Highly Enantioselective [3+3]- Cycloaddition with Nitrones Catalyzed by Copper(I) with Chiral Box Ligands via Z- γ-Substituted Metalloenolcarbene Intermediates Kuiyong Dong, a,b Xinfang Xu, ${ }^{\text {,b }}$, and Michael P. Doyle ${ }^{*, a}$
 ${ }^{\text {a }}$ Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
 ${ }^{\mathrm{b}}$ Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
 Email: michael.doyle@utsa.edu, xinfangxu@suda.edu.cn

Supporting Information

Table of Contents

1. General Information S2
Procedure for Copper(I)-Catalyzed [3 + 3]-Cycloaddition 2. Leaction with Chiral BOX Ligand
2. General Procedure for TIPS-Group Removal Reactions S11-S13
3. Reference S13
4. NMR Spectra of New compounds S13-S36
5. HPLC Traces for Racemic and Chiral Compounds S37-S58

1. General Information.

Unless otherwise noted, all reactions were performed in 10 mL oven-dried $\left(120^{\circ} \mathrm{C}\right)$ glassware under a dinitrogen atmosphere. Solvents were dried using a JC Meyer solvent purification system. Analytical thin-layer chromatography was performed using glass plates pre-coated with $200-300$ mesh silica gel impregnated with a fluorescent indicator (254 nm). Column chromatography was performed on CombiFlash ${ }^{\circledR}$ Rf200 and Rf+ purification systems using normal phase silica gel columns (300-400 mesh). High-resolution mass spectra (HRMS) were performed on a Bruker MicroTOF-ESI mass spectrometer with an ESI resource using CsI or LTQ ESI Positive Ion Calibration Solution as the standard. Accurate masses were reported for the molecular ions $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 300 MHz and 500 MHz spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} at 300 or 500 MHz with residual $\mathrm{CHCl}_{3}(\delta 7.26 \mathrm{ppm})$ and $\mathrm{H}_{2} \mathrm{O}(\delta 1.56 \mathrm{ppm})$. Chemical shifts are reported in ppm with the residual solvent signals as reference, and coupling constants (J) are given in Hertz. Peak information is described as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, comp $=$ composite of magnetically non-equivalent protons. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} at 75 or 126 MHz with the central resonance of CDCl_{3} of $\delta 77.16$ ppm. Enantiomeric excess HPLC analyses were carried out at $25^{\circ} \mathrm{C}$ on Agilent 1260 Infinity HPLC System. Chiralpak AD-H ($0.46 \mathrm{~mm} \times 250 \mathrm{~mm}$), Chiralcel OD-H (0.46 $\mathrm{mm} \times 250 \mathrm{~mm}$), Chiralpak IC-3 ($0.46 \mathrm{~mm} \times 250 \mathrm{~mm}$) columns were obtained from Daicel Chiral Technologies, Japan. HPLC-grade n-hexane and 2- propanol were obtained from Fisher Scientific, USA. Chiral HPLC separation conditions were determined by obtaining an optimum separation for standard racemic samples prepared using $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PFF}_{6}$. Staring martials TIPS-protected enoldiazoacetates 1 and nitrones 2 were prepared according to the literature ${ }^{1}$

2. Procedure for Copper(I)-Catalyzed [3 + 3]-Cycloaddition Reaction with Chiral BOX Ligand

The chiral catalyst was prepared by stirring $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(3.7 \mathrm{mg}, 0.010 \mathrm{mmol}$, $5.0 \mathrm{~mol} \%$) and the chiral bisoxazoline ligand ($4.3 \mathrm{mg}, 0.012 \mathrm{mmol}, 6.0 \mathrm{~mol} \%$) in dry chloroform (2.0 mL) in an oven-dried 8.0 mL Schlenk tube for 1 h under N_{2} at room temperature, then chloroform was removed and dry toluene (2.0 mL) was added. A solution of nitrone $2(0.20 \mathrm{mmol}, 1.0$ equiv.) in dry toluene (1.0 mL) was introduced to the reaction mixture. Then TIPS-protected enoldiazoacetate $\mathbf{1}(0.30 \mathrm{mmol}, 1.5$ equiv.) in dry toluene (1.0 mL) was added dropwise over 5 min . The reaction solution was stirred at room temperature for 12 h . Subsequently, solvent was then removed under reduced pressure, and the residue was purified by silica gel column chromatography using a $20: 1$ to $15: 1$ gradient of hexane/ethyl acetate (v / v) as the eluent to afford 3.

