.66 (s), 132.29 (t, J=4.8), 131.63 - 131.56 (m), 131.52 (dd, J=2.4, 1.3), 131.15 (d, J=8.5), 130.67 (s), 130.39 (d, J=8.5), 128.85 (s), 127.90 (s), 127.73 -127.61 (m), 127.09 (s), 126.60 (d, J=11.4), 43.47 (d, J=3.2), 43.40 (d, J=4.0), 40.94 (d, J=65.8), 40.58 (d, *J*=65.6), 36.01 (d, *J*=1.5), 35.69 (s), 35.51 (s), 35.36 (s), 35.10 (s), 34.24 (s), 33.21 (d, J=13.0), 28.20 (s), 24.68 (d, J=12.2), 24.61 (d, J=11.8), 24.32 (s), 22.64 (s), 21.46 (d, J=3.0), 19.79 (d, J=1.5), 15.25 (d, J=15.0), 13.76 (s). HRMS (ESI⁺) Calcd. for C₄₆H₆₀O₂P₂Na [M+Na⁺]: 729.3966, Found: 729.3996.

Part 7. Crystallographic information 5b, 5k' and 9b.

Table S-1. Crystallography data of *R*_P-(-)-Menthyl *p*-tolylphosphine oxide (5b)

The single crystal suited for the X-ray diffraction was obtained from the evaporation of the solution of **5b** in dichloromethane and petroleum ether (60-90 $^{\circ}$ C).

O ∣ (-)-Men``₽ p-MeC₆H₄

Empirical formula	С17 Н27 О Р
Crystal system	Monoclinic
space group	P2(1)
Formula weight	252.15
a, Å	12.8110(11)
b, Å	5.7207(5)
c, Å	12.9076(12)
α, deg	90
β, deg	114.493(3)
γ, deg	90
V, Å3	860.84(13)
Ζ	2
Т, К	298(2)
λ, Å	0.71073
ρ, Mg m-3	0.973
Rint	0.0311
R1 [I N 2σ(I)]	0.0781
R1 (all data)	0.0959
wR2 [I N 2σ(I)]	0.2175
wR2 (all data)	0.2384
Absolute structure parameter	0.1(2)
CCDC	1828875

Table S-2. Crystallography data of S_P-(-)-Menthyl 2-naphthalenylphosphine oxide (5k')

The single crystal suited for the X-ray diffraction was obtained from the evaporation of the solution of 5k' in dichloromethane and petroleum ether (60-90 °C).

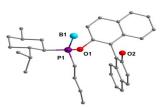
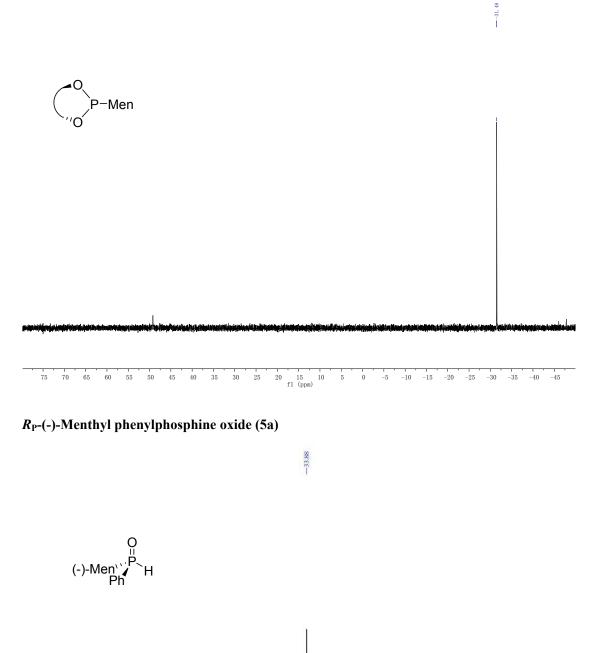
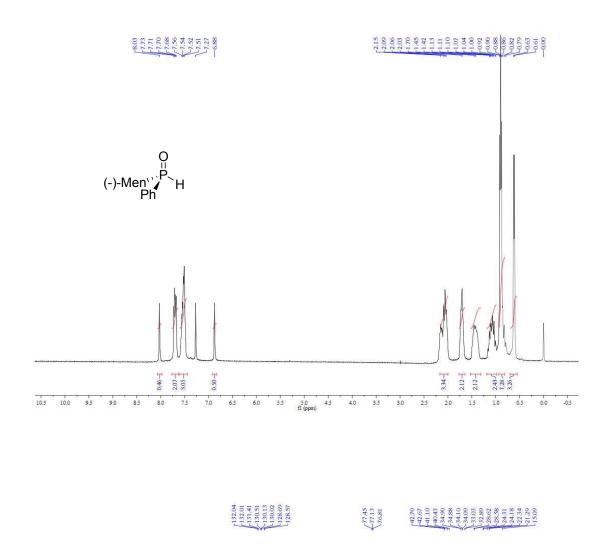

2-nap ,'P∼ (-)-Men	H	
Empirical formula	C20 H27 O P	
Crystal system	Orthorhombic	
space group	P2(1)2(1)2(1)	
Formula weight	314.39	
a, Å	5.6725(4)	
b, Å	16.4065(13)	
c, Å	39.935(3)	
α, deg	90	
β, deg	90	
γ, deg	90	
V, Å3	3716.6(5)	
Ζ	8	
Т, К	298(2)	
λ, Å	0.71073	
ρ, Mg m-3	1.124	
Rint	0.0624	
R1 [I N 2σ(I)]	0.0613	
R1 (all data)	0.1237	
wR2 [I N 2σ(I)]	0.1403	
wR2 (all data)	0.1685	
Absolute structure parameter	0.14(15)	
CCDC	1828876	

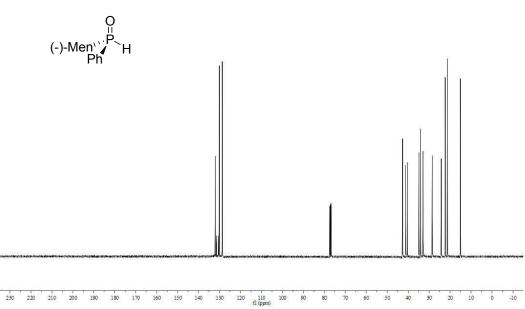
Table S-3. Crystallography data of

R_AR_P- (-)-menthyl butyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9b

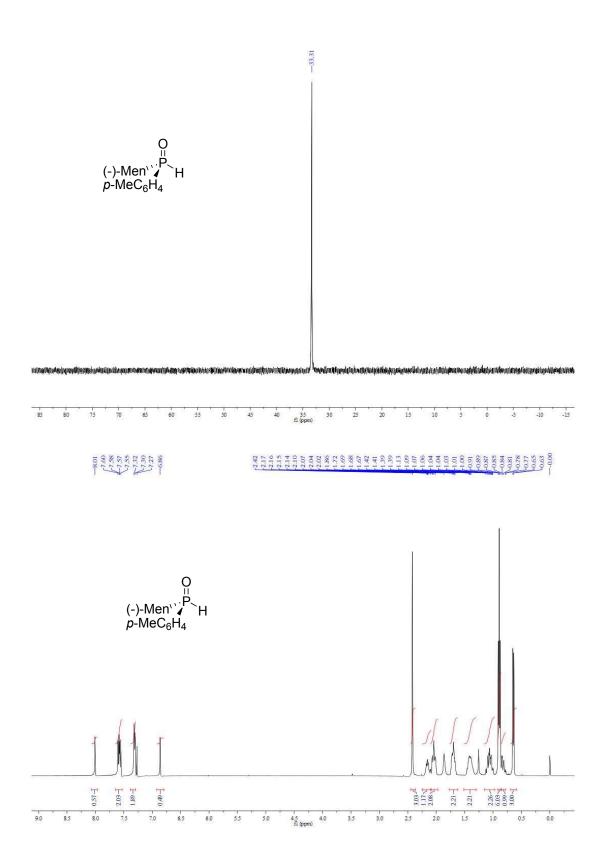

The single crystal suited for the X-ray diffraction was obtained from the evaporation of the solution of **7b** in dichloromethane and petroleum ether (60-90 $^{\circ}$ C).

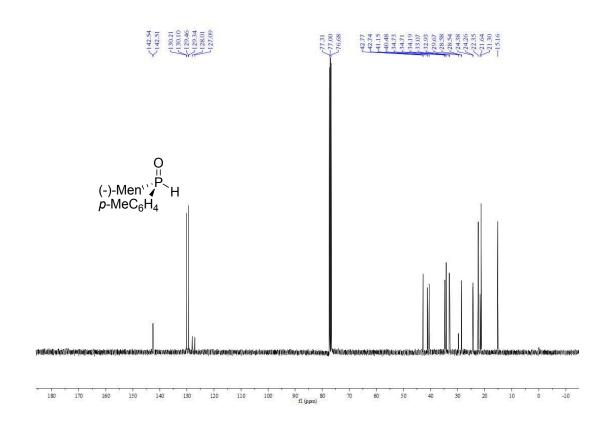
OH BH₃

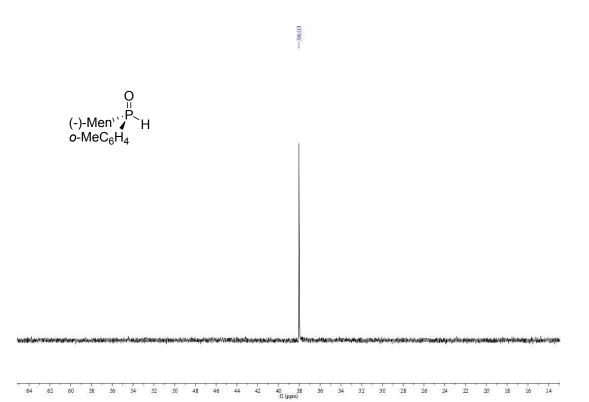


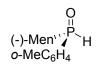

Empirical formula	C34 H44 B O2 P
Crystal system	triclinic
space group	P 1
Formula weight	526.47
a, Å	8.8610(7)
b, Å	8.9222(8)
c, Å	11.1927(9)
α, deg	76.371(2)
β, deg	78.494(2)
γ, deg	65.5380(10)
V, Å3	777.57(11)
Z	1
Т, К	298(2)
λ, Å	0.71073
ρ, Mg m ⁻³	1.124
Rint	0.0218
R1 [I N 2σ(I)]	0.0474
R1 (all data)	0.0633
wR2 [I N 2σ(I)]	0.1023
wR2 (all data)	0.1106
Absolute structure parameter	0.28(13)
CCDC	1877581

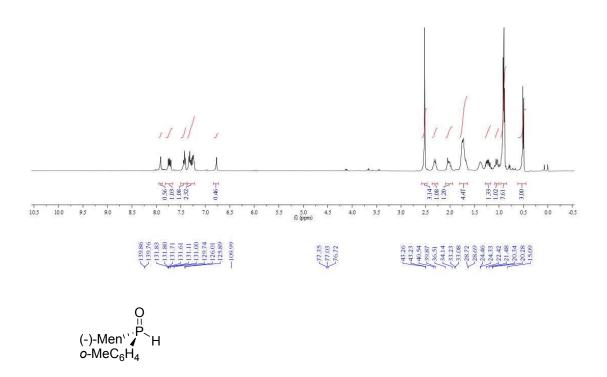
Part 8. Selected photocopies of ¹H, ³¹P and ¹³C NMR spectroscopy. *R*-3 binaphthoxy menthylphosphonites

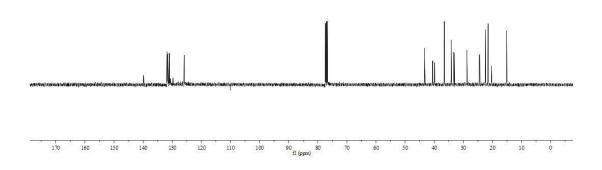



110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 fl(ppm)

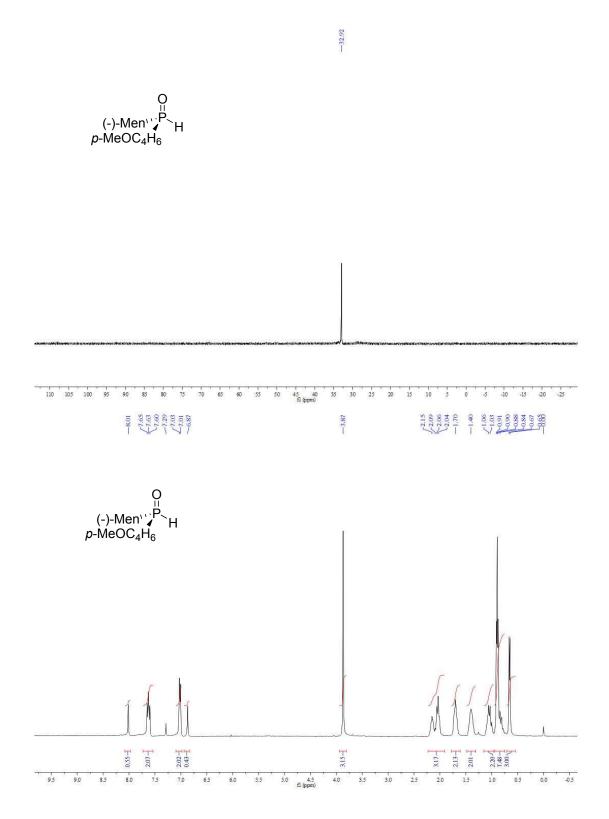


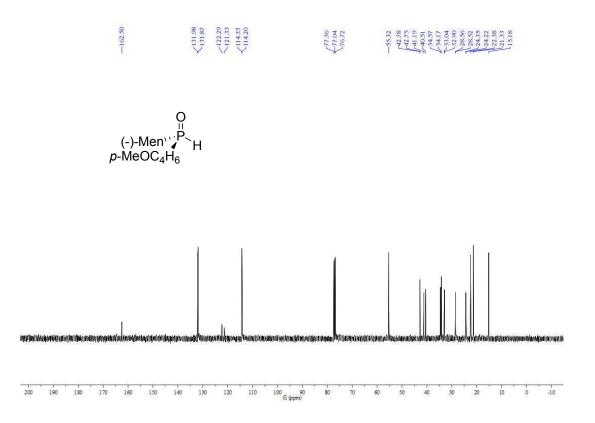

*R*_P-(-)-Menthyl *p*-tolylphosphine oxide (5b)

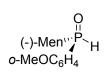


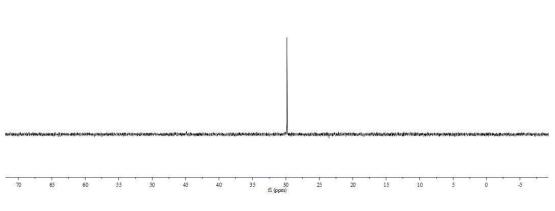


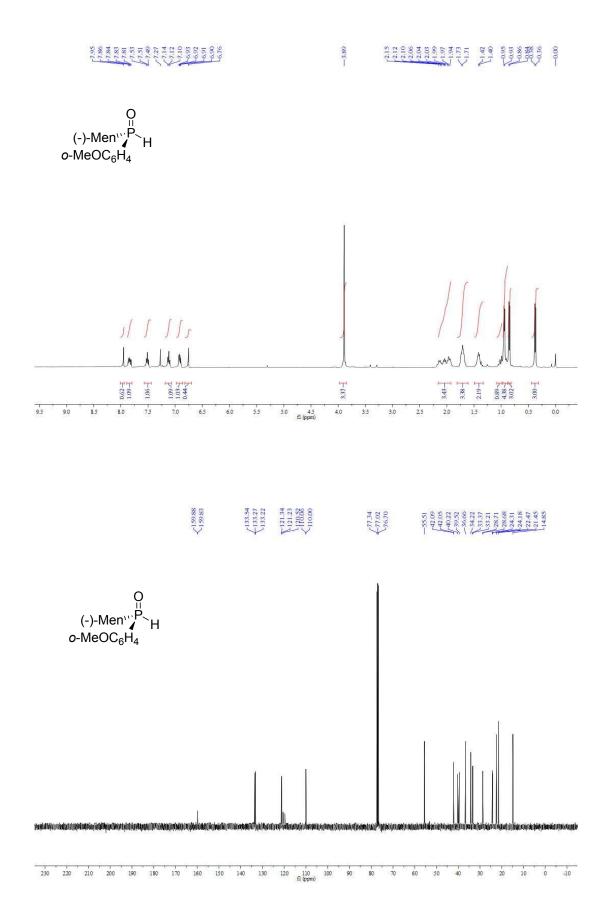
*R*_P-(-)-Menthyl *o*-tolylphosphine oxide (5c)



