Supporting Information

Chiral Phosphoric Acid Catalyzed Atroposelective and

Diastereoselective Synthesis of 9-Aryltetrahydroacridines

You-Dong Shao, Dan-Dan Han, Wen-Yue Ma and Dao-Juan Cheng*

School of Chemistry and Chemical Engineering, Heze University, Heze 274015, People's Republic of China

E-mail: chengdaojuan0614@163.com

Table of Contents

General Information	S2
Screening of Catalysts and Condition Optimization	S2
General Procedure for the Atroposelective and Diastereoselective	Synthesis of
9-Aryltetrahydroacridines	S5
Procedure for Scale-up Experiment	S5
Procedure for the Transformation of Product 3aa	S5
Analytic Data for the Products	S6
References	S19
¹ H and ¹³ C NMR Spectra of Products	S20
HPLC Traces	S49
X-ray Crystallographic Information	S78

General Information

¹H and ¹³C NMR spectra were recorded on a Bruker AC-400 FT (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR, respectively) using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Thermo Scientific UltiMate 3000 instrument equipped with an isostatic pump, using a chiral stationary phase column (Daicel Co. CHIRALPAK). The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical Rotation was measured on an Anton Paar MCP 100/150 polarimeter.

Chloroform was distilled over calcium hydride. Other solvents and chemicals were purchased from the Sinopharm Chemical Reagent Co., Adamas, Acros, Alfa Aesar, and TCI, and used as received. Catalysts (R)-C1-C7 were prepared according to the literatures.¹ Catalysts (R)-C8-C12 were purchased from Daicel Chiral Technologies (China) CO., LTD. and used directly. 2-Aminoaryl ketones 1 were prepared in accordance with literature methods.²⁻⁴

Screening of Catalysts and Condition Optimization

Table S1. Screening of catalysts.^a

2	(<i>R</i>)-C2	58	23
3	(R)-C3	56	49
4	(<i>R</i>)-C4	60	55
5	(<i>R</i>)-C5	trace	15
6	(R)-C6	43	1
7	(<i>R</i>)- C7	50	3
8	(R)-C8	67	89
9	(<i>R</i>)- C9	61	82
10	(<i>R</i>)-C10	63	84
11	(<i>R</i>)-C11	trace	30
12	(<i>R</i>)-C12	52	24

^{*a*} All reactions were carried out with (2-amino-4-chlorophenyl)(naphthalen-1-yl)methanone **1a** (28.1 mg, 0.10 mmol), cyclohexanone **2a** (29.4 mg, 31.0 uL, 0.30 mmol), catalyst CPA (15 mol%), glycine *tert*-butyl ester (40 mol%) and CHCl₃ (1.0 mL) in sealed tube for 4.5 d. ^{*b*} Isolated yield. ^{*c*} Determined by chiral stationary phase HPLC analysis.

Table S2. Screening of additives, solvents, temperatures et al.^a

8	EtOAc	A2	trace	ND
9	CCl ₄	A2	81	82
10	DCE	A2	trace	ND
11	<i>n</i> -hexane	A2	80	66
12	MTBE	A2	73	81
13 ^d	CHCl ₃ :CCl ₄ =4:1	A2	77	92
14^d	CHCl ₃ :CCl ₄ =3:2	A2	79	90
15 ^{<i>d,e</i>}	CHCl ₃ :CCl ₄ =4:1	A2	73	90
16 ^{<i>d</i>,<i>f</i>}	CHCl ₃ :CCl ₄ =4:1	A2	67	87
$17^{d,g}$	CHCl ₃ :CCl ₄ =4:1	A2	74	91
18 ^{<i>d</i>,<i>h</i>}	CHCl ₃ :CCl ₄ =4:1	A2	trace	ND

а Unless otherwise stated, all reactions were carried out with (2-amino-4-chlorophenyl)(naphthalen-1-yl)methanone 1a (28.1 mg, 0.10 mmol), cyclohexanone 2a (29.4 mg, 31.0 uL, 0.30 mmol), catalyst (R)-C8 (10.0 mg, 15 mol%), amine additive (40 mol%) and solvent (1.0 mL) in sealed tube at 85 °C for 4.5 d. ^b Isolated yield. ^c Determined by chiral stationary phase HPLC analysis. ^d The reaction was run at 80 °C for 4 d . ^e The reaction was run with 0.70 mmol 2a. ^f The reaction was run with 0.15 mmol 2a. ^g The reaction was run with 60 mol% of A2. ^h The reaction was run with 100 mol% of A2.

Table S3. Preliminary investigations on the different combinations of substrates.^a

^{*a*} All reactions were carried out with **1** (0.10 mmol), cyclohexanone **2a** (0.30 mmol), (*R*)-**C8** (15 mol%), 2-naphthylamine **A2** (40 mol%) and 5 Å molecular sieves (100 mg) in CHCl₃ (0.8 mL) and CCl₄ (0.2 mL) at 80 °C in sealed tube for 4 d. Yields refer to isolated pure compounds. The ee values were determined by chiral stationary phase HPLC analysis.

General Procedure for the Atroposelective and Diastereoselective Synthesis of 9-Aryltetrahydroacridines

To a flame dried sealed tube equipped with a magnetic stirring bar were added powdered 5 Å molecular sieves (100 mg), chiral phosphoric acid (*R*)-**C8** (10.0 mg, 0.015 mmol), 2-naphthylamine **A2** (5.7 mg, 0.040 mmol), 2-aminoaryl ketone **1** (0.10 mmol), carbon tetrachloride (0.2 mL), anhydrous chloroform (0.8 mL) and alicyclic ketone **2** (0.30 mmol) successively. The resulting mixture was stirred at 80 °C for 4-5 d, and directly charged onto silica gel. Product **3** was isolated using petroleum ether/ethyl acetate (30:1 to 5:1) as eluent.

Procedure for Scale-up Experiment

To a flame dried sealed tube equipped with a magnetic stirring bar were added powdered 5 Å molecular sieves (1.00 g), chiral phosphoric acid (*R*)-**C8** (80.1 mg, 0.12 mmol), 2-naphthylamine **A2** (43.0 mg, 0.30 mmol), **1a** (281.1 mg, 1.0 mmol), carbon tetrachloride (4.0 mL), anhydrous chloroform (6.0 mL) and **2a** (245.4 mg, 259.0 uL, 2.5 mmol) successively. After stirring at 80 °C for 4.5 d, the reaction was quenched with saturated sodium bicarbonate solution (10.0 mL). After being extracted with dichloromethane (3×15 mL), the organic phases were combined and washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethylacetate = 20:1) to give **3aa** (240.2 mg, 70% yield, 89% ee) as a yellow solid.