Methyl (3S,6R)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3a)
colorless oil; $92 \mathrm{mg}, 93 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+129^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 93 \%$ ee, [HPLC: Chiralpak AD-H column, 1% IPA in hexane $(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=4.6 \mathrm{~min}$ (major), $\mathrm{t}_{2}=4.9 \mathrm{~min}($ minor $\left.)\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{comp}, 2 \mathrm{H})$, $7.23-7.13(\mathrm{comp}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{td}, J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.13(\mathrm{comp}, 3 \mathrm{H}), 1.12-1.05(\mathrm{comp}, 21 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.1,161.7,148.1,138.1,129.5,128.7,127.7,127.5,122.1,117.0,110.0$, $78.9,63.6,51.4,24.4,18.0,17.9,13.8,10.4$, HRMS (ESI) m / z calc. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 496.2878$, found: 496.2872 .

Methyl (3R,6S)-6-ethyl-3-(4-fluorophenyl)-2-phenyl-5-[(triisopropylsilyl)oxy]-3,6-
dihydro- $\mathbf{2 H}$-1,2-oxazine-4-carboxylate (3b)
colorless oil; $89 \mathrm{mg}, 87 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+182^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 91 \% e e$, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.8 \mathrm{~min}$ (major), $\mathrm{t}_{2}=5.6 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.18$ (comp, 4H), $7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.83(\mathrm{comp}, 2 \mathrm{H}), 5.65(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{td}, J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.10(\mathrm{comp}, 24 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,162.3$ $(\mathrm{d}, J=245.4 \mathrm{~Hz}), 162.1,148.0,133.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.7$, $122.3,117.0,114.5(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 111.0,79.2,63.3,51.3,24.4,18.0,17.9,13.8$, 10.4, ${ }^{19}$ F NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.3$. HRMS (ESI) m / z calc. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{FNO}_{4} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 514.2783$, found: 514.2779.

Methyl (3R,6S)-6-ethyl-3-(naphthalen-2-yl)-2-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3c)
colorless oil; $98 \mathrm{mg}, 89 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+181^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 91 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.7 \mathrm{~min}$ (major), $\mathrm{t}_{2}=7.0 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.70$ (comp, 3H), 7.65 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 - 7.36 (comp, 3H), $7.23-7.16$ (comp, 2H), 7.06 (d, $J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{td}, J=8.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.10(\mathrm{comp}$, $24 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,161.8,148.0,135.8,133.0,133.0,128.8$, $128.7,128.3,127.7,127.6,127.2,125.7,125.6,122.1,117.0,111.0,78.8,63.5,51.4$, 24.5, 18.0, 17.95, 13.8, 10.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 546.3034, found: 546.3031.

Methyl (3R,6S)-3-(4-bromophenyl)-6-ethyl-2-(4-methoxyphenyl)-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3d)
colorless oil; $104 \mathrm{mg}, 86 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+139^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 96 \%$ ee, [HPLC: Chiralpak ADH column, 3% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.6 \mathrm{~min}$ (major), $\mathrm{t}_{2}=7.8 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.05 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.86$ (comp, 2H), $6.77-6.72$ (comp, 2H), 5.42 (s, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.15(\mathrm{comp}, 3 \mathrm{H}), 1.13-1.08(\mathrm{comp}, 21 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.0,162.4,155.7,141.5,137.0,131.3,130.8,121.6,119.6,114.0,109.7$, 79.4, 64.8, 55.6, 51.3, 24.4, 18.1, 18.0, 13.8, 10.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{BrNO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 604.2088$, found: 604.2085.

Methyl (3R,6S)-2-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3e) colorless oil; $98 \mathrm{mg}, 87 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+184^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 82 \% e e$, [HPLC:

Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.6 \mathrm{~min}$ (major), $\mathrm{t}_{2}=4.9 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.84$ (comp, 2H), $5.60(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{td}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.18$ - $2.09(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.09(\mathrm{comp}, 24 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,162.1,149.1,136.1,134.7,133.6,130.8,129.8,128.0,122.0,116.8$, 114.8, 109.6, 79.8, 63.2, 51.4, 24.3, 18.0, 17.9, 13.8, 10.3, HRMS (ESI) m / z calc. for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 564.2098$, found: 564.2097.

Benzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-((triisopropylsilyl)oxy)-3,6-dihydro-2H -1,2-oxazine-4-carboxylate (3f)
colorless oil; $104 \mathrm{mg}, 91 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+155^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 98 \% e e$, [HPLC: Chiralpak AD-H column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=4.5 \mathrm{~min}$ (major), $\mathrm{t}_{2}=5.7 \mathrm{~min}$ (minor)]. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23$ (comp, 5 H), $7.22-7.15$ (comp, 5H),- $7.01(\mathrm{comp}, 4 \mathrm{H}), 6.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{td}, J=8.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.15$ (comp, 6H), $1.13-$ 1.09 (comp, 18H), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,162.5,148.1,138.0,136.2$, 129.7, 128.7, 128.4, 128.1, 127.9, 127.7, 127.5, 122.1, 117.2, 109.6, 79.2, 65.8, 63.9, 24.4, 18.1, 18.0, 13.9, 10.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 572.3191 , found: 572.3179 .

4-Bromobenzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate ($\mathbf{3 g}$)
colorless oil; $113 \mathrm{mg}, 87 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+108^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 99 \%$ ee, [HPLC: Chiralpak ADH column, $1 \% \mathrm{IPA}$ in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.2 \mathrm{~min}$ (major)], ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.12$ (comp, $7 \mathrm{H}), 6.99$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{td}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.94-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.11(\mathrm{comp}, 6 \mathrm{H}), 1.10-1.07(\mathrm{~m}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,163.0,148.1,137.9,135.3,131.5,129.7,129.6,128.7,127.7$, 127.5, 122.3, 121.9, 117.3, 109.4, 79.5, 64.9, 64.1, 24.4, 18.1, 18.0, 13.9, 10.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{BrNO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 650.2296$, found: 650.2287 .

4-(Trifluoromethyl)benzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3h)
colorless oil; $113 \mathrm{mg}, 88 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+154^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 97 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=3.8 \mathrm{~min}$ (major), $\mathrm{t}_{2}=8.0 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25-7.14$ (comp, 7H), 7.07 - 6.99 (comp, 4H), 6.92 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (s, 1H), $5.13(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.15(\mathrm{comp}, 6 \mathrm{H}), 1.14-1.10(\mathrm{~m}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,163.4,148.1,140.3,137.8,130.0(\mathrm{q}, J=32.2 \mathrm{~Hz})$, 129.7, 128.7, 127.9, 127.7, 127.6, $125.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.3,119.4(\mathrm{q}, J=$ 246.8 Hz), 117.3, 109.3, 79.6, 64.7, 64.3, 24.4, 18.1, 18.0, 13.9, 10.4, ${ }^{19}$ F NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.60$, HRMS (ESI) m / z calc. for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 640.3064$, found: 640.3053.

4-Methoxybenzyl(3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro- $\mathbf{2 H}$-1,2-oxazine-4-carboxylate (3i)
colorless oil; $108 \mathrm{mg}, 90 \%$ yield, $[\alpha]_{D}{ }^{20}=+155^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 98 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v) , $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{1}=4.5 \mathrm{~min}$ (major), $\mathrm{t}_{2}=7.4 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.14$ (comp, 7 H), $7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.76$ (comp, 2H), $5.66(\mathrm{~d}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{td}, J=8.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.12(\mathrm{comp}$, $6 \mathrm{H}), 1.11-1.08(\mathrm{~m}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,159.5,148.1,138.1$, 130.0, 129.7, 128.7, 128.4, 127.6, 127.4, 122.1, 117.2, 113.7, 109.7, 79.2, 65.7, 63.8, 55.4, 24.4, 18.1, 18.0, 13.9, 10.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 602.3296, found: 602.3289 .

3,4,5-Trimethoxybenzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]
-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3j)
colorless oil; $122 \mathrm{mg}, 92 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+156^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 99 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=8.0 \mathrm{~min}$ (major), $\mathrm{t}_{2}=12.4 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.16$ (comp, 4H), $7.15-7.10(\mathrm{comp}, 3 \mathrm{H}), 7.02-6.98$ (comp, 2H), $6.89(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 2 \mathrm{H}), 5.67$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{td}, J=$ $8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H})$, 1.17 - 1.10 (comp, 6H), $1.09-1.05$ (comp, 18H), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.9, 162.4, 153.2, 148.0, 138.1, 137.8, 131.8, 129.4, 128.7, 127.6, 127.4, 122.2, $117.1,109.5,105.7,78.9,66.2,63.5,60.9,56.1,24.3,18.1,17.9,13.9,10.3$, HRMS (ESI) m / z calc. for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{NO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 662.3508$, found: 662.3492 .