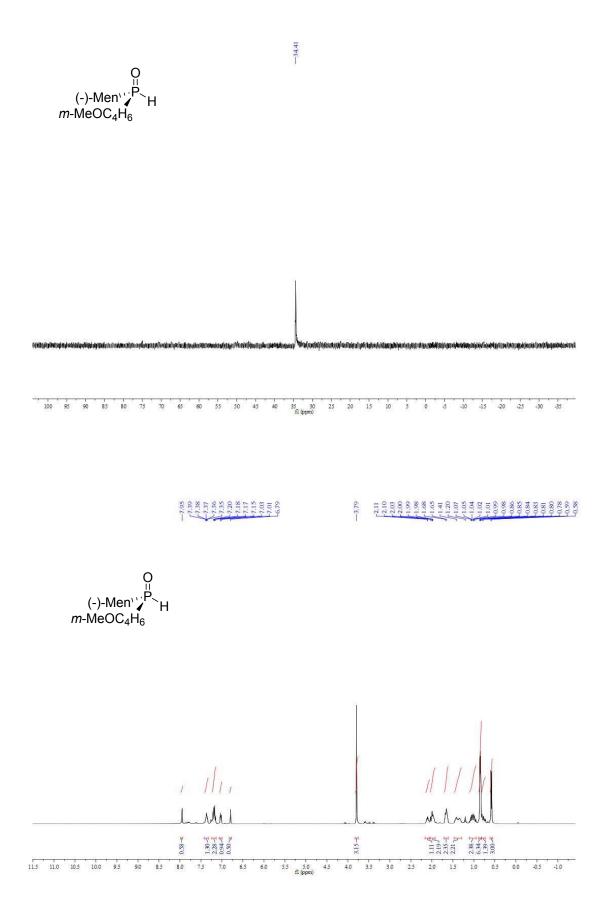


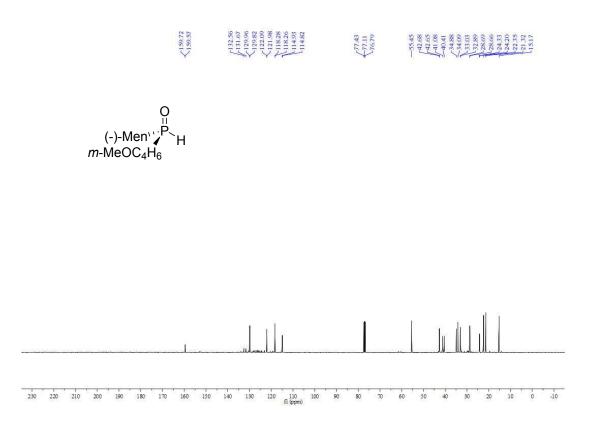



 $R_{\rm P}$ -(-)-Menthyl *p*-methoxyphenylphosphine oxide (5d)

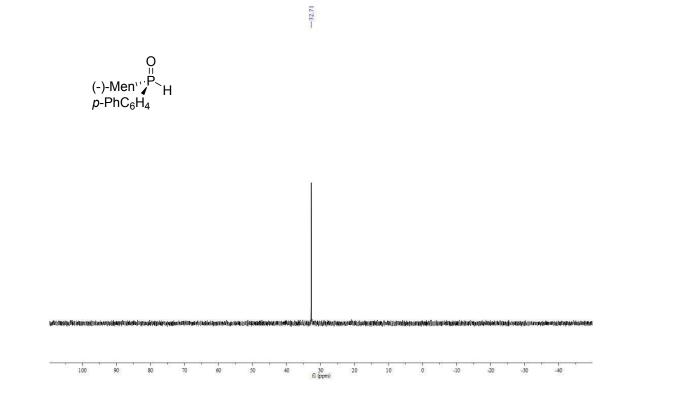


 $R_{\rm P}$ -(-)-Menthyl *o*-methoxyphenylphosphine oxide (5e)

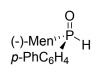


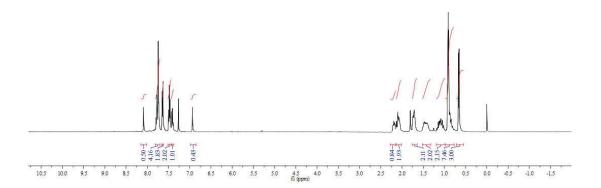


-29.83

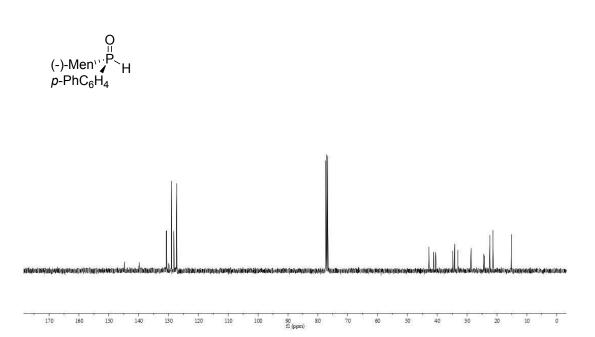


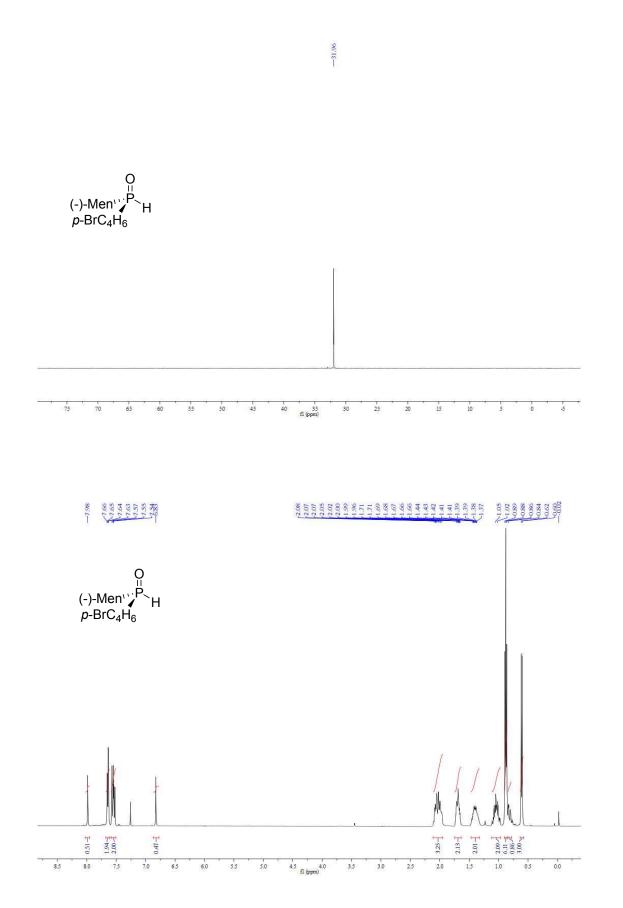
 $R_{\rm P}$ -(-)-Menthyl *m*-methoxyphenylphosphine oxide (5f)

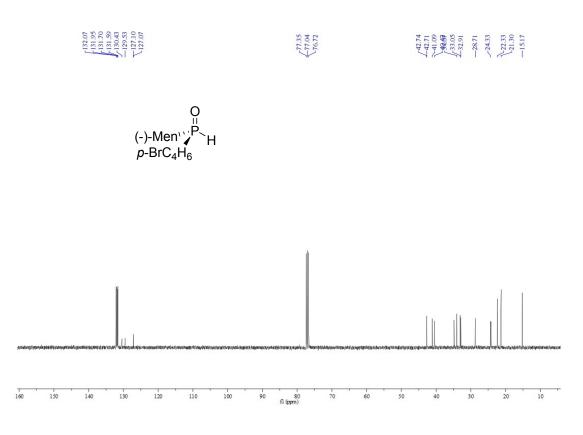


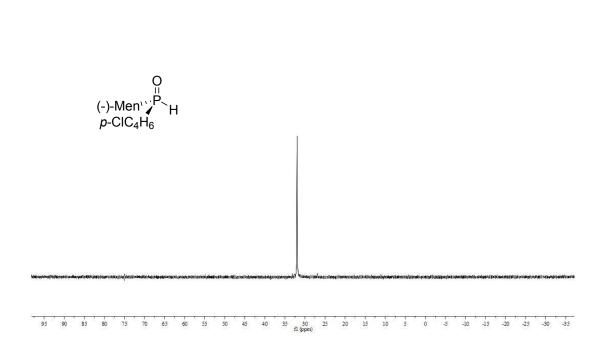


R_P-(-)-Menthyl [1,1'-biphenyl]-4-ylphosphine oxide (5g)

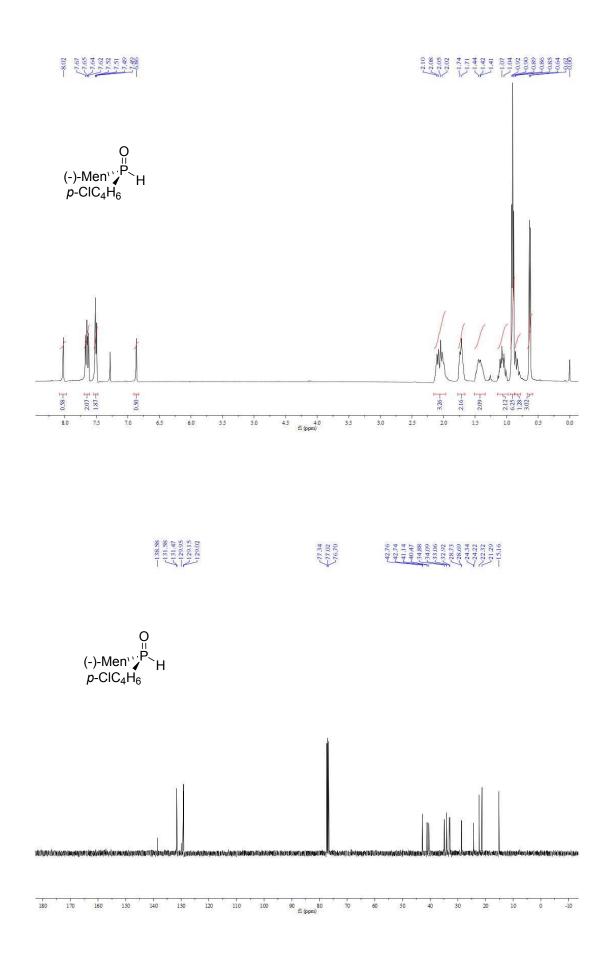


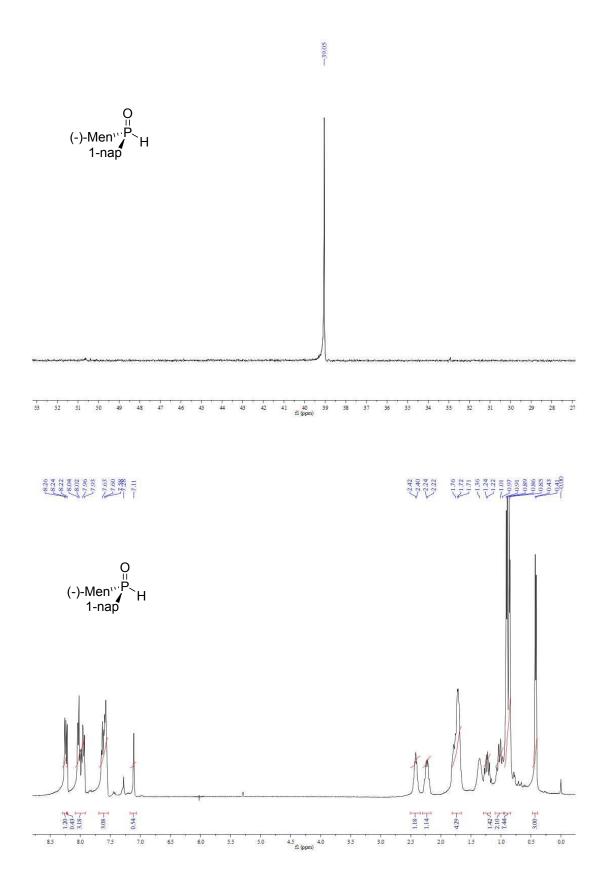


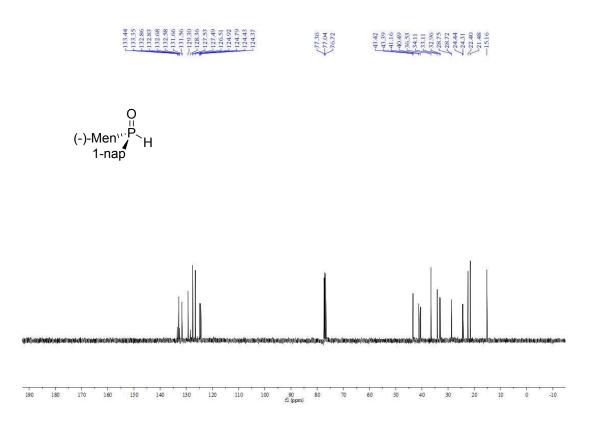




*R*_P-(-)-Menthyl *p*-bromophenylphosphine oxide (5h)

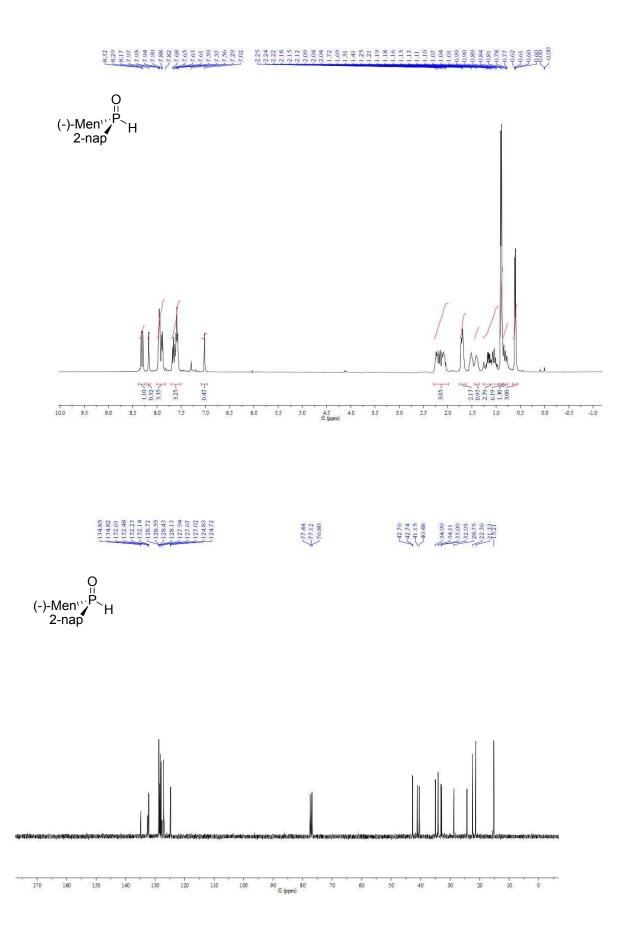


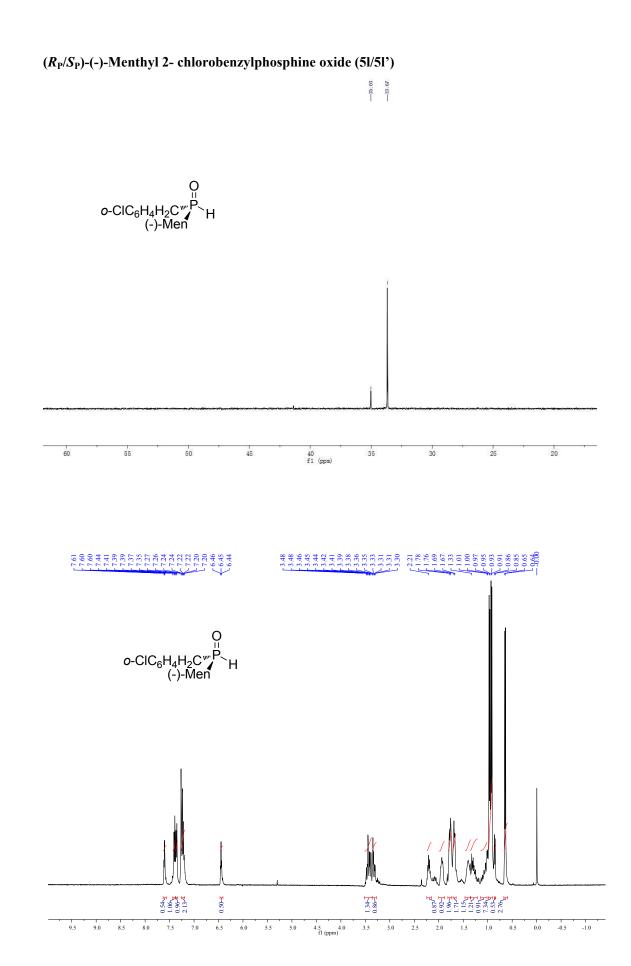

 $R_{\rm P}$ -(-)-Menthyl *p*-chlorophenylphosphine oxide (5i)