Procedure for the Transformation of Product 3aa

m-CPBA (37.0 mg, 0.15 mmol) was added to a solution of (*S*)-**3aa** (34.3 mg, 0.10 mmol) in dichloromethane (5.0 mL) at 0 °C. After stirring for 2 h, the reaction mixture was adjusted to pH = 10 by 1 N NaOH. After being extracted with dichloromethane (3 × 10 mL), the organic phases were combined and washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to give a crude residue which was purified by flash column

chromatography (petroleum ether/ethylacetate = 70:30) to give **4** (33.8 mg, 94% yield) as a white solid.⁴

To a flame dried Schlenk flask were added **3aa** (34.3 mg, 0.10 mmol), Pd(OAc)₂ (0.50 mg, 0.002 mmol), XPhos (2.0 mg, 0.004 mmol), phenylboronic acid (24.4 mg, 0.20 mmol) and K₃PO₄ (85.0 mg, 0.40 mmol) successively. The flask was evacuated and backfilled with nitrogen three times, then toluene (0.80 mL) and H₂O (0.20 mL) were added. After stirring at 70 °C for 16 hours, the reaction mixture was cooled to room temperature, diluted with ethyl acetate (10 mL) and washed with aqueous NaOH (1 N, 10 mL). After being extracted with ethyl acetate (2 × 10 mL), the combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethylacetate = 30:1-5:1) to give **5** (32.4 mg, 84% yield) as a yellow oil.⁵

Analytic Data for the Products

6-Chloro-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine **3aa** was obtained as a white solid in 77% yield (26.4 mg) and 92% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (03:97), 1.0 mL/min, λ = 254 nm, t_r (minor) = 7.63 min, t_r (major) = 8.06 min]. m.p. 133-134 °C; [α]_D²⁵ = +27.74 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 2.0 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.35-7.27 (m, 2H), 7.17-7.09 (m, 2H), 7.03 (d, *J* = 8.8 Hz, 1H), 3.23 (t, *J* = 6.8 Hz, 2H), 2.62-2.47 (m, 1H), 2.38-2.26 (m, 1H), 2.01-1.90 (m, 2H), 1.78-1.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.7, 145.0, 134.3, 134.2, 133.7, 131.3. 130.0, 128.6, 128.5, 127.4, 127.3, 126.9, 126.7, 126.5, 126.3, 125.7, 125.6, 125.2, 34.3, 27.5, 22.8, 22.8; HRMS (ESI) calcd for C₂₃H₁₉ClN (M+H)⁺ 344.1201, found 344.1200.

6-Chloro-2,2-dimethyl-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine 3ab was obtained as a

white solid in 69% yield (25.6 mg) and 91% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 9.12 min, t_r (minor) = 9.93 min]. m.p. >240 °C; $[\alpha]_D^{25}$ = +16.67 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1H), 7.99 (t, *J* = 8.8 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.36-7.22 (m, 2H), 7.18-7.05 (m, 2H), 6.99 (d, *J* = 8.8 Hz, 1H), 3.27 (t, *J* = 6.8 Hz, 2H), 2.34 (d, *J* = 16.8 Hz, 1H), 2.10 (d, *J* = 16.8 Hz, 1H), 1.77 (t, *J* = 6.8 Hz, 2H), 0.90 (s, 3H), 0.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 146.8, 145.5, 134.3, 134.2, 133.7, 131.4, 129.4, 128.5, 128.5, 127.4, 126.9, 126.7, 126.5, 126.3, 125.7, 125.6, 125.2, 41.2 35.6, 31.0, 29.5, 28.4, 27.4; HRMS (ESI) calcd for C₂₅H₂₃ClN (M+H)⁺ 372.1514, found 372.1513.

7-Chloro-10-(naphthalen-1-yl)-3,4-dihydro-1*H*-pyrano[4,3-*b*]quinoline **3ac** was obtained as a yellow solid in 70% yield (24.2 mg) and 90% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 8.10 min, t_r (major) = 9.53 min]. m.p. 141-142 °C; $[\alpha]_D^{25} = +14.74$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, *J* = 2.0 Hz, 1H), 8.05-7.95 (m, 2H), 7.66-7.59 (m, 1H), 7.56-7.49 (m, 1H), 7.38-7.29 (m, 2H), 7.24 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.12 (d, *J* = 9.2 Hz, 2H), 4.56 (d, *J* = 16.0 Hz, 1H), 4.31 (d, *J* = 16.0 Hz, 1H), 4.18-4.05 (m, 2H), 3.42-3.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 146.2, 141.5, 134.0, 132.6, 131.0, 129.9, 128.1, 127.6, 126.6, 126.4, 126.1, 126.1, 126.0, 125.8, 125.5, 124.5, 124.4, 123.9, 65.6, 64.5, 32.0; HRMS (ESI) calcd for C₂₂H₁₇ClNO (M+H)⁺ 346.0993, found 346.0992.

7-Chloro-10-(naphthalen-1-yl)-3,4-dihydro-1*H*-thiopyrano[4,3-*b*]quinoline **3ad** was obtained as a yellow solid in 74% yield (26.7 mg) and 89% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (07:93), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 6.96 min, t_r (major) = 7.54 min]. m.p. 78-79 °C; $[\alpha]_D^{25} =$ +15.63 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 2.0 Hz, 1H), 8.03-7.94 (m, 2H), 7.67-7.58 (m, 1H), 7.55-7.48 (m, 1H), 7.38-7.31 (m, 2H), 7.22 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 7.10 (d, J = 9.2 Hz, 1H), 3.56-3.45 (m, 3H), 3.39 (d, J = 5.2 Hz, 1H), 3.16-3.03 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.4, 147.0, 143.3, 135.0, 133.6, 132.9, 131.6, 129.1, 128.7, 128.6, 127.9, 127.6, 127.3, 127.2, 127.0, 126.5, 125.8, 125.5, 125.3, 34.7, 27.0, 25.8; HRMS (ESI) calcd for C₂₂H₁₇CINS (M+H)⁺ 362.0765, found 362.0764.

9-Chloro-12-(naphthalen-1-yl)-5,6-dihydrobenzo[*a*]acridine **3ae** was obtained as a pink solid in 80% yield (31.3 mg) and 81% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 8.49 min, t_r (major) = 9.03 min]. m.p. 97-98 °C; [α]_D²⁵ = +12.44 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 2.4 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.55-7.46 (m, 2H), 7.35-7.30 (m, 2H), 7.28-7.23 (m, 1H), 7.22-7.18 (m, 1H), 7.16 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.08 (d, *J* = 9.2 Hz, 1H), 7.04-6.98 (m, 1H), 6.61-6.55 (m, 2H), 3.41-3.32 (m, 1H), 3.31-3.22 (m, 1H), 3.11-2.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.5, 146.7, 142.2, 139.6, 135.4, 135.0, 133.6, 132.5, 128.8, 128.8, 128.7, 128.4, 127.8, 127.8, 127.7, 127.7, 127.6, 127.0, 126.9, 126.8, 126.4, 126.0, 126.0, 125.8, 34.8, 29.3; HRMS (ESI) calcd for C₂₇H₁₉ClN (M+H)⁺ 392.1201, found 392.1199.

6-Chloro-9-(naphthalen-1-yl)-2,3-dihydro-1*H*-cyclopenta[*b*]quinoline **3af** was obtained as a white solid in 81% yield (26.7 mg) and 80% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 8.82 min, t_r (major) = 9.42 min]. m.p. 85-86 °C; [α]_D²⁵ = +13.57 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.12-8.08 (m, 1H), 7.97 (t, *J* = 8.4 Hz, 2H), 7.64-7.57 (m, 1H), 7.53-7.48 (m, 1H), 7.39-7.31 (m, 2H), 7.24-7.19 (m, 3H), 3.31-3.24 (m, 2H), 2.80-2.70 (m, 1H), 2.66-2.55 (m, 1H), 2.19-2.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 148.3, 141.4, 135.5, 134.2, 133.9, 133.7, 131.2, 128.7, 128.6, 127.8, 127.3, 126.9, 126.6, 126.5, 126.3, 125.6, 125.5, 125.4, 35.2, 30.0, 23.2; HRMS (ESI) calcd for C₂₂H₁₇ClN (M+H)⁺ 330.1044, found 330.1044.

3-Chloro-11-(naphthalen-1-yl)-7,8,9,10-tetrahydro-6*H*-cyclohepta[*b*]quinoline **3ag** was obtained as a white solid in 70% yield (25.0 mg) and 80% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) =7.27 min, t_r (major) = 7.74 min]. m.p. 99-100 °C; $[\alpha]_D^{25} = +12.86$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 2.0 Hz, 1H), 7.96 (t, *J* = 9.2 Hz, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.34-7.26 (m, 2H), 7.18-7.09 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 1H), 3.37-3.25 (m, 2H), 2.60-2.49 (m, 2H), 1.95-1.75 (m, 4H), 1.56-1.39 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 146.3, 143.8, 135.4, 134.7, 134.1, 133.5, 132.0, 128.5, 128.4, 127.9, 127.6, 127.1, 126.6, 126.6, 126.3, 125.9, 125.7, 125.4, 40.3, 31.9, 30.9, 28.3, 27.0; HRMS (ESI) calcd for C₂₄H₂₁ClN (M+H)⁺ 358.1357, found 358.1356.