4-Methoxybenzyl (3R,6S)-2-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3k)
colorless oil; $114 \mathrm{mg}, 85 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+149^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 90 \% e e$, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.5 \mathrm{~min}$ (major), $\mathrm{t}_{2}=6.0 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.09$ (comp, 5 H), $7.05-7.00$ (comp, 3H), $6.91-6.87$ (comp, 2H), 6.81 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.60 (d, $J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{td}, J=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.14(\mathrm{~m}$, $1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.18$ (comp, 3H), $1.16-1.10(\mathrm{comp}, 21 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,162.5,159.6,149.1,136.1,134.6,133.5,130.9,130.1$, 129.7, 128.1, 127.9, 122.1, 116.9, 115.0, 113.7, 109.3, 80.0, 65.7, 63.4, 55.3, 24.2, 18.1, 18.0, 13.9, 10.3, HRMS (ESI) m / z calc. for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 670.2517$, found: 670.2517.

4-Methoxybenzyl (3R,6S)-6-ethyl-3-phenyl-2-(thiophen-2-yl)-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (31)
colorless oil; $106 \mathrm{mg}, 87 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+152^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 92 \%$ ee, [HPLC: Chiralpak ADH column, $1 \% \mathrm{IPA}$ in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.6 \mathrm{~min}$ (major), $\mathrm{t}_{2}=8.1 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.70(\mathrm{comp}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.5(\mathrm{td}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.14(\mathrm{comp}, 6 \mathrm{H}), 1.09$ (d, $J=5.9 \mathrm{~Hz}, 18 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,162.7$, 159.5, 148.0, $140.4,130.2,128.7,128.4,127.7,125.7,125.4,122.2,116.7,113.8,110.9,80.5,65.8$, $60.2,55.4,24.3,18.1,18.0,13.9,10.3$, HRMS (ESI) m / z calc. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{SSi}$ $(\mathrm{M}+\mathrm{H})^{+}: 608.2860$, found: 608.2862 .

4-Methoxybenzyl (3R,6S)-6-ethyl-2-(furan-2-yl)-3-phenyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3m)
colorless oil; $104 \mathrm{mg}, 88 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+162^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 98 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=5.1 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.22$ (comp, 2H), $7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.22-6.17(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=17.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{td}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.11(\mathrm{comp}, 6 \mathrm{H}), 1.09-$ 1.05 (comp, 18 H), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,163.1,159.5,152.5,148.0$, $141.8,130.0,128.7,128.5,122.2,116.7,113.8,110.0,109.4,108.2,79.3,65.7,57.6$, 55.4, 24.2, 18.1, 18.0, 13.9, 10.0, HRMS (ESI) m / z calc. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 592.3089 , found: 592.3081.

4-Methoxybenzyl (3R,6S)-2-cyclopropyl-6-ethyl-3-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3n)
colorless oil; $93 \mathrm{mg}, 82 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+134^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 90 \% \mathrm{ee}$, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=3.9 \mathrm{~min}$ (major), $\mathrm{t}_{2}=5.2 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.20$ (comp, 2H), 7.06 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.93-6.87$ (comp, 3H), 5.28 (d, $J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, 4.24(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=$ $8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.17-1.03$ (comp, 6H), $0.96(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 18 \mathrm{H}), 0.34-0.26$ (comp, 3H), $0.11-0.03(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,159.7,158.5,148.3$, $130.7,128.9,128.4,121.7,116.6,113.9,111.2,76.5,65.9,62.4,55.4,24.4,17.9$,
17.8, 13.9, 13.7, 9.8, 3.9, 2.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 566.3296, found: 566.3288.

Methyl 3S,6R)-2-(4-methoxyphenyl)-6-methyl-3-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (30)
colorless oil; $89 \mathrm{mg}, 87 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+174^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 83 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=9.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=11.5 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.13$ (comp, $5 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.46$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ (qd, $J=6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-$ 1.16 (comp, 3 H), $1.12(\mathrm{t}, J=6.2 \mathrm{~Hz}, 18 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1$, 162.6, 155.6, 141.7, 137.6, 129.7, 127.6, 127.5, 119.7, 113.9, 109.5, 74.4, 55.6, 51.3, 18.1, 18.0, 17.9, 17.0, 13.8, HRMS (ESI) m / z calc. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 512.2827, found: 512.2829.