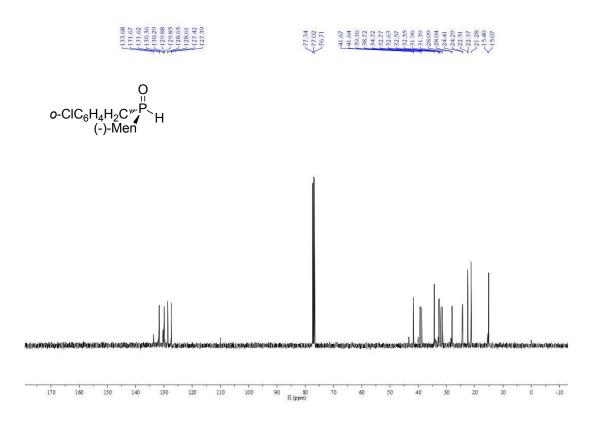


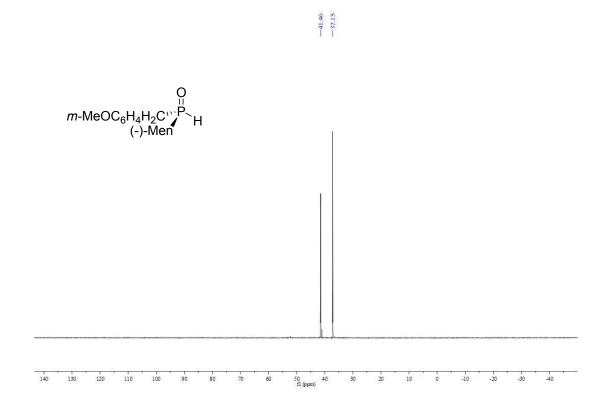
-31.96

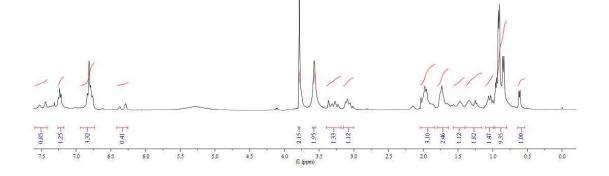
R_P-(-)-Menthyl 1-naphthalenylphosphine oxide (5j)



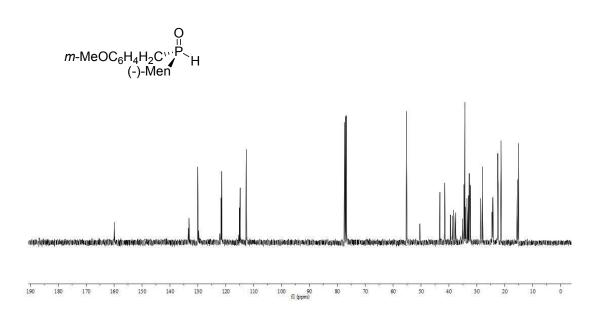



*R*_P-(-)-Menthyl 2-naphthalenylphosphine oxide (5k)

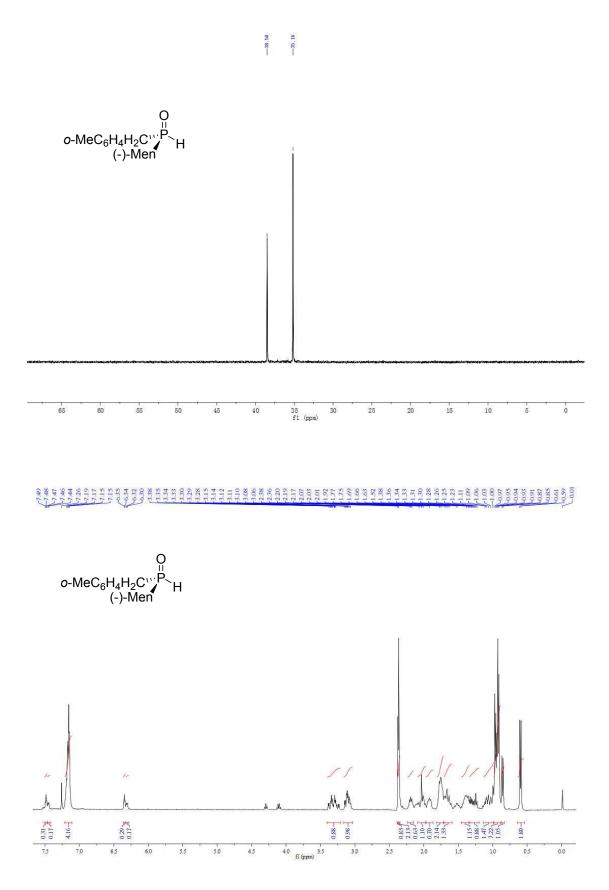

_		1.1					10 UL								10.0	10.0	5 KG ()			10.0		100 000				_	
10	0	95	90	85	80	75	70	65	60	55	50	45	40	35 fl (ppm)	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30

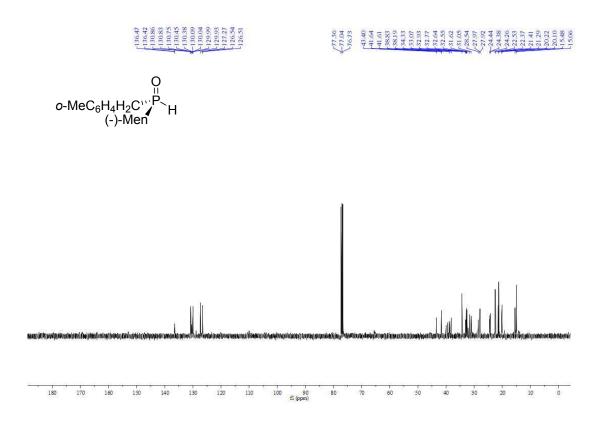


 (R_P/S_P) -(-)-Menthyl 3-methoxybenzylphosphine oxide (5m/5m')

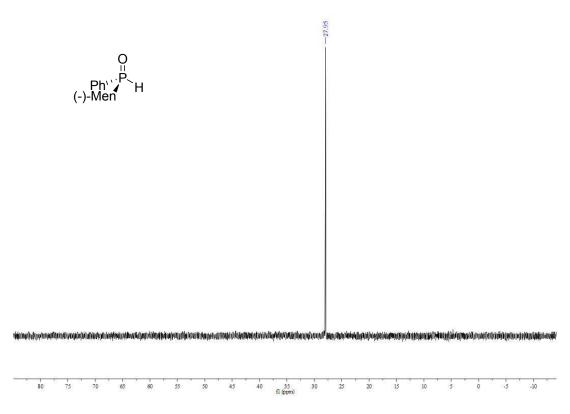


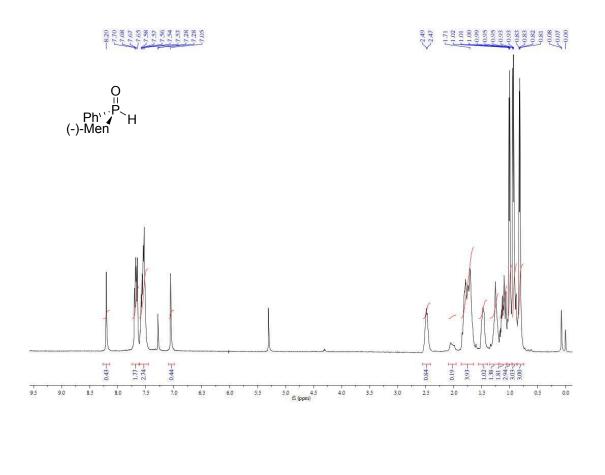
C124 7.131 7.24 7.24 6.84 6.84 6.81 6.81 6.75

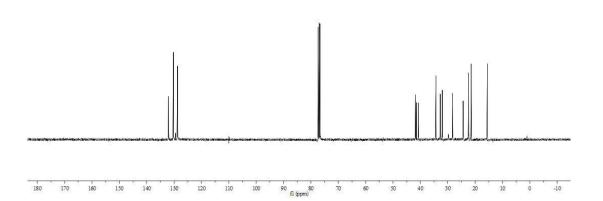

m-MeOC₆H₄H₂C^{\\\P} (-)-Men

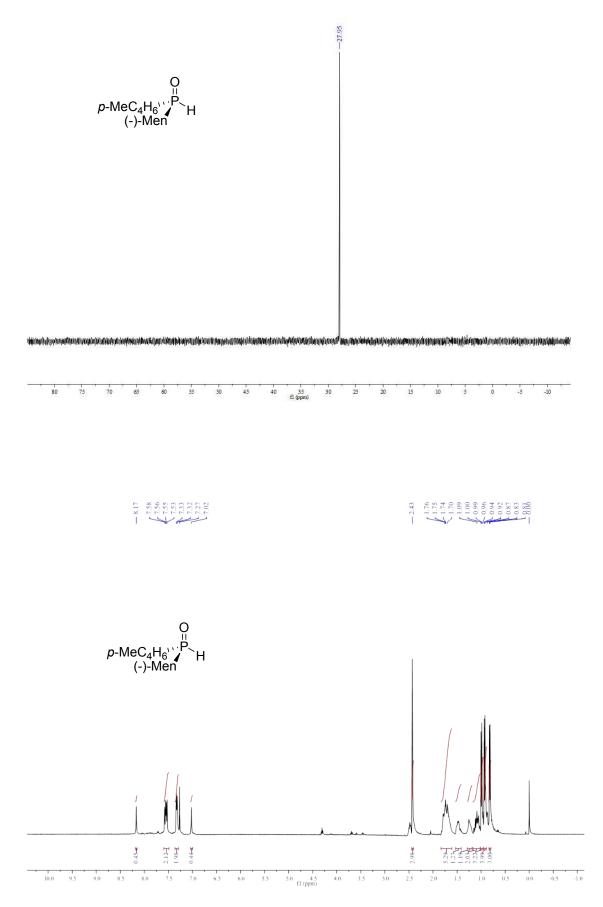


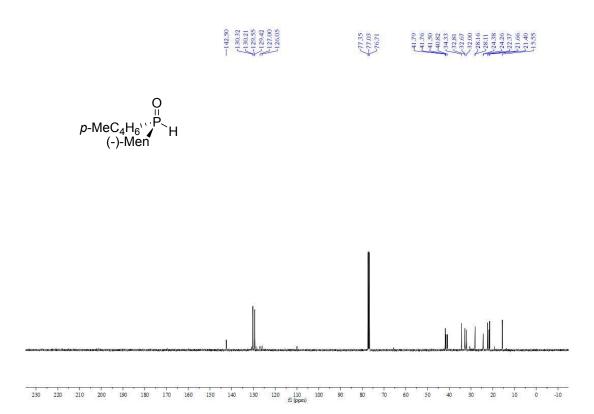
-1.99.97 -1.99.97 -1.99.98 -1.13.17 -1.13.01 -1.13.

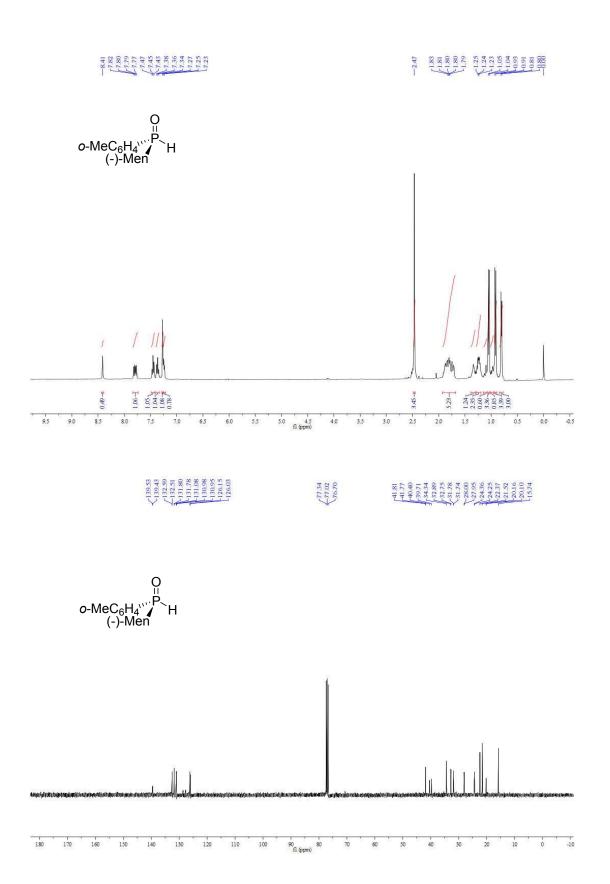


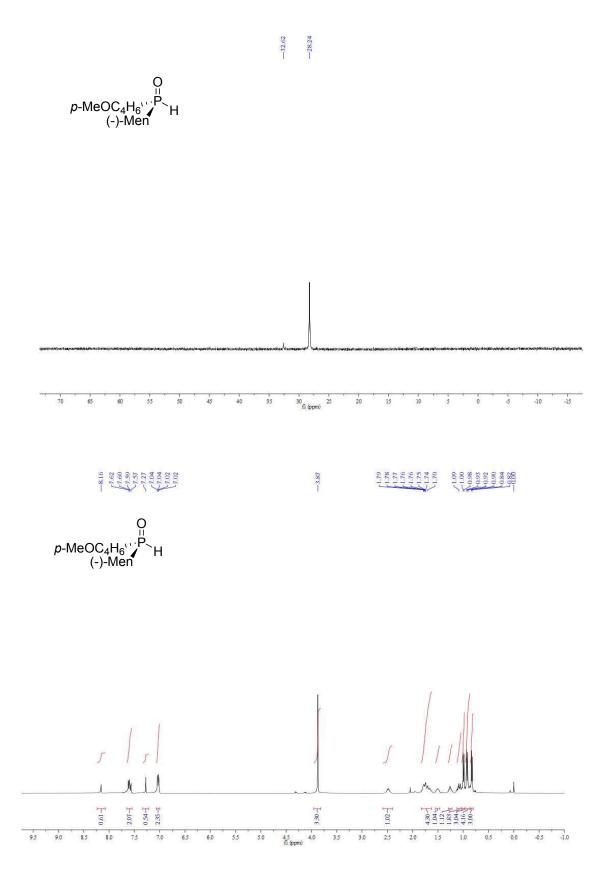

 (R_P/S_P) -(-)-Menthyl 2-methylbenzylphosphine oxide (5n/5n')