6-Chloro-9-(naphthalen-1-yl)-2-phenyl-1,2,3,4-tetrahydroacridine **3ai** was obtained as a yellow solid in 71% yield (29.8 mg), 90:10 dr and 92% ee for the major diastereoisomer. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 11.15 min, t_r (minor) = 12.06 min]. m.p. 217-218 °C; [α]_D²⁵ = +115.78 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 2.4 Hz, 1H), 7.97-7.89 (m, 2H), 7.64-7.55 (m, 1H), 7.50-7.43 (m, 1H), 7.35-7.27 (m, 2H), 7.22-7.07 (m, 7H), 7.03 (d, J = 8.8 Hz, 1H), 3.51-3.27 (m, 2H), 3.08-2.93 (m, 1H), 2.86-2.76 (m, 1H), 2.49-2.38 (m, 1H), 2.32-2.22 (m, 1H), 2.19-2.09 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 146.8, 145.5, 145.4, 134.6, 133.9, 133.8, 131.4, 129.4, 128.7, 128.7, 128.5, 128.5, 127.5, 127.4, 126.8, 126.8, 126.7, 126.6, 126.4, 126.3, 125.7, 125.7, 125.6, 125.1, 40.4, 35.1, 34.3, 30.1; HRMS (ESI) calcd for C₂₉H₂₃ClN (M+H)⁺ 420.1514, found 420.1512.

6-Chloro-2-(4-chlorophenyl)-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine 3aj was obtained

as a yellow solid in 74% yield (33.5 mg), 88:12 dr and 92% ee for the major diastereoisomer. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 10.08 min, t_r (minor) = 10.95 min]. m.p. 214-215 °C; $[\alpha]_D^{25} = +128.30$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 2.4 Hz, 1H), 7.95 (t, J = 7.6 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.37-7.28 (m, 2H), 7.21-7.13 (m, 3H), 7.10 (d, J = 8.4 Hz, 1H), 7.03 (t, J = 8.0 Hz, 3H), 3.51-3.27 (m, 2H), 3.08-2.93 (m, 1H), 2.86-2.76 (m, 1H), 2.49-2.38 (m, 1H), 2.32-2.22 (m, 1H), 2.19-2.09 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 146.9, 145.4, 143.7, 134.6, 133.7, 132.0, 131.2, 128.9, 128.7, 128.6, 128.5, 128.1, 127.4, 127.4, 126.8, 126.7, 126.6, 126.3, 125.6, 125.5, 125.0, 39.7, 35.0, 34.0, 29.9; HRMS (ESI) calcd for C₂₉H₂₂Cl₂N (M+H)⁺ 454.1124, found 454.1123.

6-Chloro-2-methyl-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine **3ak** was obtained as a yellow solid in 68% yield (24.3 mg), 75:25 dr and 87% ee for the major diastereoisomer. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (04:96), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.09 min, t_r (minor) = 5.46 min]. m.p. 117-118 °C; [α]_D²⁵ = +68.14 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 2.0 Hz, 1H), 7.97 (t, *J* = 8.8 Hz, 2H), 7.64-7.58 (m, 1H), 7.52-7.46 (m, 1H), 7.33-7.27 (m, 2H), 7.16-7.08 (m, 2H), 7.02 (d, *J* = 8.8 Hz, 1H), 3.39-3.30 (m, 1H), 3.27-3.15 (m, 1H), 2.65-2.55 (m, 1H), 2.08-2.00 (m, 1H), 1.92-1.80 (m, 1H), 1.66-1.53 (m, 2H), 0.87 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 146.8, 145.0, 134.3, 134.2, 133.7, 131.4, 129.6, 128.6, 128.5, 127.4, 127.4, 126.7, 126.7, 126.5, 126.3, 125.7, 125.6, 125.3, 35.5, 33.8, 31.0, 29.0, 21.5; HRMS (ESI) calcd for C₂₄H₂₁ClN (M+H)⁺ 358.1357, found 358.1356.

6-Chloro-2-ethyl-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine **3al** was obtained as a white solid in 75% yield (27.8 mg), 88:12 dr and 91% ee for the major diastereoisomer. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 8.47 min, t_r (minor) = 9.70 min]. m.p. 135-136 °C; [α]_D²⁵ = +80.71 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.07

(d, J = 2.0 Hz, 1H), 7.99 (t, J = 8.4 Hz, 2H), 7.67-7.60 (m, 1H), 7.54-7.47 (m, 1H), 7.35-7.27 (m, 2H), 7.16 (dd, J = 8.8, 2.0 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H), 3.39-3.29 (m, 1H), 3.25-3.11 (m, 1H), 2.68-2.56 (m, 1H), 2.18-2.06 (m, 1H), 2.04-1.95 (m, 1H), 1.68-1.51 (m, 2H), 1.25-1.15 (m, 2H), 0.78 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.8, 145.1, 134.3, 134.2, 133.7, 131.4, 129.7, 128.6, 128.5, 128.5, 127.4, 127.4, 126.7, 126.5, 126.3, 125.7, 125.6, 125.3, 35.5, 33.7, 33.5, 28.4, 28.2, 11.5; HRMS (ESI) calcd for C₂₅H₂₃CIN (M+H)⁺ 372.1514, found 372.1512.

6-Chloro-9-(4-methylnaphthalen-1-yl)-1,2,3,4-tetrahydroacridine **3ba** was obtained as a white solid in 79% yield (28.2 mg) and 92% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.24 min, t_r (major) = 7.68 min]. m.p. 95-96 °C; [α]_D²⁵ = +30.05 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.19-7.94 (m, 2H), 7.58-7.40 (m, 2H), 7.35-7.26 (m, 1H), 7.21-6.98 (m, 4H), 3.33-3.14 (m, 2H), 2.80 (s, 3H), 2.60-2.25 (m, 2H), 2.01-1.61 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 160.4, 146.7, 145.4, 135.0, 134.2, 132.8. 132.4, 131.4, 130.2, 127.4, 127.4, 126.6, 126.4, 126.4, 126.3, 126.1, 125.9, 125.8, 124.7, 34.4, 27.5, 22.9, 22.8, 19.6; HRMS (ESI) calcd for C₂₄H₂₁ClN (M+H)⁺ 358.1357, found 358.1356.

6-Methyl-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine **3ca** was obtained as a yellow solid in 82% yield (26.5 mg) and 90% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AS-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 7.23 min, t_r (minor) = 8.07 min]. m.p. 118-119 °C; [α]_D²⁵ = +15.17 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.00-7.90 (m, 2H), 7.87 (s, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.34-7.23 (m, 2H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.07-6.94 (m, 2H), 3.24 (t, *J* = 6.8 Hz, 2H), 2.59-2.42 (m, 4H), 2.36-2.24 (m, 1H), 2.00-1.86 (m, 2H), 1.79-1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 146.5, 144.9, 138.7, 135.0, 133.6, 131.5, 128.8, 128.5, 128.2, 127.8, 127.3, 126.8, 126.5, 126.2, 125.6, 125.4, 125.3, 34.2, 27.4, 23.0, 23.0, 21.8; HRMS (ESI) calcd for C₂₄H₂₂N (M+H)⁺ 324.1747, found 324.1745.