Methyl (3R,6S)-6-ethyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3p)
colorless oil; $96 \mathrm{mg}, 91 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+203^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 96 \%$ ee, [HPLC: Chiralpak ADH column, 1% IPA in hexane (v / v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.8 \mathrm{~min}$ (major), $\mathrm{t}_{2}=6.9 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.18$ (comp, 2H), 7.18 - 7.12 (comp, 3H), 6.92 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}$, $1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 3H), $3.59(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.14(\mathrm{comp}, 3 \mathrm{H}), 1.14-1.08(\mathrm{comp}, 21 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,161.7,155.5,141.8,138.0,129.7,127.6,127.4,119.6,113.9,110.0$, 79.0, 65.0, 55.6, 51.3, 24.4, 18.0, 17.95, 17.8, 13.8, 10.4, HRMS (ESI) m / z calc. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 526.2983$, found: 526.2985.

Methyl (3S,6R)-2-(4-methoxyphenyl)-6-octyl-3-phenyl-5-[(triisopropylsilyl) oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3q)
colorless oil; $101 \mathrm{mg}, 83 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+234^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 93 \% e e,[\mathrm{HPLC}$: Chiralpak ADH column, 1% IPA in hexane $(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.8 \mathrm{~min}$ (major), $\mathrm{t}_{2}=5.3 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.12(\mathrm{comp}, 5 \mathrm{H})$, $6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{comp}, 12 \mathrm{H}), 1.17-1.05(\mathrm{comp}, 21 \mathrm{H}), 0.88(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 166.2,162.0,155.5,141.8,138.0,129.7$, $127.6,127.4,119.6,113.9,109.8,78.2,65.0,55.6,51.3,32.0,31.2,29.8,30.0,29.4$, 26.0, 22.8, 18.1, 18.0, 14.3, 13.8., HRMS (ESI) m / z calc. for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 610.3922, found: 610.3927.

Methyl (3S,6R)-6-benzyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl) oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3r)
colorless oil; $100 \mathrm{mg}, 85 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+183^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 96 \% \mathrm{ee}$, [HPLC: Chiralpak ADH column, 1% IPA in hexane $(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.4 \mathrm{~min}$ (major), $\mathrm{t}_{2}=7.2 \mathrm{~min}($ minor $\left.)\right],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.27$ (comp, 4H), $7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{comp}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=4.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.30-1.13(\mathrm{comp}, 21 \mathrm{H}) .,{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,161.0$, $155.6,141.7,137.4,137.1,130.0,129.8,128.5,127.5,127.3,126.7,120.0,113.8$, $111.3,79.1,66.3,55.6,51.3,36.8,18.2,18.1,17.9,14.0$, HRMS (ESI) m / z calc. for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 588.3140$, found: 588.3143 .

Methyl (3S,6R)-6-isopropyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl) oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3s)
colorless oil; $83 \mathrm{mg}, 77 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+263^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 99 \% e e$, [HPLC: Chiralpak IC-3 column, 1% IPA in hexane (v/v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=5.8 \mathrm{~min}$ (major), $\mathrm{t}_{2}=7.5 \mathrm{~min}$ (minor) $],{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.18-7.12$ (comp, 3 H), $6.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H})$, 1.13 (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$), $1.11-1.04$ (comp, 21 H)., ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $166.4,161.6,155.2,141.8,138.6,129.5,127.6,127.3,118.9,114.0,110.3,81.1,64.0$, 55.7, 51.3, 29.2, 19.7, 18.1, 18.0, 16.4, 13.9, HRMS (ESI) m / z calc. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{NO}_{5} \mathrm{Si}$ $(\mathrm{M}+\mathrm{H})^{+}: 540.3140$, found: 540.3144 .

Methyl 3-ethyl-2-[(triisopropylsilyl)oxy]cycloprop-1-ene-1-carboxylate (4a) colorless oil; $58 \mathrm{mg}, 97 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.52-$ 1.36 (comp, 4H), 1.10-1.18 (comp, 18H), 0.94 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,160.5,148.4,76.1,51.5,31.4,26.9,17.6,12.4,12.1$, HRMS (ESI) m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 299.2037$, found: 299.2035.