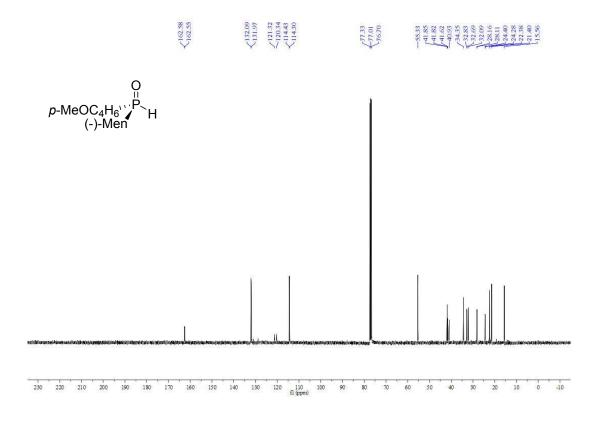

$S_{\rm P}$ -(-)-Menthylphenyl phosphine oxide 5a'



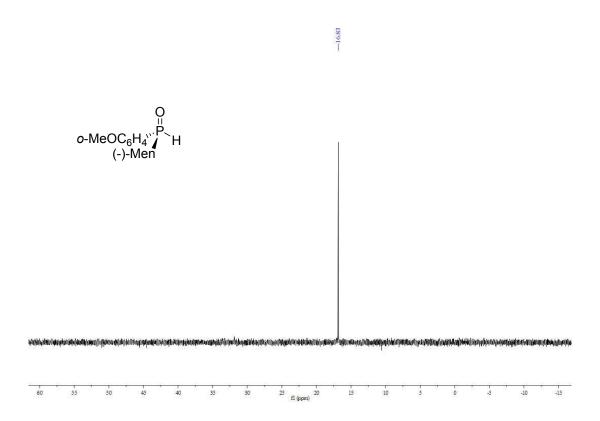


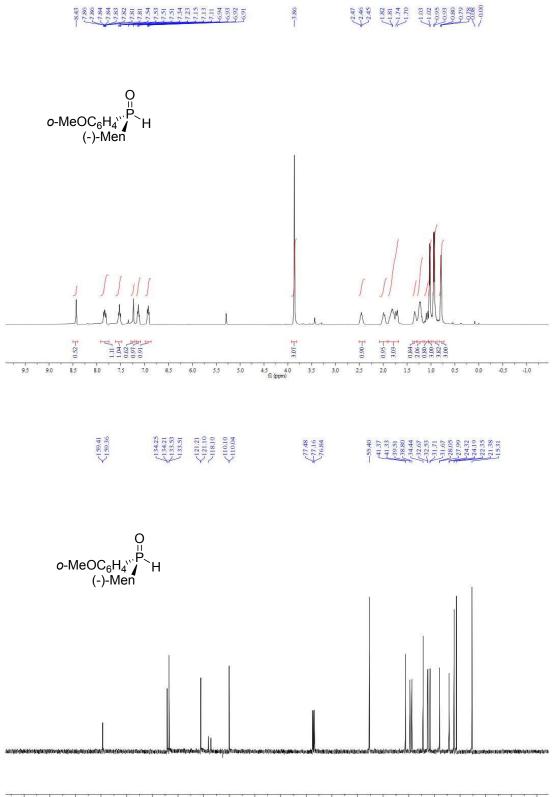


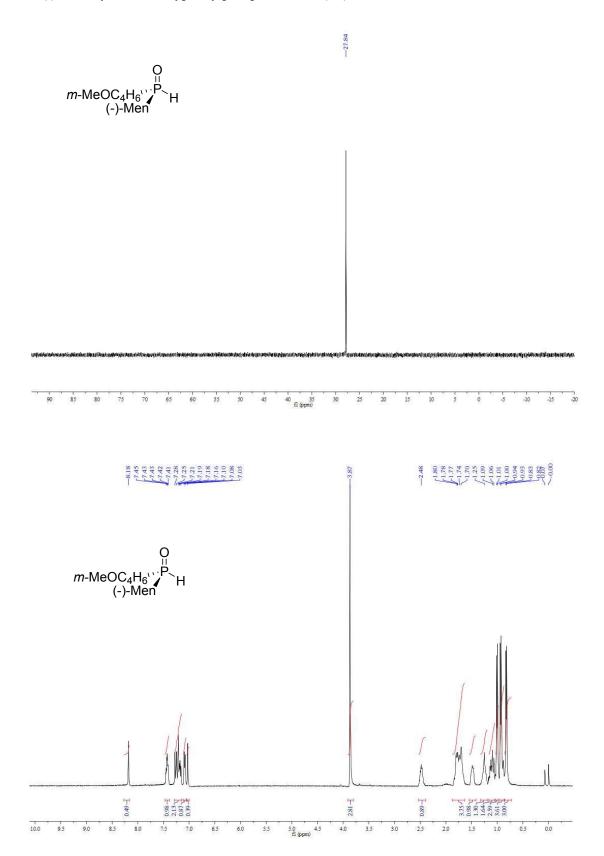


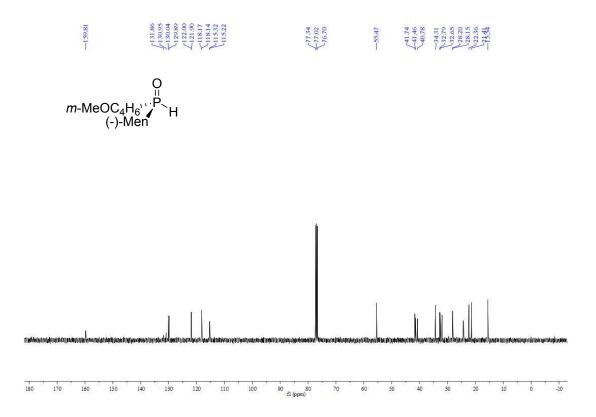

S_P-(-)-Menthyl *o*-tolylphosphine oxide (5c')

o-MeC₆H₄^{\,\\}P (-)-Men -21.52 yahan ege band genetiken kenderen henderen hender henderen kenderen hender 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40

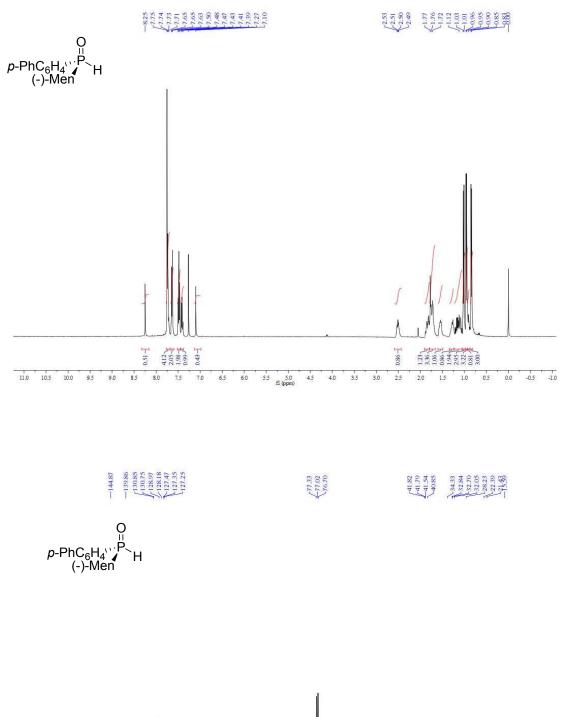


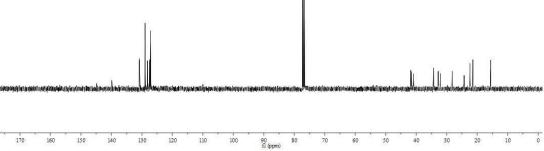

S_P-(-)-Menthyl *p*-methoxyphenylphosphine oxide (5d')


S_P-(-)-Menthyl *o*-methoxyphenylphosphine oxide (5e')

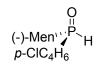


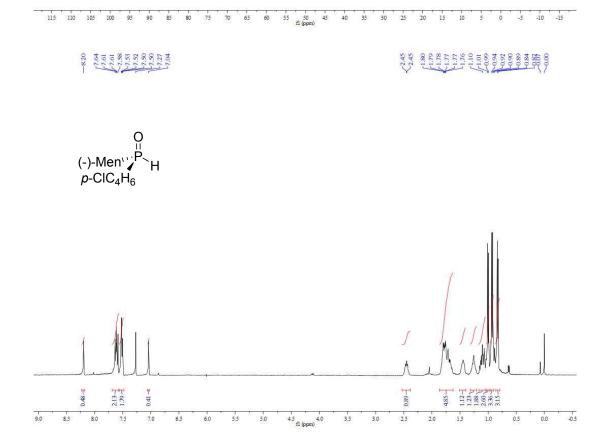
100 90 80 70 fl (ppm) 120 110 -10

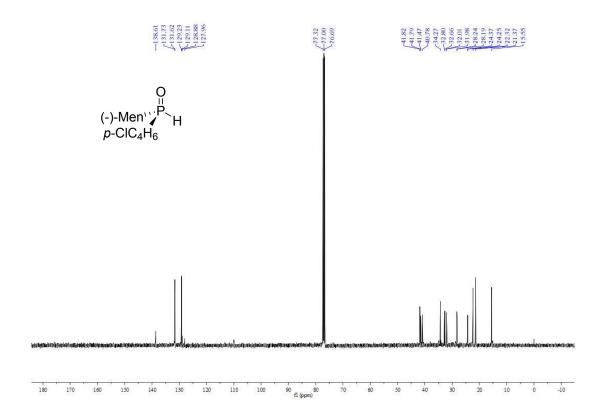

 $S_{\rm P}$ -(-)-Menthyl *m*-methoxyphenylphosphine oxide (5f')



S_P-(-)-Menthyl [1,1'-biphenyl]-4-ylphosphine oxide (5g')


-27.83 0 ₽-PhC₆H₄``Ṕ (-)-Men 50 45 40 35 30 25 20 15 10 5 fl (ppm) 90 85 80 75 70 -25 -30 65 60 55 -15 -20 0 -5 -10

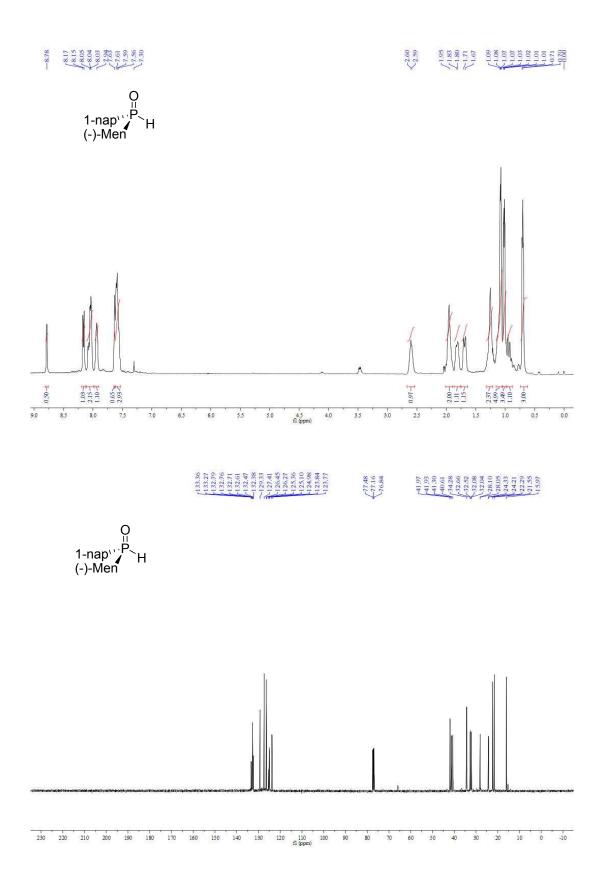




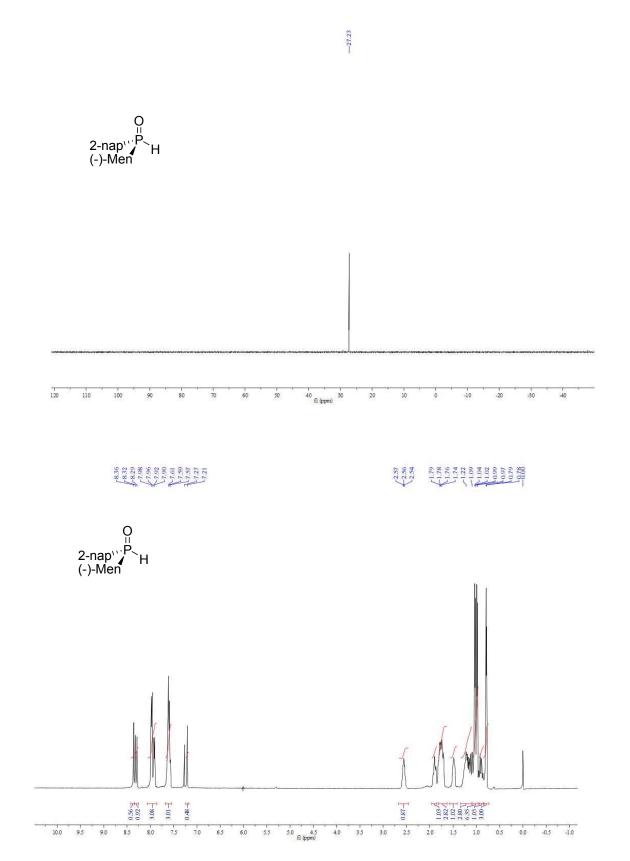
S_P-(-)-Menthyl *p*-chlorophenylphosphine oxide (5i')

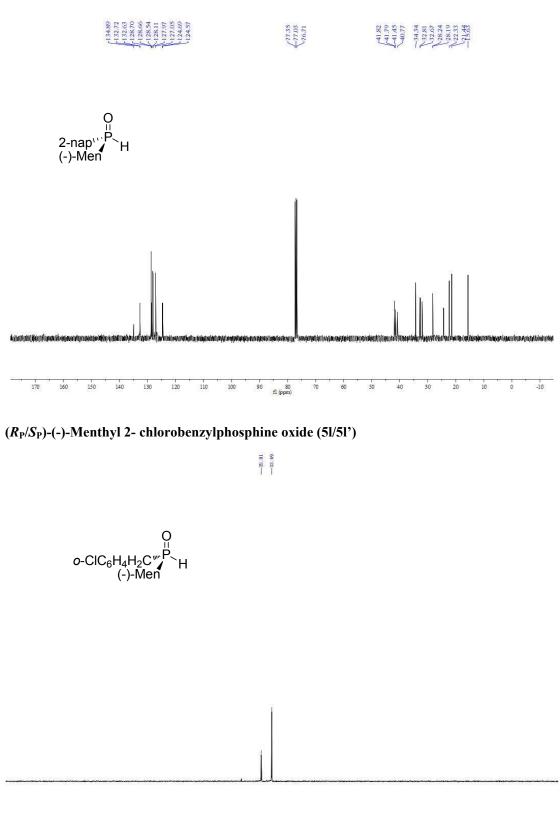
-31.97 -26.91

-22.54


S_P-(-)-Menthyl 1-naphthalenylphosphine oxide (5j')