7-Methyl-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine **3da** was obtained as a white solid in 77% yield (24.9 mg) and 70% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (08:92), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 8.09 min, t_r (minor) = 8.96 min]. m.p. 179-180 °C; $[\alpha]_D^{25} = +9.85$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.88 (m, 3H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.50-7.38 (m, 2H), 7.31-7.25 (m, 2H), 7.19 (d, *J* = 8.4 Hz, 1H), 6.86 (s, 1H), 3.23 (t, *J* = 6.8 Hz, 2H), 2.55-2.44 (m, 1H), 2.35-2.25 (m, 1H), 2.21 (s, 3H), 1.99-1.89 (m, 2H), 1.76-1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 145.0, 144.3, 135.3, 135.1, 133.7, 131.5, 130.9, 129.6, 128.5, 128.2, 127.2, 126.9, 126.6, 126.2, 125.7, 125.5, 124.6, 34.3, 27.5, 23.1, 23.0, 21.7; HRMS (ESI) calcd for C₂₄H₂₂N (M+H)⁺ 324.1747, found 324.1746.

9-(2,5-Dimethylphenyl)-1,2,3,4-tetrahydroacridine **3ea** was obtained as a white solid in 73% yield (21.0 mg) and 76% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 4.44 min, t_r (major) = 5.77 min]. m.p. 134-135 °C; $[\alpha]_D^{25} = -5.86$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.35-7.12 (m, 4H), 6.87 (s, 1H), 3.21 (t, J = 6.8 Hz, 2H), 2.66-2.50 (m, 1H), 2.45-2.38 (m, 1H), 2.36 (s, 3H), 2.04-1.91 (m, 2H), 1.86 (s, 3H), 1.83-1.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 146.5, 146.3, 136.5, 135.6, 132.6, 130.1, 129.4, 128.7, 128.5, 128.4, 126.4, 125.5, 34.3, 27.7, 23.0, 23.0, 21.0, 19.0; HRMS (ESI) calcd for C₂₁H₂₂N (M+H)⁺ 288.1747, found 288.1746.

9-(2,5-Dimethylphenyl)-5-methyl-1,2,3,4-tetrahydroacridine 3fa was obtained as a white

solid in 82% yield (24.7 mg) and 94% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 3.37 min, t_r (minor) = 3.95 min]. m.p. 130-131 °C; [α]_D²⁵ = +12.43 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 7.2 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.20-7.13 (m, 2H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.85 (s, 1H), 3.21 (t, *J* = 6.8 Hz, 2H), 2.83 (s, 3H), 2.63-2.51 (m, 1H), 2.42-2.30 (m, 4H), 2.00-1.91 (m, 2H), 1.87-1.71 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 146.4, 146.3, 137.0, 136.2, 135.5, 132.6, 130.1, 129.4, 128.6, 128.5, 128.0, 126.3, 125.1, 123.5, 34.7, 27.7, 23.2, 23.2, 21.1, 19.1, 18.2; HRMS (ESI) calcd for C₂₂H₂₄N (M+H)⁺ 302.1903, found 302.1902.

6-Chloro-9-(2,5-dimethylphenyl)-1,2,3,4-tetrahydroacridine **3ga** was obtained as a yellow solid in 78% yield (25.1 mg) and 95% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (03:97), 1.0 mL/min, λ = 254 nm, t_r (minor) = 7.24 min, t_r (major) = 9.42 min]. m.p. 129-130 °C; [α]_D²⁵ = +22.86 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 2.0 Hz, 1H), 7.28-7.21 (m, 2H), 7.20-7.16 (m, 1H), 7.14 (d, *J* = 8.8 Hz, 1H), 6.85 (s, 1H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.64-2.53 (m, 1H), 2.43-2.37 (m, 1H), 2.36 (s, 3H), 2.00-1.92 (m, 2H), 1.85 (s, 3H), 1.83-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.7, 146.5, 136.9, 135.7, 134.2, 132.5, 130.3, 129.2, 129.0, 128.8, 127.4, 126.9, 126.4, 124.9, 34.3, 27.6, 22.9, 21.0, 19.0; HRMS (ESI) calcd for C₂₁H₂₁ClN (M+H)⁺ 322.1357, found 322.1356.

6-Chloro-9-(5-methoxy-2-methylphenyl)-1,2,3,4-tetrahydroacridine **3ha** was obtained as a yellow solid in 64% yield (21.6 mg) and 94% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.66 min, t_r (major) = 8.51 min]. m.p. 131-132 °C; [α]_D²⁵ = +33.33 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 2.0 Hz, 1H), 7.31-7.22 (m, 2H), 7.17 (d, *J* = 9.2 Hz, 1H), 6.92 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.62 (d, *J* = 2.8 Hz, 1H),

3.79 (s, 3H), 3.18 (t, J = 6.8 Hz, 2H), 2.69-2.55 (m, 1H), 2.48-2.35 (m, 1H), 2.04-1.91 (m, 2H), 1.88-1.72 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 158.0, 146.7, 146.1, 137.0, 134.2, 131.4, 128.8, 127.5, 127.4, 126.9, 126.5, 124.7, 114.1, 113.7, 55.3, 34.2, 27.5, 22.9, 22.8, 18.5; HRMS (ESI) calcd for C₂₁H₂₁ClNO (M+H)⁺ 338.1306, found 338.1305.

6-Chloro-9-(5-chloro-2-methylphenyl)-1,2,3,4-tetrahydroacridine **3ia** was obtained as a white solid in 80% yield (27.3 mg) and 94% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, λ = 254 nm, t_r (minor) = 7.05 min, t_r (major) = 8.42 min]. m.p. 107-108 °C; [α]_D²⁵ = +27.75 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 2.0 Hz, 1H), 7.38-7.34 (m, 1H), 7.33-7.24 (m, 2H), 7.14-7.03 (m, 2H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.65-2.53 (m, 1H), 2.42-2.30 (m, 1H), 2.01-1.93 (m, 2H), 1.86 (s, 3H), 1.85-1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 146.7, 144.7, 137.8, 134.4, 134.3, 132.0, 131.8, 128.8, 128.6, 128.4, 127.6, 126.8, 126.4, 124.4, 34.2, 27.6, 22.8, 18.9; HRMS (ESI) calcd for C₂₀H₁₈Cl₂N (M+H)⁺ 342.0811, found 342.0810.

6-Chloro-9-(2-methyl-5-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroacridine **3ja** was obtained as a yellow solid in 76% yield (28.5 mg) and 91% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (08:92), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 4.63 min, t_r (minor) = 5.04 min]. m.p. 149-150 °C; [α]_D²⁵ = -15.57 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.35 (s, 1H), 7.28 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.04 (d, *J* = 9.2 Hz, 1H), 3.20 (t, *J* = 6.8 Hz, 2H), 2.62-2.50 (m, 1H), 2.41-2.28 (m, 1H), 2.04-1.93 (m, 5H), 1.90-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 146.7, 144.5, 140.2, 136.8, 134.5, 131.0, 129.0 (q, *J* = 32.4 Hz), 128.8, 127.7, 126.9, 126.2, 125.7 (q, *J* = 3.7 Hz), 125.2 (q, *J* = 3.7 Hz), 124.3, 124.1 (q, *J* = 270.4 Hz), 34.2, 27.6, 22.8, 22.7, 19.5; HRMS (ESI) calcd for C₂₁H₁₈ClF₃N (M+H)⁺ 376.1074, found 376.1073.

Methyl 3-(6-chloro-1,2,3,4-tetrahydroacridin-9-yl)-4-methylbenzoate **3ka** was obtained as a yellow solid in 62% yield (22.6 mg) and 95% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (15:85), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.69 min, t_r (major) = 13.74 min]. m.p. 162-163 °C; $[\alpha]_D^{25} = +35.16$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.00 (m, 2H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.26 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.06 (d, *J* = 8.8 Hz, 1H), 3.90 (s, 3H), 3.20 (t, *J* = 6.8 Hz, 2H), 2.65-2.51 (m, 1H), 2.41-2.29 (m, 1H), 2.04-1.93 (m, 5H), 1.90-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 160.6, 146.7, 145.0, 141.5, 136.4, 134.4, 130.7, 130.1, 129.5, 128.9, 128.5, 127.6, 126.8, 126.4, 124.5, 52.2, 34.2, 27.6, 22.8, 22.8, 19.7; HRMS (ESI) calcd for C₂₂H₂₁ClNO₂ (M+H)⁺ 366.1255, found 366.1254.