3. General Procedure for TIPS-Group Removal Reactions

$(S, R)-\mathbf{3 a}, \mathrm{Ar}^{1}=\mathrm{Ar}^{2}=\mathrm{Ph}, \mathrm{R}=\mathrm{Me}, \mathbf{9 2 \%} \mathbf{e e}$
$(S, R)-3 i, \mathrm{Ar}^{1}=\mathrm{Ar}^{2}=\mathrm{Ph}, \mathrm{R}=4-\mathrm{OMeBn}, 98 \%$ ee
$(S, R)-3 \mathbf{k}, \mathrm{Ar}^{1}=3-\mathrm{CIC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=4-\mathrm{OMeBn}, 90 \%$ ee
($\mathbf{S}, \boldsymbol{R}$)-5i, 95% yield, 98% ee

(S,R)-5a, 97\% yield, 92\% ee
(\mathbf{S}, \mathbf{R})-5k, 98% yield, 90% ee

To a solution of the TIPS-protected 6-ethyl-3,6-dihydro- 2 H -1,2-oxazine derivative 3 (1.0 equiv.) in dry dichloromethane stirred at $0{ }^{\circ} \mathrm{C}$ under N_{2} was added tetra- n butylammonium fluoride (1.0 M in THF, 2.0 equiv.) dropwise via syringe over 5 min . The reaction solution was then allowed to stir at room temperature for 1 hour. The reaction solvent was then removed under reduced pressure, and the residue was purified by column chromatography on silica gel using a 10:1 mixture of hexane/ethyl acetate as the eluent to afford the corresponding TIPS-deprotected compound 5.

Methyl (3S,6R)-6-ethyl-5-hydroxy-2,3-diphenyl-3,6-dihydro-2H-1,2-oxazine -4-carboxylate (5a)
colorless oil; $33 \mathrm{mg}, 97 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+134^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 92 \%$ ee, [HPLC: Chiralpak ADH column, 2% IPA in hexane $(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=6.2 \mathrm{~min}$ (major), $\mathrm{t}_{2}=5.6 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.22(\mathrm{br}, 1 \mathrm{H}), 7.21-$ $7.12(\mathrm{comp}, 7 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84$ $(\mathrm{m}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,148.2,137.7$, 129.5, 128.7, 127.6, 127.5, 122.4, 117.2, 99.4, 78.3, 62.9, 51.9, 23.5, 10.2, HRMS (ESI) m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 340.1543$, found: 340.1539 .

4-Methoxybenzyl (3S,6R)-6-ethyl-5-hydroxy-2,3-diphenyl-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (5i)
colorless oil; $42 \mathrm{mg}, 95 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+134^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 98 \%$ ee, [HPLC: Chiralpak ADH column, 10% IPA in hexane $(\mathrm{v} / \mathrm{v}), 1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.6 \mathrm{~min}$ (major), $\mathrm{t}_{2}=7.7 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.17$ (br, 1 H), $7.20-$ $7.11(\mathrm{comp}, 7 \mathrm{H}), 6.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.83(\mathrm{comp}, 3 \mathrm{H}), 6.74(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,170.6,159.6$, $148.2,137.8,129.8,129.4,128.6,127.6,127.5,122.4,117.3,113.9,99.6,78.4,66.2$, 63.1, 55.4, 23.5, 10.2, HRMS (ESI) m / z calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 446.1962$, found: 446.1963 .

4-Methoxybenzyl (3S,6R)-2-(2-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-

hydroxy-3,6-dihydro-2 $\mathbf{H - 1 , 2 - o x a z i n e - 4 - c a r b o x y l a t e ~ (5 k) ~}$

colorless oil; $50 \mathrm{mg}, 98 \%$ yield, $[\alpha]_{\mathrm{D}}{ }^{20}=+134^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right), 90 \%$ ee, [HPLC: Chiralpak ADH column, 10\% IPA in hexane (v/v), $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, \mathrm{t}_{1}=4.9 \mathrm{~min}$ (major), $\mathrm{t}_{2}=6.3 \mathrm{~min}$ (minor)], ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.18$ (br, 1 H), $7.13-$ 7.03 (comp, 5H), 6.93 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.90-6.83$ (comp, 3H), $6.81-6.75$ (comp, $3 \mathrm{H}), 5.30(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,170.3,159.8,149.1,136.0$, 134.7, 133.6, 131.0, 129.7, 127.9, 127.3, 122.4, 117.0, 115.0, 113.9, 99.3, 79.0, 66.4, 62.4, 55.4, 23.3, 10.1, HRMS (ESI) m / z calc. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+}: 514.1183$, found: 514.1177.