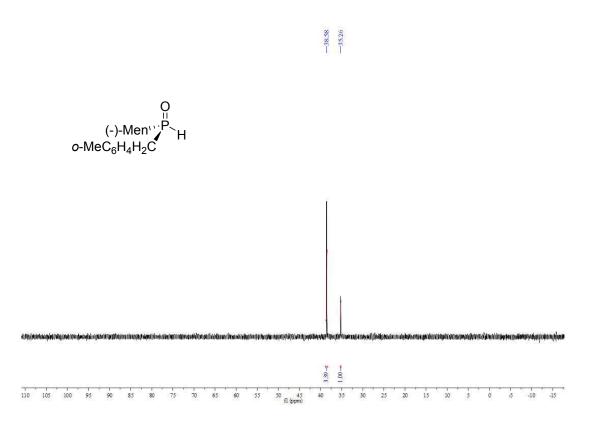
Ö 1-nap`\`F (-)-Men

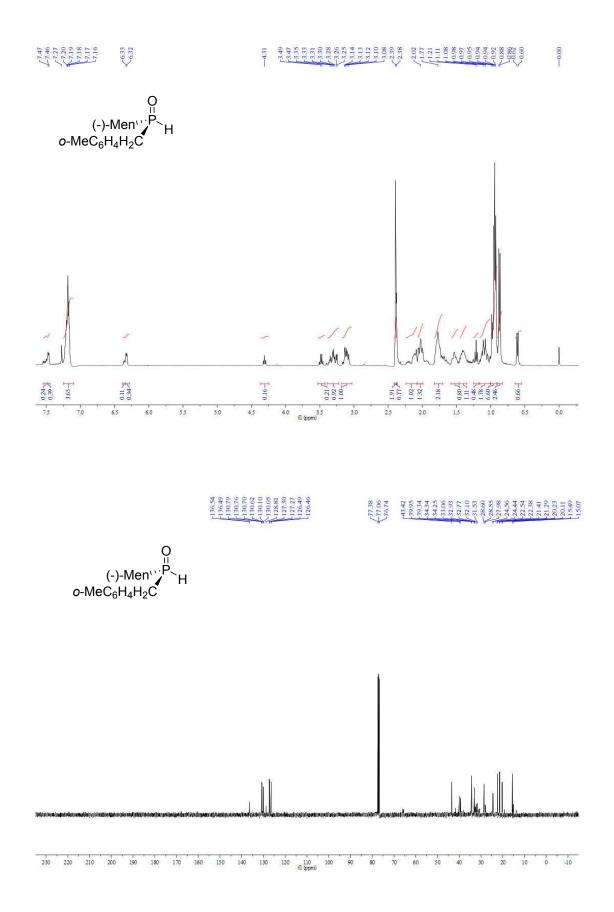

90 85 80


75

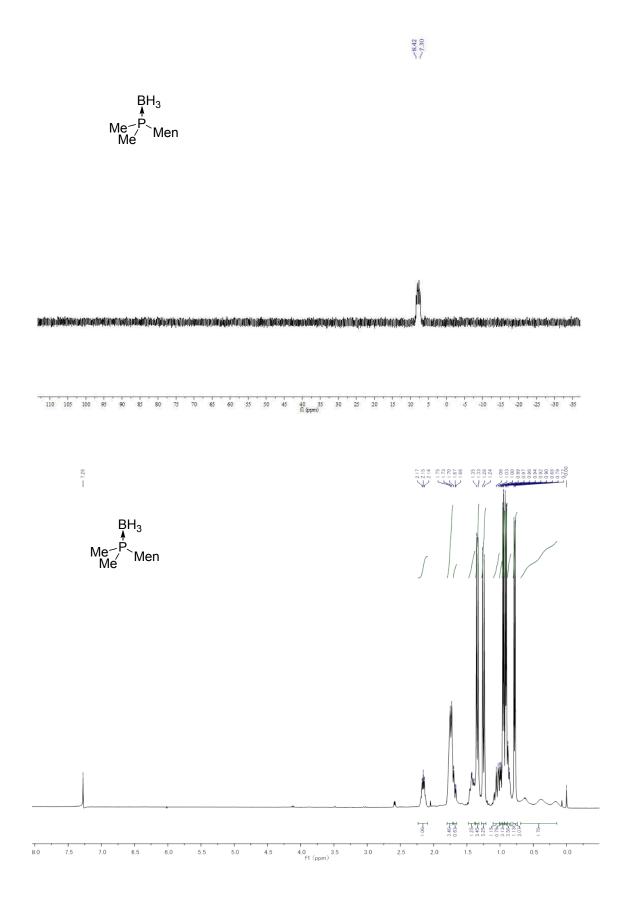
70 65 60 55 50 45 40 35 50 25 20 15 10 5 0 -5 -10 -15 -20 -25 30 35 fl(ppm)

S_P-(-)-Menthyl 2-naphthalenylphosphine oxide (5k')

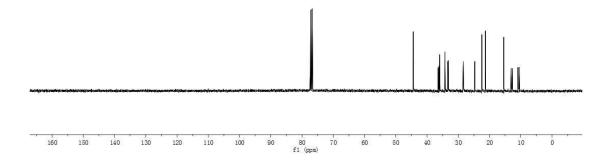

(*R*_P/*S*_P)-(-)-Menthyl 3-methoxybenzylphosphine oxide (5m/5m')

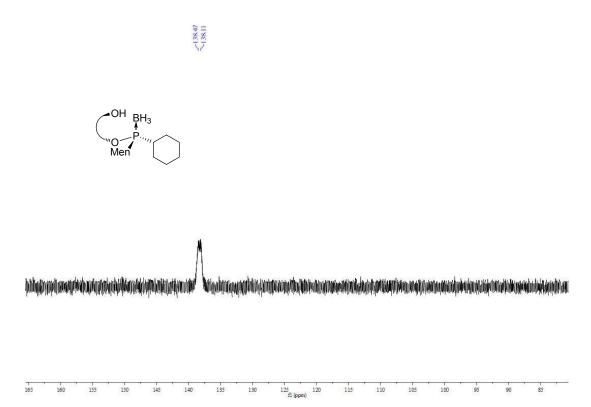


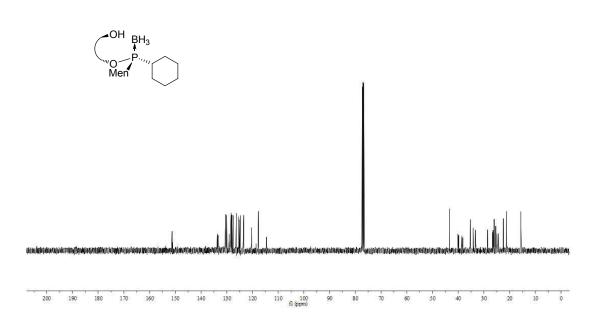
(-)-Men'' *m*-MeOC₆H₄H₂C

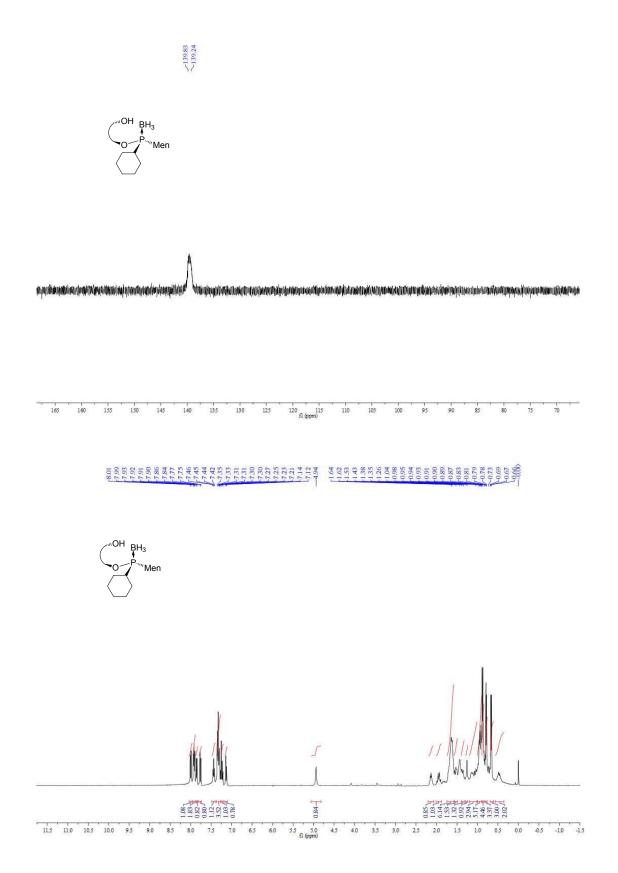


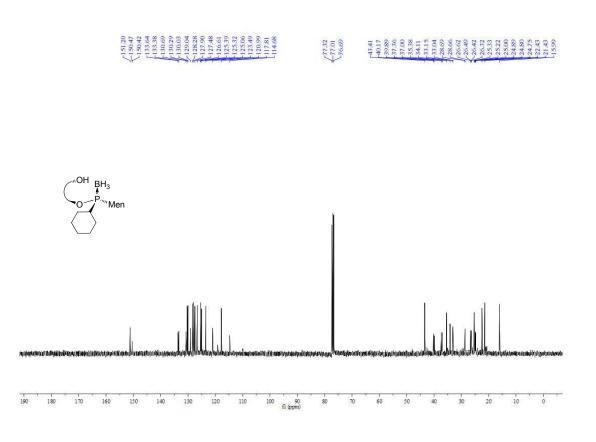
(*R*_P/*S*_P)-(-)-Menthyl 2-methylbenzylphosphine oxide (5n/5n')

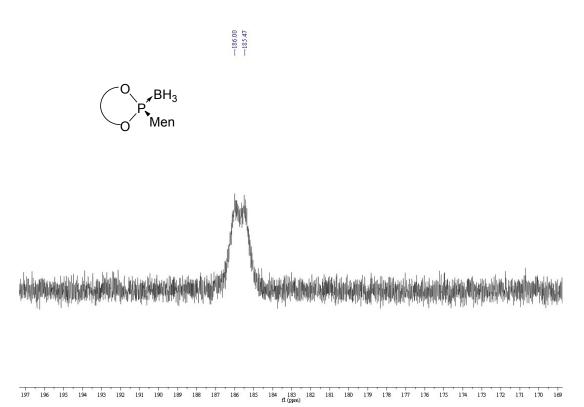


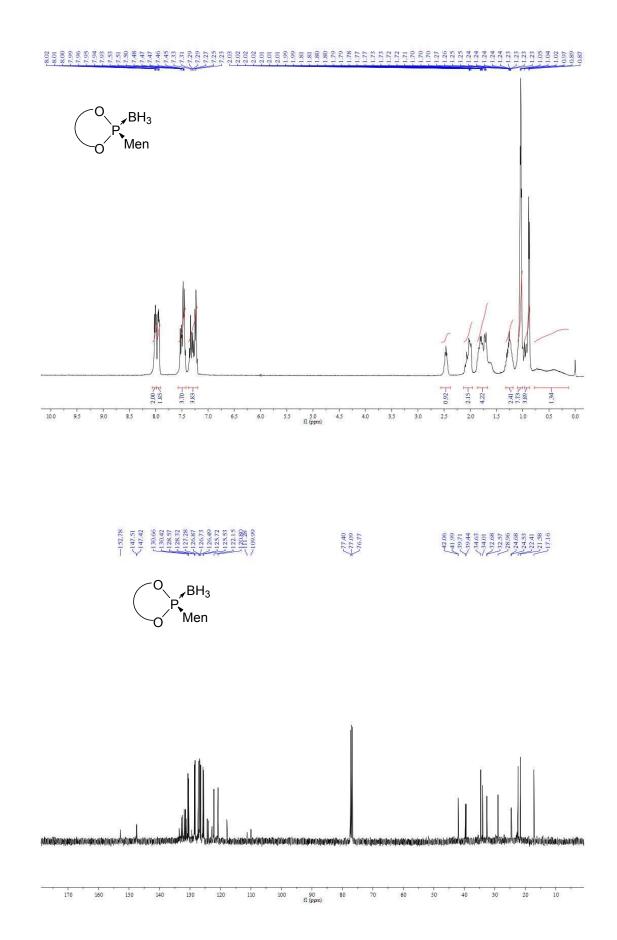

Dimethyl menthyl phosphine oxide 8a

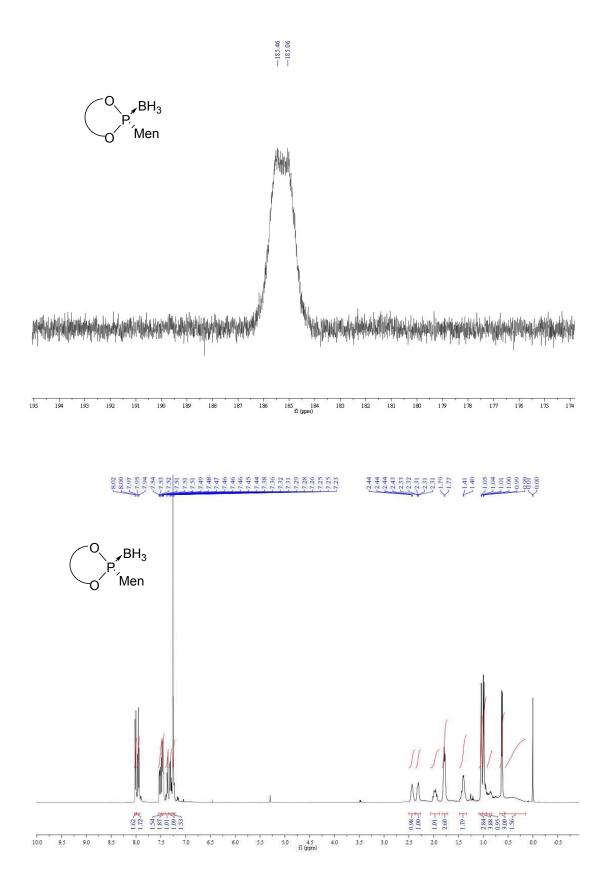


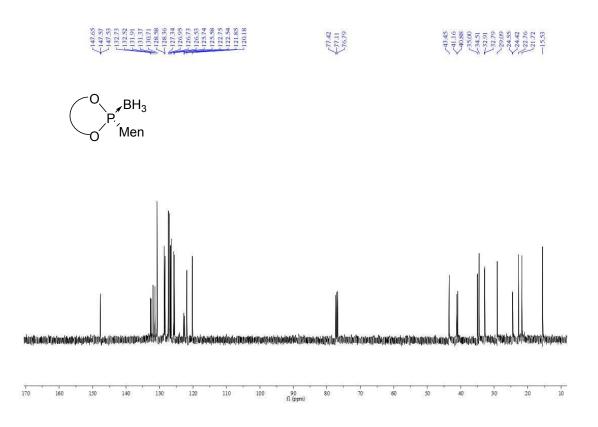

R_AR_P- (-)-menthyl cyclohexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9d



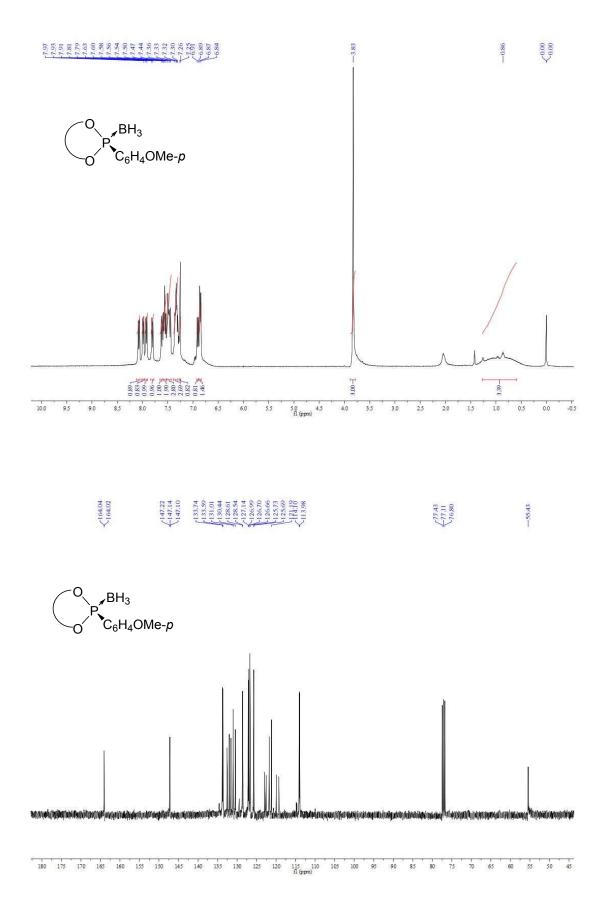



S_AS_P- (-)-menthyl cyclohexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9e