6-Chloro-9-(2,4-dimethylphenyl)-1,2,3,4-tetrahydroacridine **3la** was obtained as a yellow solid in 66% yield (21.2 mg) and 94% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (07:93), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.51 min, t_r (major) = 6.04 min]. m.p. 95-96 °C; [α]_D²⁵ = +20.14 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 2.0 Hz, 1H), 7.22 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.18 (s, 1H), 7.14-7.10 (m, 2H), 6.92 (d, *J* = 7.6 Hz, 1H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.64-2.53 (m, 1H), 2.42 (s, 3H), 2.41-2.34 (m, 1H), 2.00-1.92 (m, 2H), 1.86 (s, 3H), 1.84-1.72 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.7, 146.4, 137.9, 135.4, 134.2, 133.0, 131.1, 129.1, 128.7, 127.4, 127.0, 126.9, 126.4, 125.1, 34.3, 27.6, 22.9, 21.3, 19.4; HRMS (ESI) calcd for C₂₁H₂₁CIN (M+H)⁺ 322.1357, found 322.1356.

6-Chloro-9-(4-chloro-2-methylphenyl)-1,2,3,4-tetrahydroacridine **3ma** was obtained as a yellow solid in 70% yield (23.9 mg) and 94% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 4.82 min, t_r (major) = 6.70 min]. m.p. 115-116 °C; [α]_D²⁵ = +27.50 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 2.0 Hz, 1H), 7.38 (d, *J* = 2.4 Hz, 1H), 7.32 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.26 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.61-2.50 (m, 1H), 2.41-2.31 (m, 1H), 2.02-1.93 (m, 2H), 1.89 (s, 3H), 1.86-1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 146.7, 145.0, 137.8, 134.5, 134.4, 134.0, 130.4, 130.1, 129.0, 127.6, 126.7, 126.6, 126.4, 124.6, 34.2, 27.6, 22.8, 19.4; HRMS (ESI) calcd for C₂₀H₁₈Cl₂N (M+H)⁺ 342.0811, found 342.0810.

6-Chloro-9-(2,4,5-trimethylphenyl)-1,2,3,4-tetrahydroacridine **3na** was obtained as a yellow solid in 81% yield (27.2 mg) and 93% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, λ = 254 nm, t_r (minor) = 4.58 min, t_r (major) = 6.43 min]. m.p. 129-130 °C; [α]_D²⁵ = +33.75 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 2.0 Hz, 1H), 7.23 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.18-7.10 (m, 2H), 6.80 (s, 1H), 3.18 (t, *J* = 6.8 Hz, 2H), 2.65-2.54 (m, 1H), 2.44-2.35 (m, 1H), 2.33 (s, 3H), 2.27 (s, 3H), 2.00-1.91 (m, 2H), 1.85-1.71 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.7, 146.6, 136.5, 134.3, 134.1, 133.3, 132.8, 131.6, 129.8, 129.0, 127.3, 127.1, 126.3, 125.1, 34.3, 27.7, 22.9, 19.6, 19.4, 18.9; HRMS (ESI) calcd for C₂₂H₂₃ClN (M+H)⁺ 336.1514, found 336.1512.

6-Chloro-9-(2-chlorophenyl)-1,2,3,4-tetrahydroacridine **30a** was obtained as a yellow solid in 71% yield (23.2 mg) and 80% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.61 min, t_r (major) = 8.46 min]. m.p. 139-140 °C; $[\alpha]_D^{25} = +13.17$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 2.0 Hz, 1H), 7.59-7.53 (m, 1H),

7.47-7.38 (m, 2H), 7.26 (dd, J = 8.8, 2.0 Hz, 1H), 7.19-7.14 (m, 1H), 7.11 (d, J = 8.8 Hz, 1H), 3.27-3.10 (m, 2H), 2.63-2.45 (m, 2H), 2.05-1.91 (m, 2H), 1.88-1.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.7, 143.7, 135.5, 134.3, 133.2, 130.6, 130.0, 129.7, 129.3, 127.5, 127.2, 126.7, 126.5, 124.5, 34.2, 27.4, 22.8, 22.7; HRMS (ESI) calcd for C₁₉H₁₆Cl₂N (M+H)⁺ 328.0654, found 328.0653.

6-Chloro-9-(2-chloro-5-methylphenyl)-1,2,3,4-tetrahydroacridine **3pa** was obtained as a yellow solid in 72% yield (24.6 mg) and 86% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 8.45 min, t_r (major) = 10.16 min]. m.p. 150-151 °C; [α]_D²⁵ = +38.42 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 2.0 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.31-7.20 (m, 2H), 7.13 (d, *J* = 8.8 Hz, 1H), 6.97 (d, *J* = 2.4 Hz, 1H), 3.25-3.11 (m, 2H), 2.54 (t, *J* = 6.4 Hz, 2H), 2.39 (s, 3H), 2.03-1.92 (m, 2H), 1.86-1.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 146.6, 143.9, 137.2, 135.1, 134.3, 131.0, 130.5, 130.1, 129.6, 129.3, 127.5, 126.6, 126.6, 124.6, 34.2, 27.4, 22.8, 22.7, 20.9; HRMS (ESI) calcd for C₂₀H₁₈Cl₂N (M+H)⁺ 342.0811, found 342.0810.

6-Chloro-9-(naphthalen-1-yl)-1,2,3,4-tetrahydroacridine 10-oxide **4** was obtained as a white solid in 94% yield (33.8 mg) and 87% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (30:70), 1.0 mL/min, λ = 254 nm, t_r (minor) = 14.87 min, t_r (major) = 18.22 min]. m.p. 91-92 °C; [α]_D²⁵ = +17.78 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.88 (d, *J* = 2.4 Hz, 1H), 8.05-7.94 (m, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.38-7.31 (m, 2H), 7.27 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 3.34 (t, *J* = 6.8 Hz, 2H), 2.59-2.47 (m, 1H), 2.36-2.25 (m, 1H), 2.01-1.90 (m, 2H), 1.75-1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 138.9, 135.1, 134.4, 132.7, 132.0, 130.7, 130.5, 128.0, 127.7, 127.6, 127.0, 126.6, 126.0, 125.9, 125.4, 124.6, 123.9, 117.8, 26.6, 25.7, 20.8, 20.6; HRMS (ESI) calcd for

C₂₃H₁₉ClNO (M+H)⁺ 360.1150, found 360.1149.

9-(Naphthalen-1-yl)-6-phenyl-1,2,3,4-tetrahydroacridine **5** was obtained as a yellow oil in 84% yield (32.4 mg) and 88% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 11.11 min, t_r (minor) = 12.35 min]. [α]_D²⁵ = -41.50 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.35 (s, 1H), 7.97 (t, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.53-7.40 (m, 4H), 7.38-7.27 (m, 3H), 7.23-7.11 (m, 2H), 3.29 (t, *J* = 6.8 Hz, 2H), 2.64-2.50 (m, 1H), 2.41-2.29 (m, 1H), 2.03-1.90 (m, 2H), 1.81-1.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 159.55, 146.41, 145.04, 141.17, 140.38, 134.64, 133.65, 131.41, 129.68, 128.88, 128.48, 128.34, 127.63, 127.31, 126.85, 126.61, 126.37, 126.21, 125.83, 125.57, 125.35, 125.19, 34.16, 27.48, 22.89, 22.86; HRMS (ESI) calcd for C₂₉H₂₄N (M+H)⁺ 386.1903, found 386.1925.