4. Reference

1. K. Dong, K., Marichev, X. Xu, and M. P. Doyle, High Stereocontrol in the Preparation of Silyl-Protected γ-Substituted Enoldiazoacetates, Synlett., 2019, 30, 1457-1461.
2. (a) L. Zheng, F. Gao, C. Yang, G. L. Gao, Y. Zhao, Y. Gao, W. Xia, VisibleLight Mediated Anti-Regioselective Nitrone 1,3-Dipolar Cycloaddition Reaction and Synthesis of Bisindolylmethanes. Org. Lett., 2017, 19, 5086-5089. (b) M. M. Lo and G. C. $\mathrm{Fu}, \mathrm{Cu}(\mathrm{I}) / \mathrm{Bis}($ azaferrocene)-Catalyzed Enantioselective Synthesis of β-Lactams via Couplings of Alkynes with Nitrones, J. Am. Chem. Soc., 2002, 124, 4572-4573.

5. NMR Spectra of New Compounds

	 ｜		¢	$\stackrel{\text { \％}}{\substack{0}}$	$\stackrel{\text { ？}}{\text { ¢ }}$	

		$\begin{aligned} & \text { Bిస్ } \\ & \text { ल్ట } \\ & \text { TM } \end{aligned}$	இூํ움 1 141	$\stackrel{\infty}{\stackrel{\circ}{7}}$	$\begin{aligned} & \text { 80 } \\ & \text { © } \\ & \text { I } \end{aligned}$		$\begin{aligned} & \text { शू } \\ & \text { io } \\ & 1 i \end{aligned}$	$\stackrel{\text { ¢ }}{\text { N }}$	

®

$3 g$

0	190	180	170	160	150														
			170	160		140	130	120	110	$\stackrel{100}{\mathrm{fl}(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10

(

			1	16	15				1		1	1	1	1	1		1		
30	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Jul20-2019-C500-DK303A

$3 q$

Ju120-2019-H500MM
へi八itivivijepigí
\overbrace{i}^{\sim}
$\stackrel{8}{\dot{K}}$
คึ๗ల్ల
Mijicijicis

$3 r$

Jul22-2019-C500-dk303rb

3r

	$\stackrel{1}{190}$	180	$\stackrel{1}{170}$					1							1	1	1		
)0	190	180	170	160	150	140	130	120	110	${ }_{\mathrm{fl}}{ }^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10

risirijegio	io io	mè	$\begin{aligned} & \text { ल్ర } \\ & \end{aligned}$	ninnininis	
	s	f	\iint	'	1

Jul20-2019-H500-DK303Race-C ¢ ¢ O
CoTIPS

3s

	190	180	170	160					110		1	1	70		1	1			
30	190	180	170	160	150	140	130	120	110	$\mathrm{fl}_{1}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10

$\stackrel{\approx}{\tilde{y}}$

Cores

5a

5a

	N \% 1		 	® ®		9	¢	\%	$\begin{gathered} \text { ल } \\ \end{gathered}$

$\stackrel{\overbrace{}}{\text { i }}$

6. HPLC Traces for Racemic and Chiral Compounds

Methyl-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-
1,2-oxazine-4-carboxylate (rac-3a)

Methyl (3S,6R)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3a)

Methyl-6-ethyl-3-(4-fluorophenyl)-2-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3b)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	4.746	2281.9	215.5	0.1629	49.906	0.603		
2	5.45	2290.5	178.9	0.1974	50.094	0.613		

Methyl (3R,6S)-6-ethyl-3-(4-fluorophenyl)-2-phenyl-5-[(triisopropylsilyl)oxy]-3,6 -dihydro-2H-1,2-oxazine-4-carboxylate (3b)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	4.781	5393.8	473.1	0.1744	95.574	0.707		
2	5.617	249.8	19.9	0.1944	4.426	0.783		

Methyl-6-ethyl-3-(naphthalen-2-yl)-2-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihyd ro-2H-1,2-oxazine-4-carboxylate (rac-3c)

Methyl (3R,6S)-6-ethyl-3-(naphthalen-2-yl)-2-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3c)

\#		Time	Area	Height	Width	
Area\%		Symmetry				
1	5.707	2656.5	185.7	0.2169	95.458	0.652
2	7.001	126.4	6.2	0.3066	4.542	0.667