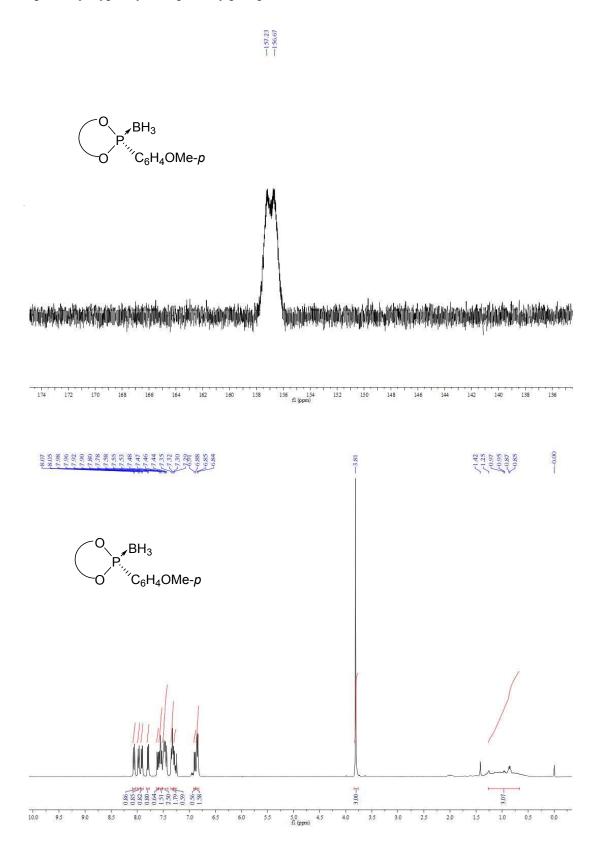


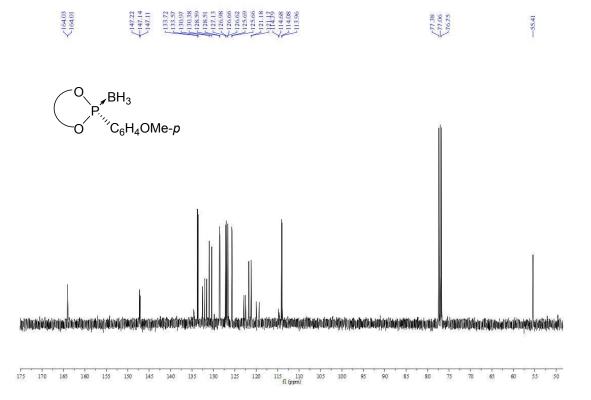

R-(-)-menthylbinaphthoxy phosphonites borane, 10a

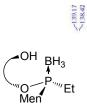
S-(-)-menthylbinaphthoxy phosphonites borane, 10a'



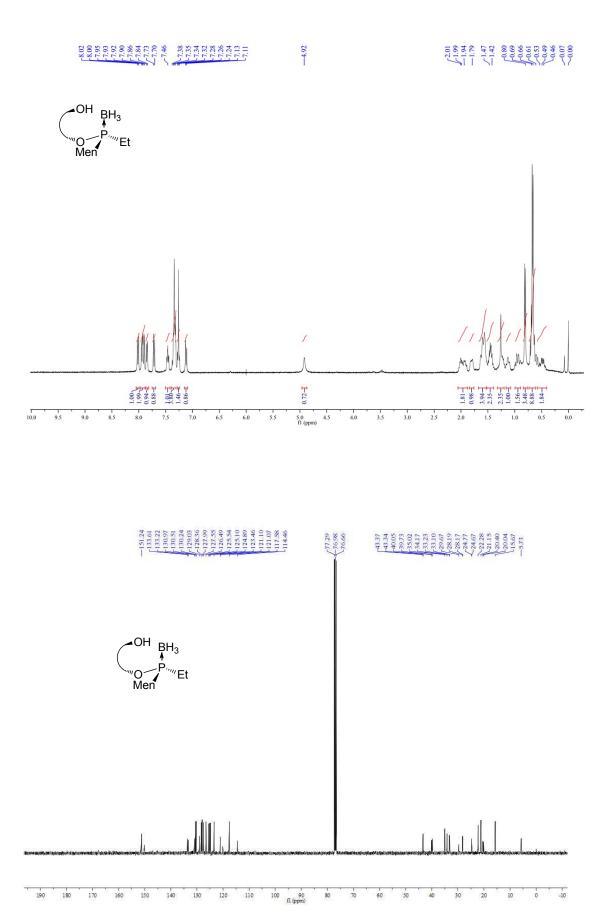
R-p-methyoxyphenyl binaphthoxy phosphonites borane, 10b


P C₆H₄OMe-p

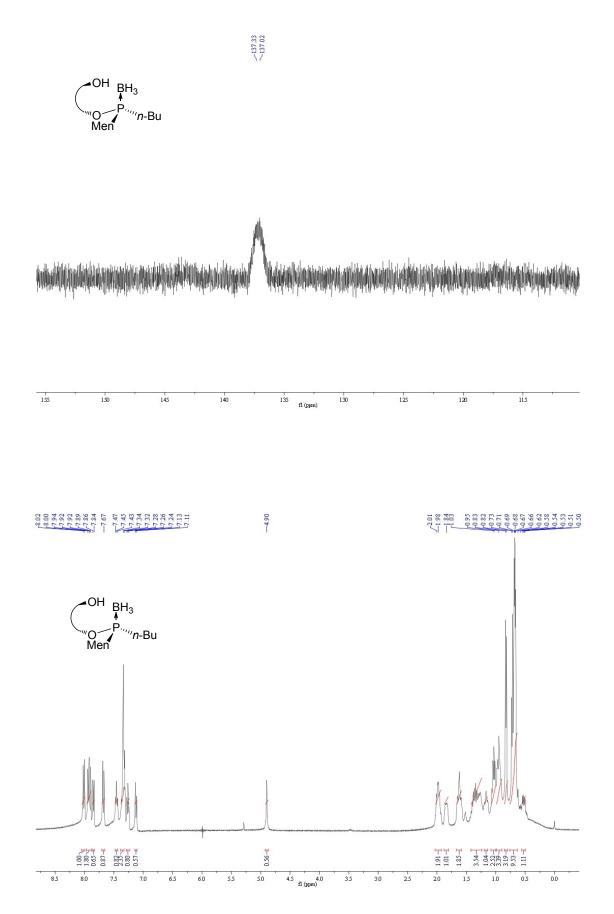

Contraction of the Contract of the Contract

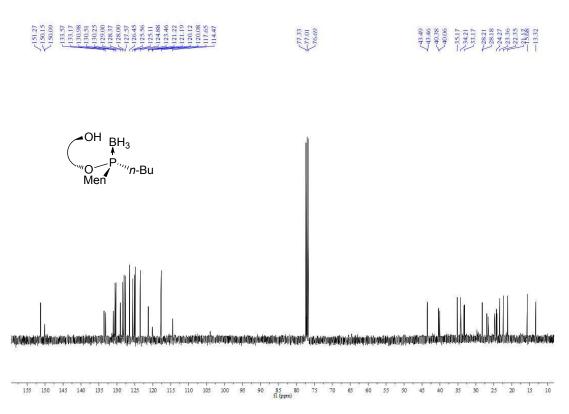

S83

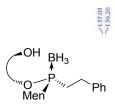
S-p-methyoxyphenyl binaphthoxy phosphonites borane, 10b'



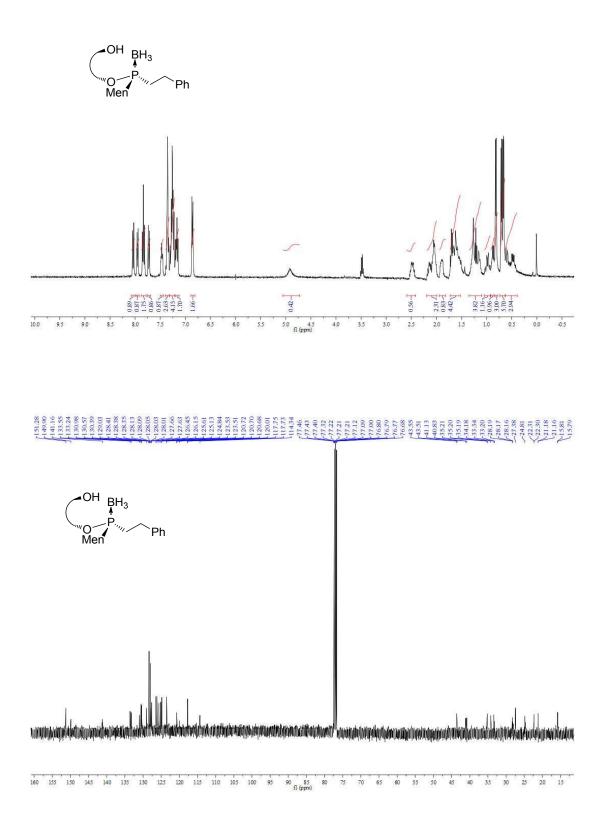
R_AR_P- (-)-menthyl ethyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9a



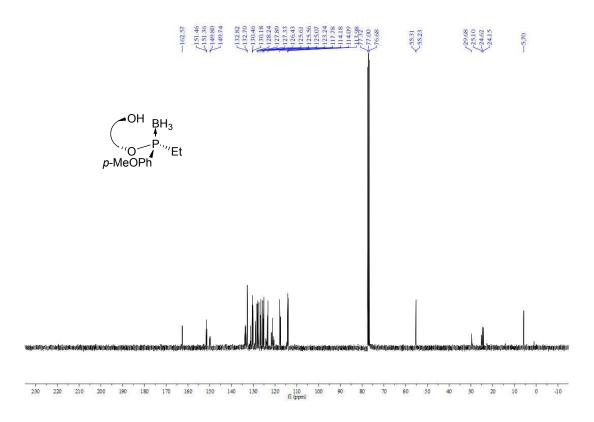



S86

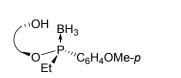
R_AR_P- (-)-menthyl butyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9b



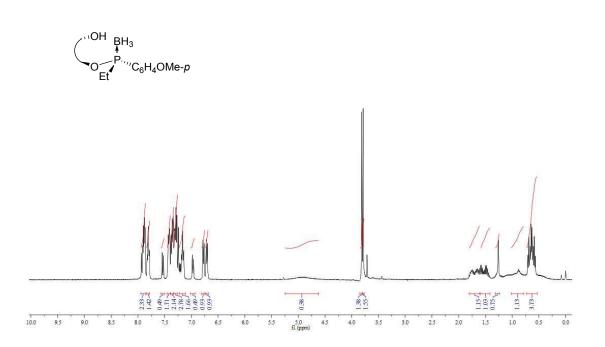
 R_AR_{P} - (-)-menthyl b-phenylethyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9c



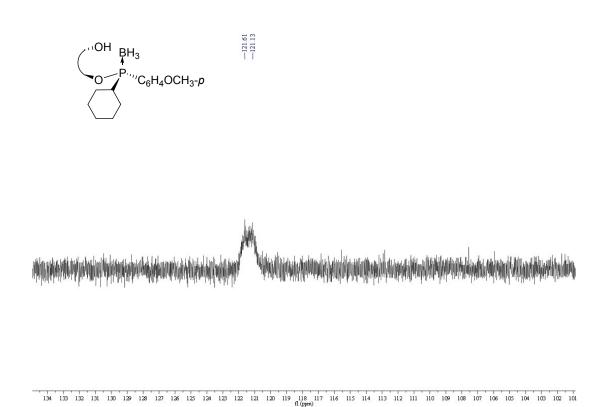
170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 83 80 75 70 65 60 55 50 fl.(genn)

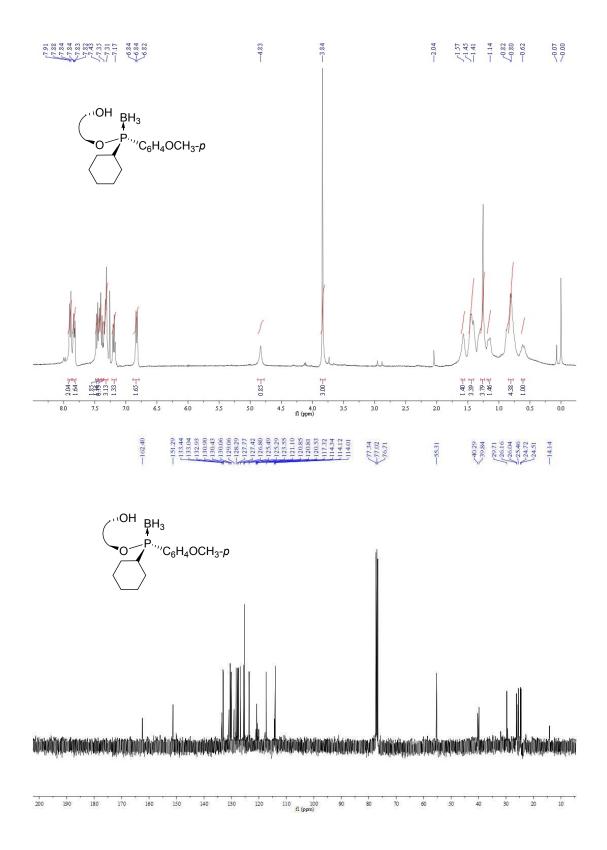

 R_{A} -(-)- p-methyoxyphenyl ethyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy) phosphine borane, 9f/9f'

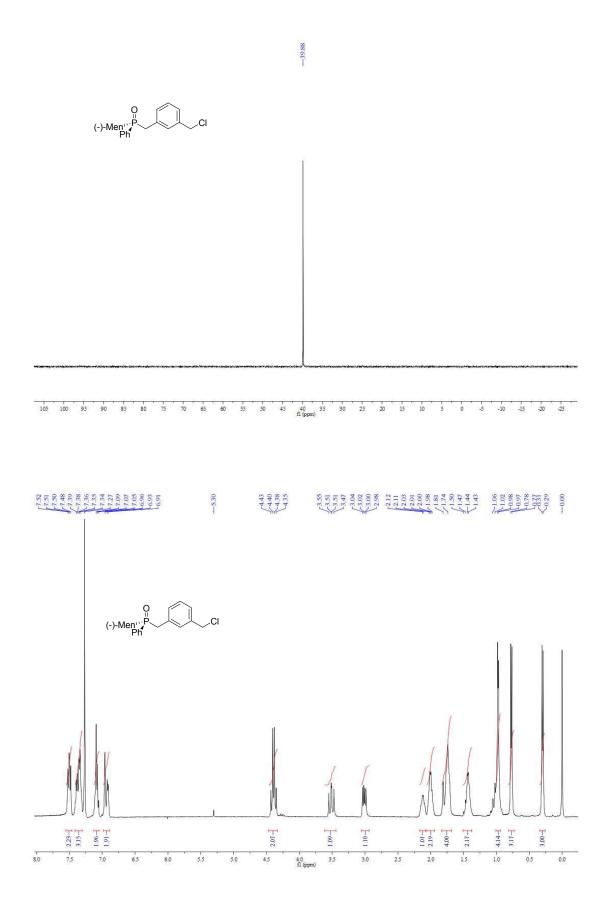
~121.33 ~120.64 P-MeOPh in the second of the second of the second of the second second second second second second second second second w prent ausso diversity to we know our wy to tan with price powers in the discriminant way we represent bio was 125 120 fl (ppm) 80 165 115 110 105 100 95 90 85 160 155 150 145 140 135 130 *P*-MeOPh 4.05-J 3.38-3.174 1.554 0.40× 2.054 1.854 0.74A 0.74A 1.21 2.00 5.0 fl (ppm)).0 6.0 5.5 2.5 9.5 9.0 8.5 3.5 3.0 4.5