3-Chloro-9-(naphthalen-1-yl)acridine **6** was obtained as a yellow solid in 34% yield (11.5 mg) and 84% ee. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.74 min, t_r (minor) = 7.14 min]. m.p. 213-214 °C; $[\alpha]_D^{25} = +30.04$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.38-8.24 (m, 2H), 8.10 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.56-7.47 (m, 2H), 7.47-7.31 (m, 3H), 7.30-7.19 (m, 2H), 6.99 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.3, 147.7, 145.2, 135.2, 132.5, 132.0, 131.4, 129.9, 129.7, 128.5, 128.1, 127.8, 127.4, 127.0, 126.1, 126.0, 125.8, 125.4, 125.1, 125.0, 124.9, 124.3, 123.3; HRMS (ESI) calcd for C₂₃H₁₅ClN (M+H)⁺ 340.0888, found 340.0887.

References

1 (a) P. Wipf and J.-K. Jung, Formal Total Synthesis of (+)-Diepoxin σ, *J. Org. Chem.*, 2000, **65**, 6319; (b) H.-B. Yu, Q.-S. Hu and L. Pu, The First Optically Active BINOL–BINAP Copolymer Catalyst: Highly Stereoselective Tandem Asymmetric Reactions, *J. Am. Chem. Soc.*, 2000, **122**, 6500; (c) D. Uraguchi and M. Terada, Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation, *J. Am. Chem. Soc.*, 2004, **126**, 5356.

2 (a) W. Song, X. Li, K. Yang, X. Zhao, D. A. Glazier, B. Xi and W. Tang, Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations, *J. Org. Chem.*, 2016, **81**, 2930; (b) X. Fan, L.-Z. Yu, Y. Wei and M. Shi, Cascade Amination/Cyclization/Aromatization Process for the Rapid Construction of [2,3-*c*]Dihydrocarbazoles and [2,3-*c*]Carbazoles, *Org. Lett.*, 2017, **19**, 4476.

3 (a) M. Aidene, F. Belkessam, J.-F. Soul and H. Doucet, Reactivity of 2,1-Benzisoxazole in Palladium-Catalyzed Direct Arylation with Aryl Bromides, *ChemCatChem*, 2016, **8**, 1583; (b) A. V. Butin, S. K. Smirnov, T. A. Stroganova, W. Benderb and G. D. Krapivina, Simple route to 3-(2-indolyl)-1-propanones via a furan recyclization reaction, *Tetrahedron*, 2007, **63**, 474.

4 Y.-D. Shao, M.-M. Dong, Y.-A. Wang, P.-M. Cheng, T. Wang and D.-J. Cheng, Organocatalytic Atroposelective Friedländer Quinoline Heteroannulation, *Org. Lett.*, 2019, **21**, 4831.

5 J. J. Hirner and M. J. Zacuto, 7-Chloroquinoline: a versatile intermediate for the synthesis of 7-substituted quinolines, *Tetrahedron Lett.*, 2009, **50**, 4989.

¹H and ¹³C NMR Spectra

8,1613 8,1610 1,12,0078 1,12,0078 1,12,0078 1,12,003 1,12,00

3.2543 3.2275 3.2275 2.5666 2.2666 2.24869 2.24869 2.23782 2.2379 1.9433 1.9567 1.95766 1.95766 1.95

S35

146.6920 (146.6920) (137.9220) (137.9220) (137.9220) (137.9220) (137.9220) (137.9220) (137.9220) (137.920) (128.9039)

-0.1

S43

8.0110 8.0059 7.2415 7.7.2192 7.11698 7.11698 7.11475 7.1303 6.7959

Parallel and provided and provi

HPLC Traces

131.156

100.00

40.030

Total:

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Asymmetry (EP)	Peak Width
	min	mAU*min	mAU	%		min
1	5.102	23.542	165.999	35.27	n.a.	0.27
2	5.453	23.243	127.965	34.82	n.a.	0.23
3	5.843	9.893	54.133	14.82	n.a.	0.23
4	6.372	10.065	52.259	15.08	n.a.	0.34
Total:		66.744	400.356	100.00		

Integration Results						
No.	Retention Time	Area	Height	Relative Area	Asymmetry (EP)	Peak Width
	min	mAU*min	mAU	%		min
1	8.958	128.773	540.529	46.90	n.a.	0.43
2	9.432	128.773	131.718	11.60	n.a.	0.39
3	10.160	128.773	397.550	41.50	1.30	0.46
Total: 386.319		386.319	1069.797	100.00		

X-ray Crystallographic Information

CCDC 1998526 (**3aa**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S4. Crystal data and structure refinement

Identification code	ndj-hz-3-300k		
Empirical formula	C23H18CIN		
Formula weight	343.83		
Temperature	299.61(10) K	299.61(10) K	
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 1 21 1		
Unit cell dimensions	a = 9.4300(2) Å	$\alpha = 90^{\circ}$.	
	b = 8.4784(2) Å	$\beta = 110.650(2)^{\circ}$.	
	c = 11.9996(2) Å	$\gamma = 90^{\circ}.$	
Volume	897.74(3) Å ³		
Z	2		
Density (calculated)	1.272 Mg/m ³		
Absorption coefficient	1.892 mm ⁻¹		
F(000)	360		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	3.937 to 76.831°.		
Index ranges	-11<=h<=11, -10<=k<=1	0, -14<=l<=9	
Reflections collected	9452		
Independent reflections	3392 [R(int) = 0.0334]		
Completeness to theta = 67.684°	99.8%		
Absorption correction	Semi-empirical from equi	ivalents	
Max. and min. transmission	1.00000 and 0.70534		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	3392 / 31 / 245		
Goodness-of-fit on F ²	1.313		
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.15	25	
R indices (all data)	R1 = 0.0467, wR2 = 0.15	47	
Absolute structure parameter	0.040(15)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.247 and -0.216 e.Å ⁻³		

	Х	у	Z	U(eq)
Cl(1)	192(1)	4424(3)	1109(1)	102(1)
N(1)	5411(3)	4407(5)	4265(2)	54(1)
C(21)	8601(12)	3720(20)	7682(13)	70(4)
C(16)	3020(5)	6157(6)	9535(4)	62(1)
C(11)	3620(4)	5116(5)	7859(3)	49(1)
C(12)	3096(4)	4850(5)	8823(3)	50(1)
C(7)	3288(4)	4139(5)	4967(3)	50(1)
C(19)	4004(5)	6668(5)	7647(4)	58(1)
C(6)	4324(4)	4037(5)	6152(3)	50(1)
C(4)	6345(4)	4314(6)	5372(3)	52(1)
C(5)	5861(4)	4124(5)	6372(3)	52(1)
C(10)	3739(4)	3803(5)	7156(3)	50(1)
C(3)	3896(4)	4317(6)	4046(3)	52(1)
C(15)	3334(5)	2334(5)	7397(4)	58(1)
C(14)	2791(5)	2086(6)	8342(4)	61(1)
C(8)	1694(4)	4073(6)	4639(3)	63(1)
C(13)	2679(5)	3312(5)	9031(3)	57(1)
C(2)	2909(4)	4396(7)	2853(3)	60(1)
C(23)	8009(4)	4398(8)	5552(3)	71(1)
C(20)	7014(5)	4029(7)	7613(3)	70(1)
C(18)	3926(6)	7887(6)	8366(4)	67(1)
C(9)	754(4)	4168(8)	3477(3)	70(1)
C(17)	3441(6)	7621(6)	9325(4)	69(1)
C(1)	1393(4)	4318(7)	2590(3)	67(1)
C(22)	9006(18)	4740(20)	6813(9)	70(4)
C(22A)	9054(13)	3900(20)	6742(7)	76(4)
C(21A)	8568(10)	4620(20)	7704(9)	72(3)

Table S5. Atomic coordinates (x10⁴) and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(1)	1.740(4)
N(1)-C(4)	1.311(4)
N(1)-C(3)	1.361(4)
C(21)-C(20)	1.493(10)
C(21)-C(22)	1.506(12)
C(16)-C(12)	1.416(6)
C(16)-C(17)	1.354(7)
C(11)-C(12)	1.428(4)
C(11)-C(19)	1.412(6)
C(11)-C(10)	1.424(5)
C(12)-C(13)	1.409(6)
C(7)-C(6)	1.415(5)
C(7)-C(3)	1.422(4)
C(7)-C(8)	1.415(5)
C(19)-C(18)	1.365(6)
C(6)-C(5)	1.381(5)
C(6)-C(10)	1.505(4)
C(4)-C(5)	1.435(4)
C(4)-C(23)	1.509(5)
C(5)-C(20)	1.505(5)
C(10)-C(15)	1.363(6)
C(3)-C(2)	1.407(5)
C(15)-C(14)	1.415(5)
C(14)-C(13)	1.355(6)
C(8)-C(9)	1.365(6)
C(2)-C(1)	1.353(5)
C(23)-C(22)	1.501(10)
C(23)-C(22A)	1.483(9)
C(20)-C(21A)	1.518(9)
C(18)-C(17)	1.399(6)
C(9)-C(1)	1.402(5)
C(22A)-C(21A)	1.515(11)
C(4)-N(1)-C(3)	118.5(3)
C(20)-C(21)-C(22)	110.8(12)
C(17)-C(16)-C(12)	121.6(4)
C(19)-C(11)-C(12)	118.5(3)
C(19)-C(11)-C(10)	122.9(3)
C(10)-C(11)-C(12)	118.6(3)
C(16)-C(12)-C(11)	118.1(4)
C(13)-C(12)-C(16)	122.7(3)
C(13)-C(12)-C(11)	119.1(3)

Table S6. Bond lengths [Å] and angles [°].

C(6)-C(7)-C(3)	117.6(3)
C(8)-C(7)-C(6)	124.5(3)
C(8)-C(7)-C(3)	117.9(3)
C(18)-C(19)-C(11)	121.2(4)
C(7)-C(6)-C(10)	119.6(3)
C(5)-C(6)-C(7)	119.7(3)
C(5)-C(6)-C(10)	120.7(3)
N(1)-C(4)-C(5)	123.8(3)
N(1)-C(4)-C(23)	115.8(3)
C(5)-C(4)-C(23)	120.4(3)
C(6)-C(5)-C(4)	117.9(3)
C(6)-C(5)-C(20)	122.0(3)
C(4)-C(5)-C(20)	120.2(3)
C(11)-C(10)-C(6)	119.9(3)
C(15)-C(10)-C(11)	120.1(3)
C(15)-C(10)-C(6)	120.0(3)
N(1)-C(3)-C(7)	122.6(3)
N(1)-C(3)-C(2)	117.8(3)
C(2)-C(3)-C(7)	119.5(3)
C(10)-C(15)-C(14)	120.9(4)
C(13)-C(14)-C(15)	120.2(4)
C(9)-C(8)-C(7)	121.7(3)
C(14)-C(13)-C(12)	121.0(3)
C(1)-C(2)-C(3)	120.0(3)
C(22)-C(23)-C(4)	113.8(7)
C(22A)-C(23)-C(4)	115.4(6)
C(21)-C(20)-C(5)	115.1(6)
C(5)-C(20)-C(21A)	113.3(5)
C(19)-C(18)-C(17)	120.3(4)
C(8)-C(9)-C(1)	118.9(3)
C(16)-C(17)-C(18)	120.2(4)
C(2)-C(1)-Cl(1)	119.3(3)
C(2)-C(1)-C(9)	121.9(3)
C(9)-C(1)-Cl(1)	118.7(3)
C(23)-C(22)-C(21)	111.4(11)
C(23)-C(22A)-C(21A)	110.0(9)
C(22A)-C(21A)-C(20)	110.8(10)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	57(1)	205(2)	43(1)	2(1)	15(1)	6(1)
N(1)	49(1)	84(2)	38(1)	4(2)	25(1)	4(2)
C(21)	61(7)	92(9)	54(6)	11(7)	19(5)	9(6)
C(16)	62(2)	88(3)	44(2)	-1(2)	30(2)	7(2)
C(11)	45(2)	71(2)	37(2)	5(1)	21(1)	6(2)
C(12)	43(2)	78(3)	36(2)	5(2)	21(1)	6(2)
C(7)	53(2)	68(2)	38(2)	1(2)	26(1)	3(2)
C(19)	61(2)	74(3)	50(2)	6(2)	35(2)	4(2)
C(6)	56(2)	64(2)	41(2)	3(2)	29(1)	4(2)
C(4)	49(2)	73(2)	41(2)	3(2)	24(1)	4(2)
C(5)	53(2)	71(2)	38(2)	3(2)	24(1)	6(2)
C(10)	49(2)	72(3)	35(2)	4(2)	23(1)	3(2)
C(3)	50(2)	73(2)	42(2)	2(2)	26(1)	4(2)
C(15)	64(2)	67(2)	51(2)	0(2)	33(2)	1(2)
C(14)	65(2)	71(3)	58(2)	11(2)	34(2)	0(2)
C(8)	53(2)	96(3)	49(2)	5(2)	31(2)	1(2)
C(13)	54(2)	84(3)	42(2)	12(2)	29(2)	4(2)
C(2)	56(2)	97(3)	36(2)	5(2)	26(1)	7(2)
C(23)	51(2)	120(4)	48(2)	6(3)	26(2)	3(3)
C(20)	61(2)	110(4)	42(2)	7(2)	24(2)	7(2)
C(18)	73(3)	70(3)	72(3)	-2(2)	41(2)	0(2)
C(9)	49(2)	119(4)	49(2)	3(3)	23(2)	5(3)
C(17)	73(3)	81(3)	61(2)	-13(2)	35(2)	4(2)
C(1)	54(2)	106(3)	42(2)	4(2)	18(1)	4(2)
C(22)	54(6)	87(8)	67(7)	4(6)	20(5)	-3(6)
C(22A)	56(5)	119(9)	58(5)	14(5)	26(4)	17(6)
C(21A)	60(5)	111(8)	43(4)	-1(5)	17(3)	-2(6)

Table S7. Anisotropic displacement parameters (Å2x103). The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11}$ + ... +2hka*b*U^{12}]

H(21A)87032616750584H(21B)92943929848384H(16)267260051016374H(19)43166864700669H(15)34161484693369H(14)25101079849074H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23D)82515476541485H(20A)69985015801984H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	D
H(21B)92943929848384H(16)267260051016374H(19)43166864700669H(15)34161484693369H(14)25101079849074H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(20A)69985015801984H(20B)67123199804084H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(16)267260051016374H(19)43166864700669H(15)34161484693369H(14)25101079849074H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23C)81943742495585H(23D)82515476541485H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(19)43166864700669H(15)34161484693369H(14)25101079849074H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(15)34161484693369H(14)25101079849074H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(14)25101079849074H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(8)12753961523075H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(13)23223135965068H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(2)33004502224572H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(23A)83173402531085H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(23B)81615214503885H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(23C)81943742495585H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(23D)82515476541485H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(20A)69985015801984H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(20B)67123199804084H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(20C)71022941787984H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(20D)66574644814484H(18)41978898821781H(9)-2924134327785	
H(18)41978898821781H(9)-2924134327785	
H(9) -292 4134 3277 85	
H(17) 3407 8453 9820 82	
H(22A) 8901 5841 6990 84	
H(22B) 10056 4558 6901 84	
H(22C) 10078 4232 6849 92	
H(22D) 9048 2759 6802 92	
H(21C) 8542 5764 7625 86	
H(21D) 9300 4359 8480 86	

Table S8. Hydrogen coordinates $(x10^4)$ and isotropic displacement parameters (\mathring{A}^2x10^3) .