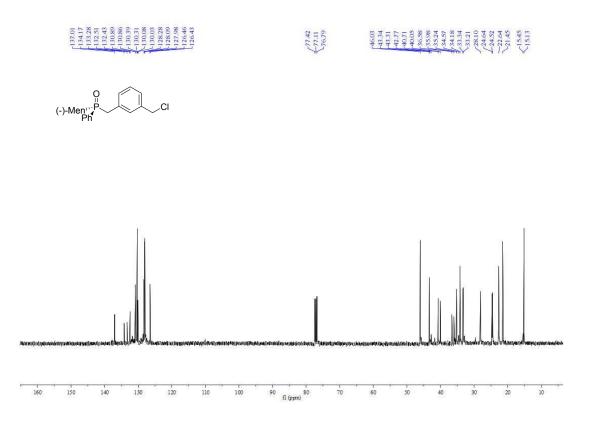


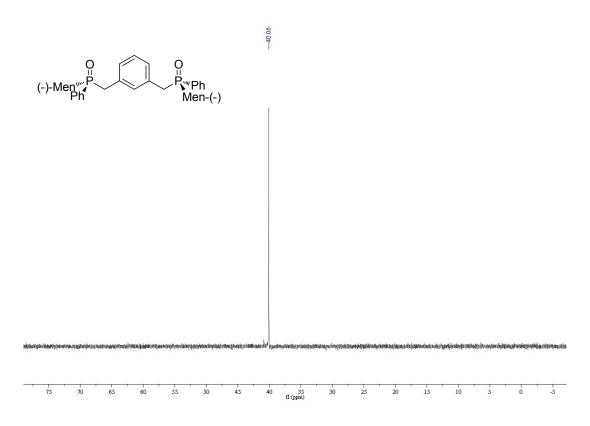
 (R_P/S_P) -(-)- *p*-methyoxyphenyl ethyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9g/9g'

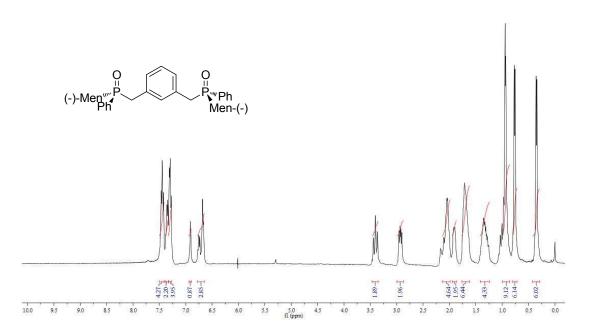

~121.05

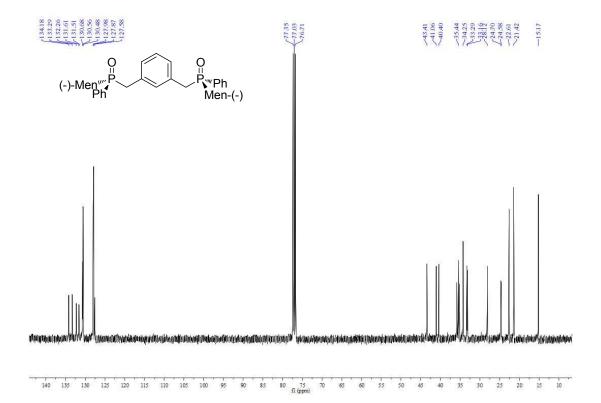


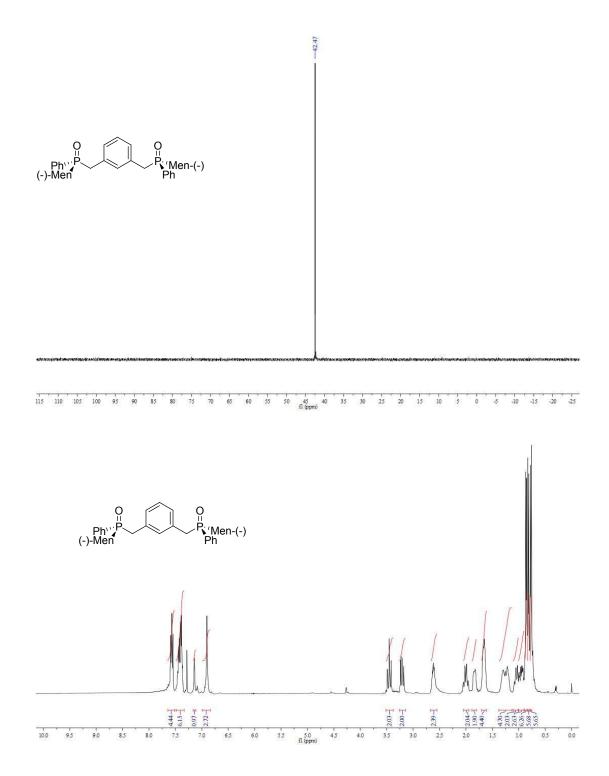


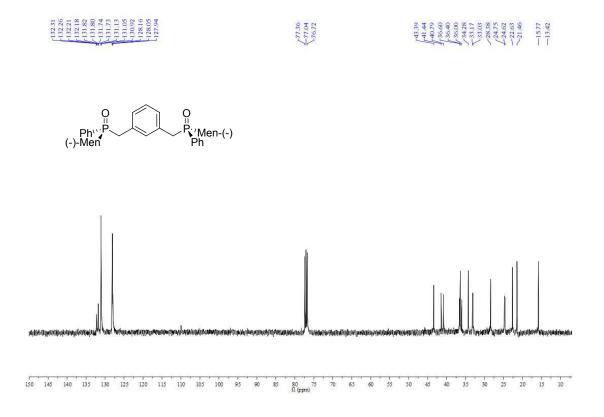

 S_A -(-)-*p*-methyoxyphenyl cyclohexyl (2'-hydroxyl-1,1'-binaphthalen-2-yloxy)phosphine borane, 9i

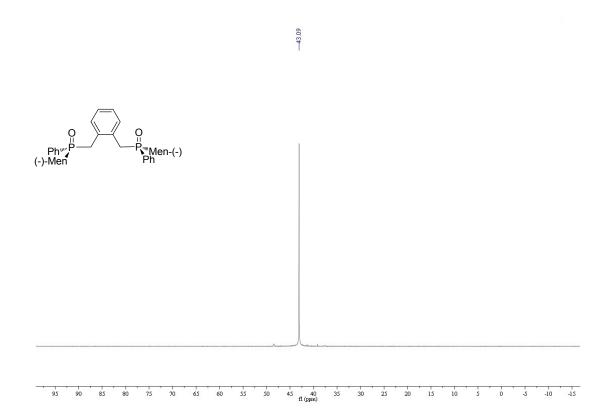


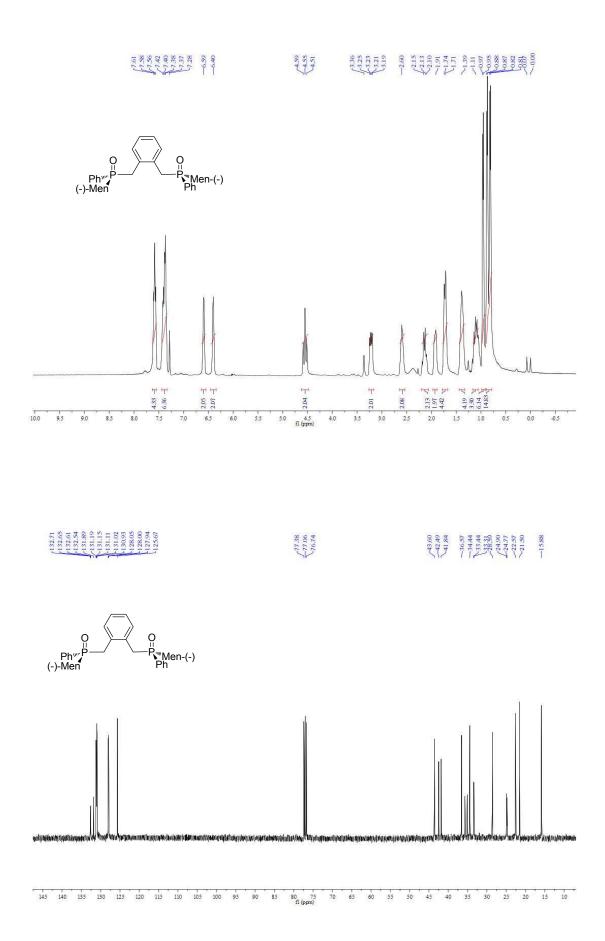

 $R_{\rm P}$ -(-)-Menthyl phenyl (3-(chloromethyl)benzyl)phosphine oxide, 11a

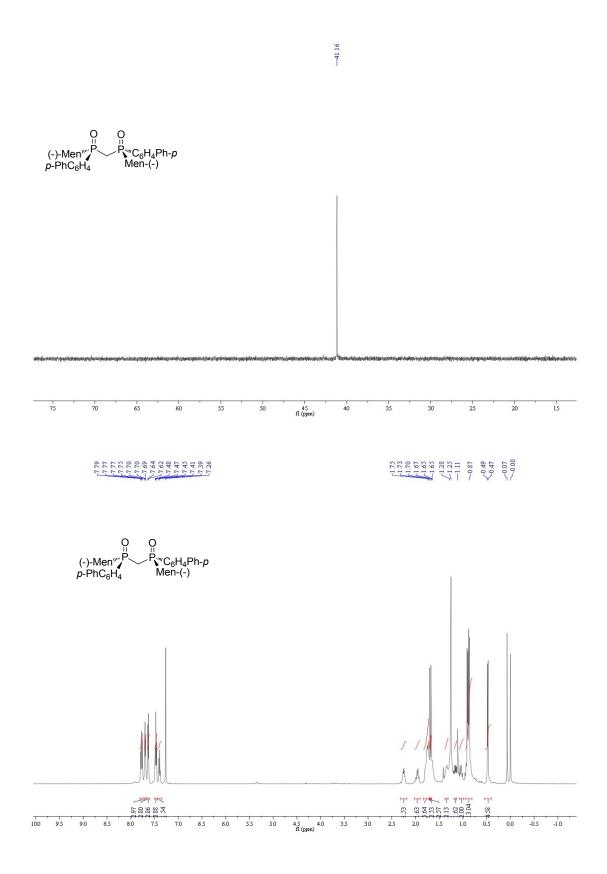



(R_P,R_P)-(1,3-Phenylenebis(methylene)) bis((-)-menthylphenylphosphine oxide), 12a

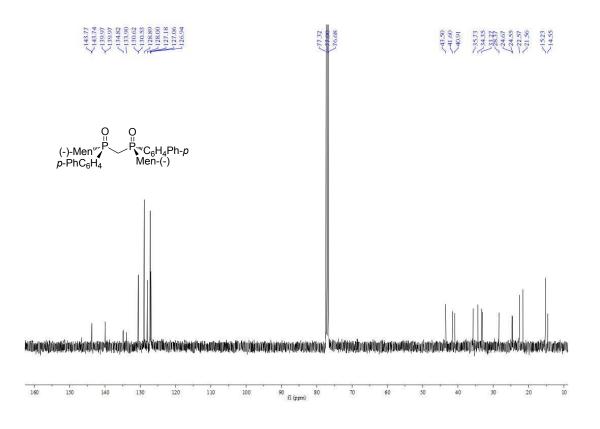


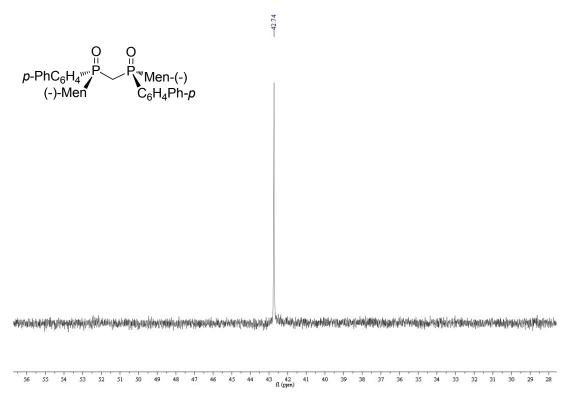


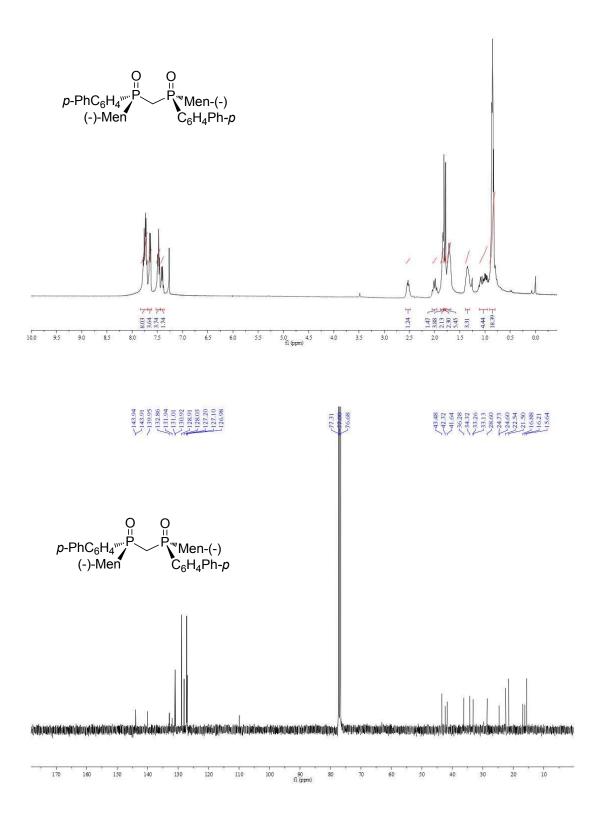

 (S_P, S_P) -(1,3-Phenylenebis(methylene)) bis((-)-menthylphenylphosphine oxide), 12b



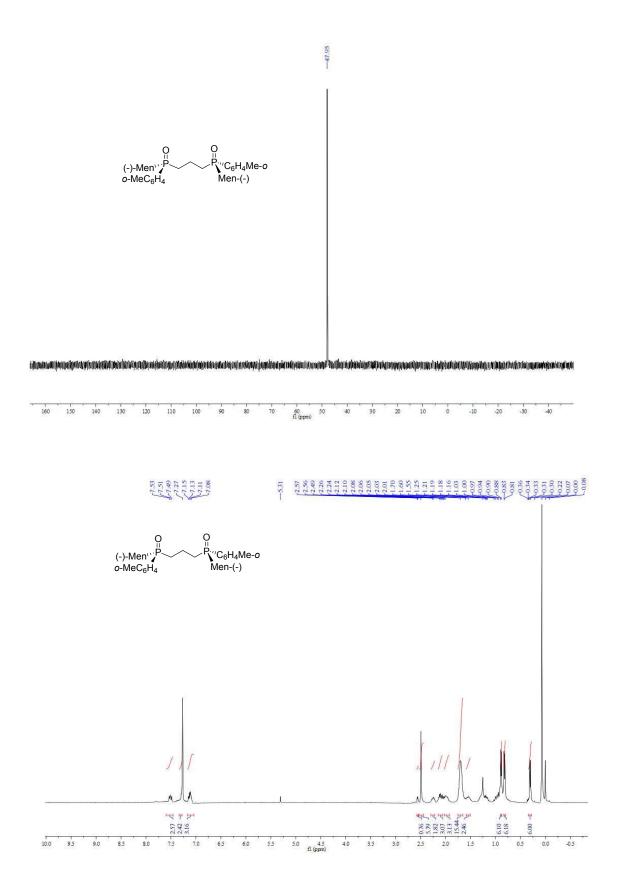
(S_P,S_P)-(1,2-Phenylenebis(methylene)) bis((–)-menthyl phenyl phosphine oxide), 12c