Table S9. Torsion angles [°].

N(1)-C(4)-C(5)-C(6)	0.0(7)
N(1)-C(4)-C(5)-C(20)	-179.9(4)
N(1)-C(4)-C(23)-C(22)	163.8(9)
N(1)-C(4)-C(23)-C(22A)	-165.4(9)
N(1)-C(3)-C(2)-C(1)	-179.7(5)
C(16)-C(12)-C(13)-C(14)	-178.9(4)
C(11)-C(12)-C(13)-C(14)	1.0(6)
C(11)-C(19)-C(18)-C(17)	-0.8(7)
C(11)-C(10)-C(15)-C(14)	0.0(6)
C(12)-C(16)-C(17)-C(18)	1.8(7)
C(12)-C(11)-C(19)-C(18)	2.1(6)
C(12)-C(11)-C(10)-C(6)	-178.5(3)
C(12)-C(11)-C(10)-C(15)	1.1(5)
C(7)-C(6)-C(5)-C(4)	-0.1(6)
C(7)-C(6)-C(5)-C(20)	179.8(4)
C(7)-C(6)-C(10)-C(11)	-99.9(4)
C(7)-C(6)-C(10)-C(15)	80.5(5)
C(7)-C(3)-C(2)-C(1)	0.6(8)
C(7)-C(8)-C(9)-C(1)	0.7(8)
C(19)-C(11)-C(12)-C(16)	-1.4(5)
C(19)-C(11)-C(12)-C(13)	178.7(4)
C(19)-C(11)-C(10)-C(6)	1.2(6)
C(19)-C(11)-C(10)-C(15)	-179.2(4)
C(19)-C(18)-C(17)-C(16)	-1.1(7)
C(6)-C(7)-C(3)-N(1)	-0.7(6)
C(6)-C(7)-C(3)-C(2)	178.9(4)
C(6)-C(7)-C(8)-C(9)	-179.6(5)
C(6)-C(5)-C(20)-C(21)	164.6(9)
C(6)-C(5)-C(20)-C(21A)	-162.9(7)
C(6)-C(10)-C(15)-C(14)	179.6(4)
C(4)-N(1)-C(3)-C(7)	0.5(7)
C(4)-N(1)-C(3)-C(2)	-179.1(5)
C(4)-C(5)-C(20)-C(21)	-15.5(11)
C(4)-C(5)-C(20)-C(21A)	17.0(9)
C(4)-C(23)-C(22)-C(21)	47.0(18)
C(4)-C(23)-C(22A)-C(21A)	-45.3(16)
C(5)-C(6)-C(10)-C(11)	81.3(5)
C(5)-C(6)-C(10)-C(15)	-98.3(5)
C(5)-C(4)-C(23)-C(22)	-16.8(10)
C(5)-C(4)-C(23)-C(22A)	14.0(10)
C(5)-C(20)-C(21A)-C(22A)	-48.8(14)
C(10)-C(11)-C(12)-C(16)	178.3(3)

C(10)-C(11)-C(12)-C(13)	-1.6(5)
C(10)-C(11)-C(19)-C(18)	-177.6(4)
C(10)-C(6)-C(5)-C(4)	178.6(4)
C(10)-C(6)-C(5)-C(20)	-1.5(7)
C(10)-C(15)-C(14)-C(13)	-0.6(7)
C(3)-N(1)-C(4)-C(5)	-0.1(7)
C(3)-N(1)-C(4)-C(23)	179.2(4)
C(3)-C(7)-C(6)-C(5)	0.5(6)
C(3)-C(7)-C(6)-C(10)	-178.3(4)
C(3)-C(7)-C(8)-C(9)	0.3(7)
C(3)-C(2)-C(1)-Cl(1)	179.8(4)
C(3)-C(2)-C(1)-C(9)	0.4(9)
C(15)-C(14)-C(13)-C(12)	0.1(6)
C(8)-C(7)-C(6)-C(5)	-179.6(4)
C(8)-C(7)-C(6)-C(10)	1.6(6)
C(8)-C(7)-C(3)-N(1)	179.4(4)
C(8)-C(7)-C(3)-C(2)	-1.0(7)
C(8)-C(9)-C(1)-Cl(1)	179.5(5)
C(8)-C(9)-C(1)-C(2)	-1.1(9)
C(23)-C(4)-C(5)-C(6)	-179.3(4)
C(23)-C(4)-C(5)-C(20)	0.8(7)
C(23)-C(22A)-C(21A)-C(20)	63.5(18)
C(20)-C(21)-C(22)-C(23)	-62(2)
C(17)-C(16)-C(12)-C(11)	-0.6(6)
C(17)-C(16)-C(12)-C(13)	179.3(4)
C(22)-C(21)-C(20)-C(5)	45.3(17)

CCDC 1998519 (**3ac**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S10. Crystal data and structure refinement

Identification code	ndj-hz-2-300k		
Empirical formula	C22H16CINO		
Formula weight	345.81		
Temperature	299.69(10) K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	$a = 9.35760(10) \text{ Å}$ $\alpha = 90$		
	$b = 18.24240(10) \text{ Å}$ $\beta = 90^{\circ}$	·.	
	$c = 20.28210(10) \text{ Å}$ $\gamma = 90^{\circ}$	^{>} .	
Volume	3462.26(4) Å ³		
Z	8		
Density (calculated)	1.327 Mg/m ³		
Absorption coefficient	2.011 mm ⁻¹		
F(000)	1440		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	3.258 to 77.281°.		
Index ranges	-11<=h<=11, -23<=k<=20, -23<=l<=25		
Reflections collected	46005		
Independent reflections	7109 [R(int) = 0.0370]		
Completeness to theta = 67.684°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.83498		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7109 / 0 / 451		
Goodness-of-fit on F ²	1.051		
Final R indices [I>2sigma(I)]	R1 = 0.0385, $wR2 = 0.1143$		
R indices (all data)	R1 = 0.0403, $wR2 = 0.1162$		
Absolute structure parameter	-0.002(5)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.503 and -0.300 e.Å ⁻³		

CCDC 1998518 (**3aj**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Identification code	ndj-hz-1-300k		
Empirical formula	C29H21Cl2N		
Formula weight	454.37		
Temperature	299.60(10) K		
Wavelength	1.54184 Å		
Crystal system	Monoclinic		
Space group	P 1 21 1		
Unit cell dimensions	a = 10.8865(3) Å	α= 90°.	
	b = 8.8581(3) Å	$\beta = 97.528(2)^{\circ}.$	
	c = 12.0837(4) Å	$\gamma = 90^{\circ}.$	
Volume	1155.23(6) Å ³		
Z	2		
Density (calculated)	1.306 Mg/m ³		
Absorption coefficient	2.644 mm ⁻¹		
F(000)	472		
Crystal size	? x ? x ? mm ³		
Theta range for data collection	3.690 to 76.873°.		
Index ranges	-12<=h<=13, -11<=k<=10, -14	<=l<=15	
Reflections collected	12833		
Independent reflections	4168 [R(int) = 0.0348]		
Completeness to theta = 67.684°	99.9 %		
Absorption correction	Semi-empirical from equivalent	its	
Max. and min. transmission	1.00000 and 0.74959		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4168 / 1 / 289		
Goodness-of-fit on F ²	1.079		
Final R indices [I>2sigma(I)]	R1 = 0.0611, wR2 = 0.1885		
R indices (all data)	R1 = 0.0646, wR2 = 0.1934		
Absolute structure parameter	0.05(3)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.262 and -0.196 e.Å ⁻³		

Table S11. Crystal data and structure refinement