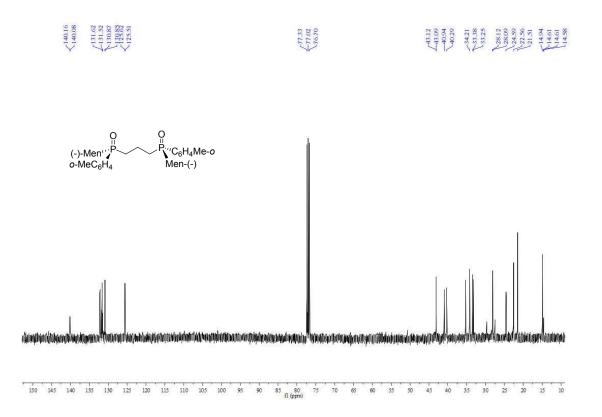


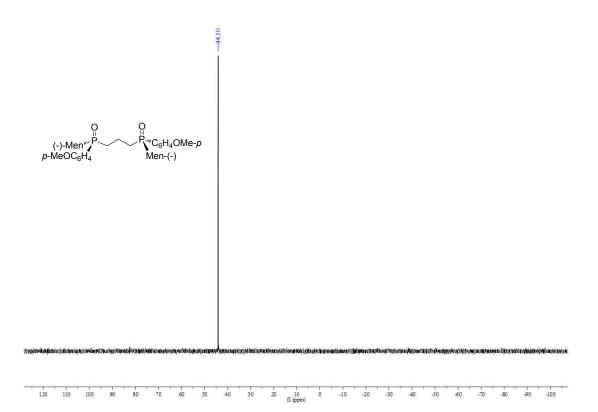

(*R*_P,*R*_P)-(-)-Methylene-bis(((-)-menthyl)(biphenyl) phosphine oxide), 12d

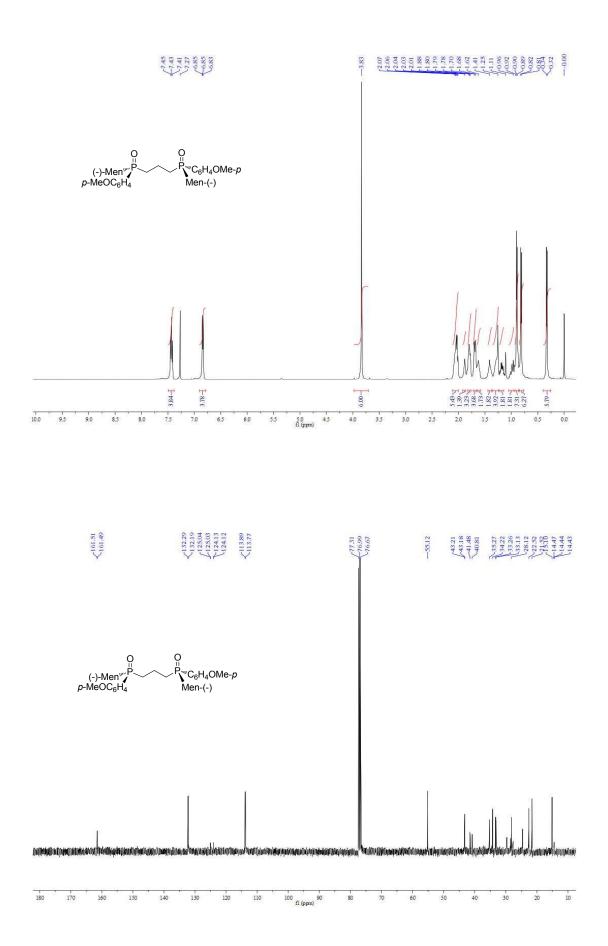


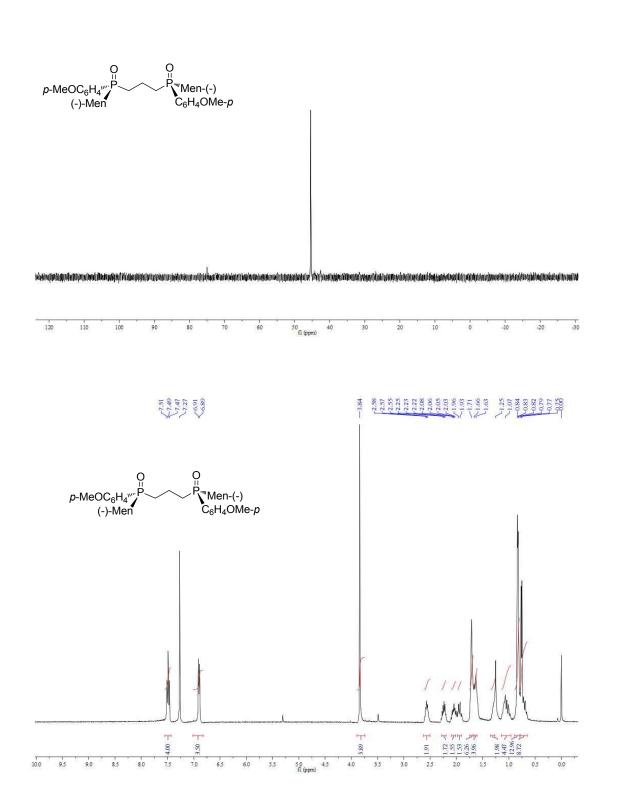
S100

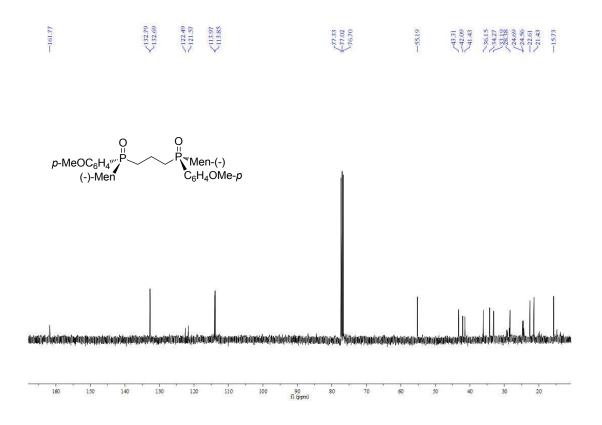


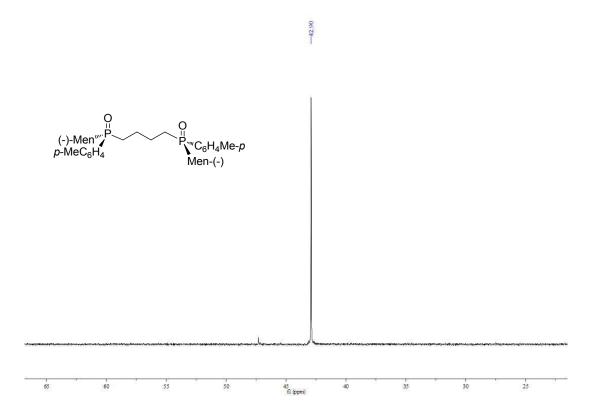

(S_P,S_P)-(-)-Methylene-bis(((-)-menthyl)(biphenyl) phosphine oxide), 12e



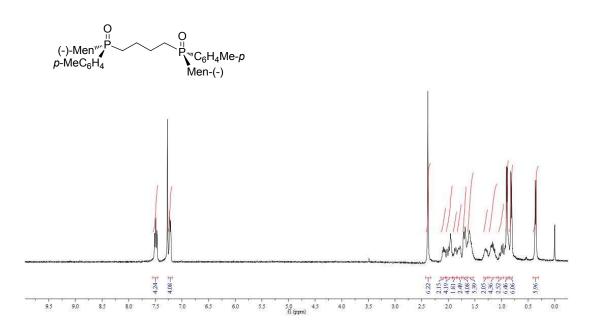

(*R*_P,*R*_P)-Propane-1,3-diylbis((–)-menthy 2-methylphenylphosphine oxide), 12f



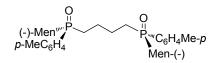

(*R*_P,*R*_P)-Propane -1,4-diylbis((-)-menthyl *p*-methoxyphenylphosphine oxide),12g

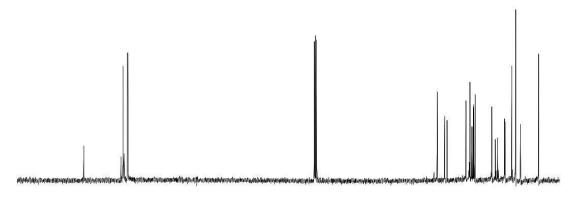


(S_P,S_P)-Propane -1,4-diylbis((-)-menthyl *p*-methoxyphenylphosphine oxide),12h

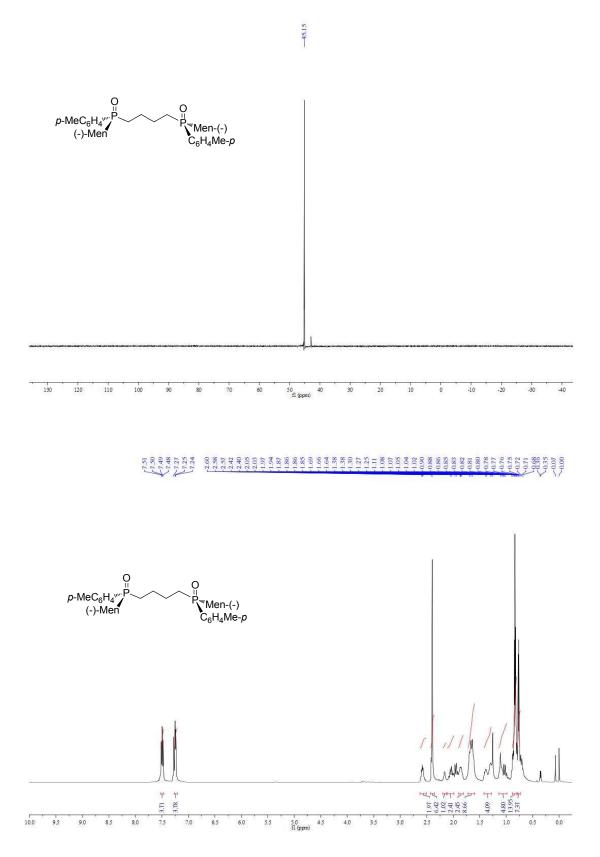


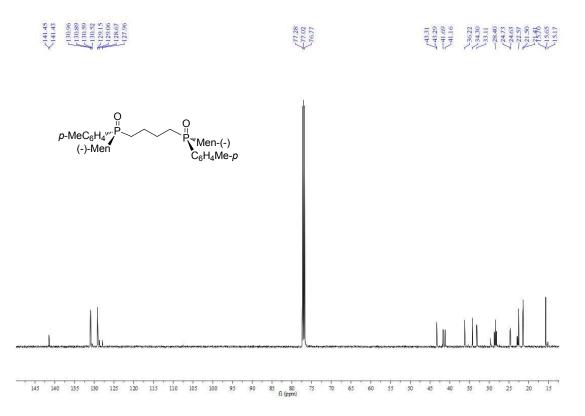
(*R*_P,*R*_P)-Butane-1,4-diylbis ((–)-menthyl *p*-tolylphosphine oxide),12i



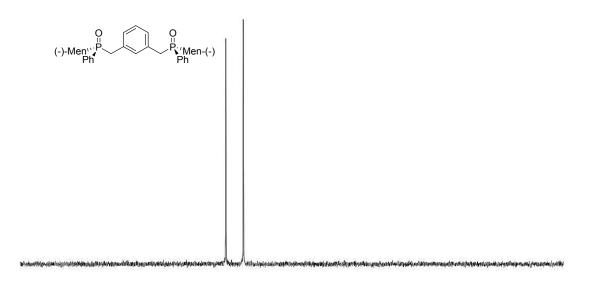


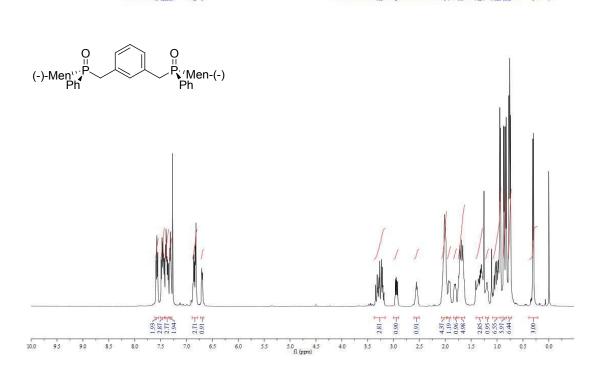
(141.31 (141.28 (131.01 (130.51 (130.51 (130.11 (129.10 (129.10





155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 fl(ppm)


(S_P,S_P)-Butane-1,4-diylbis ((–)-menthyl *p*-tolylphosphine oxide),12j



(*R*_P,*S*_P)-(1,3-Phenylenebis (methylene)) bis[(-)-menthylphenylphosphine oxide],12k

66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 fl(6pm)

 -137.01

 -137.01

 -136.99

 -136.92

 -136.82

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

 -133.83

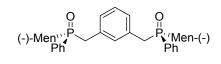
 -133.83

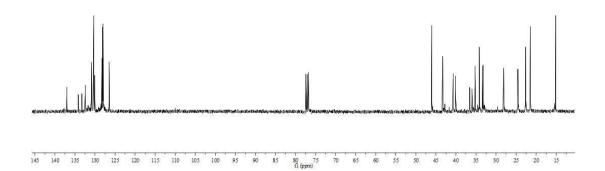
 -133.83

 -133.83

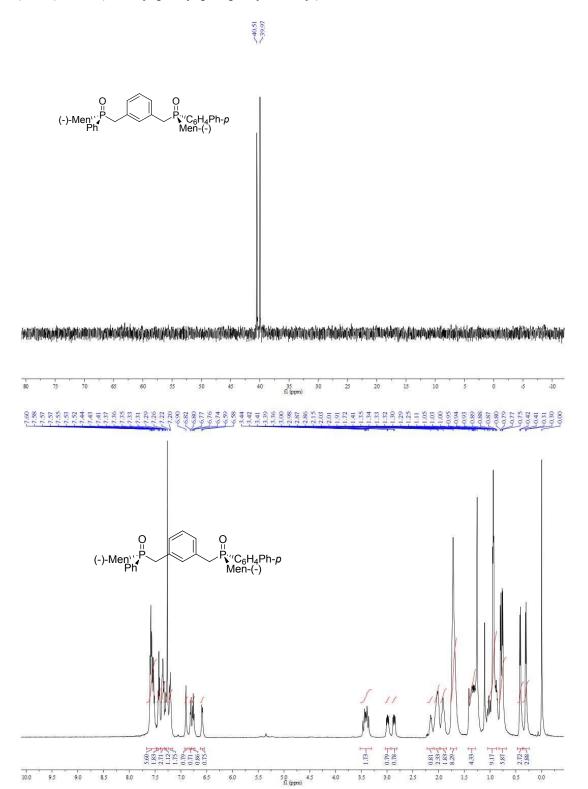
 -133.83

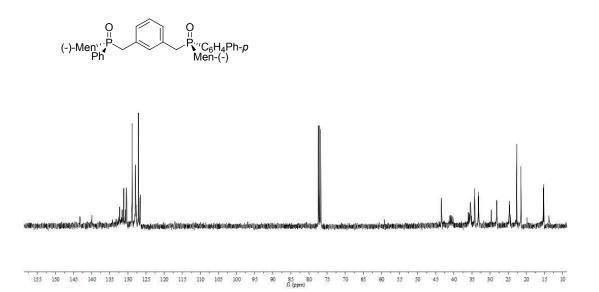
 -133.83


 -133.83


 -123.93

 -123.93


 -124.43



 (R_P,R_P) -1,3-Di(menthyl phenyl phosphinylmenthyl)benzene, 12l

-143.23 -133.05 -133.2