Methyl-3-(4-bromophenyl)-6-ethyl-2-(4-methoxyphenyl)-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3d)

Methyl (3R,6S)-3-(4-bromophenyl)-6-ethyl-2-(4-methoxyphenyl)-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3d)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	5.594	17665.6	1276.2	0.2087	97.382	0.723		
2	7.821	474.9	21	0.3518	2.618	0.739		

Methyl-2-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3e)

\#	Time		Area	Height	Width	
1	4.825	5151.4	444.1	0.1773	49.920	Srea

Methyl-(3R,6S)-2-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3e)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	4.947	1437.9	105.4	0.2091	8.728	0.645		
2	5.558	15036.7	1031.1	0.2241	91.272	0.648		

Benzyl-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H
-1,2-oxazine-4-carboxylate (rac-3f)

\#	Time		Area	Height		Width		Area\%		Symmetry
1	4.529	3001.2	263.5	0.1742	50.499	0.685				
2	5.756	2941.9	203.2	0.2209	49.501	0.712				

Benzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H -1,2-oxazine-4-carboxylate (3f)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	4.455	30003.5	2660.7	0.1674	98.744	0.686		
2	5.729	381.7	22.9	0.2527	1.256	0.602		

4-Bromobenzyl-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H -1,2-oxazine-4-carboxylate (rac-3g)

4-Bromobenzyl
3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]-3,6dihydro
-2H-1,2-oxazine-4-carboxylate (3g)

4-(Trifluoromethyl)benzyl-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3h)

4-(Trifluoromethyl)benzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3h)

$\#$	Time	Area	Height	Width		
$c \mid$ Area\% Symmetry 1 3.778 6486.4 750.9 0.1305 98.700 2 8.022 85.5 3.5 0.3744 1.300	0.934					

4-Methoxybenzyl-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]
-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3i)

\#	Time	Area	Height	Width		
1	4.484	2465.1	215.4	0.1745	50.247	0.662
2	7.331	2440.9	120.8	0.3078	49.753	0.74

4-Methoxybenzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3i)

\#	Time	Area	Height	Width		
Area\%		Symmetry				
1	4.512	3548.5	306.3	0.1721	99.056	0.69
2	7.418	33.8	1.5	0.3234	0.944	0.996

3,4,5-Trimethoxybenzyl-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy]

 -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3j)

3,4,5-Trimethoxybenzyl (3R,6S)-6-ethyl-2,3-diphenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3j)

4-Methoxybenzyl-2-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3k)

4-Methoxybenzyl (3R,6S)-2-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3k)

4-Methoxybenzyl-6-ethyl-3-phenyl-2-(thiophen-2-yl)-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3I)

4-Methoxybenzyl (3R,6S)-6-ethyl-3-phenyl-2-(thiophen-2-yl)-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3I)

\# Time	Area	Height	Width			Area\%		Symmetry
1	4.632	3674.8	312.4	0.1813	95.800	0.615		
2	8.101	161.1	7.4	0.3348	4.200	0.751		

4-Methoxybenzyl)-6-ethyl-2-(furan-2-yl)-3-phenyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3m)

\#	Time		Area	Height	Width			Area\%		Symmetry
1	4.275	1630.9	157.9	0.1605	49.958	0.517				
2	5.134	1633.7	130.4	0.1922	50.042	0.615				

(3R,6S)-4-Methoxybenzyl-6-ethyl-2-(furan-2-yl)-3-phenyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3m)

\#	Time	Area	Height	Width	Area\%	Symmetry
1	4.276	3141	300.8	0.1598	98.755	0.515
2	5.143	39.6	3.3	0.1891	1.245	0.697

4-Methoxybenzyl-2-cyclopropyl-6-ethyl-3-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3n)

4-Methoxybenzyl (3S,6R)-2-cyclopropyl-6-ethyl-3-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3n)

\#	Time	Area	Height	Width		
Area\%		Symmetry				
1	3.947	17232.9	1698.8	0.1536	95.272	1.057
2	5.16	855.3	68.1	0.1905	4.728	0.567

Methyl -2-(4-methoxyphenyl)-6-methyl-3-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3o)

Methyl (3R,6S)-2-(4-methoxyphenyl)-6-methyl-3-phenyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (30)

Methyl-6-ethyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3p)

\#	Time	Area	Height	Width		Area\%		Symmetry
1	5.939	3606.6	250.5	0.222	50.238	0.628		
2	7.05	3572.4	198.2	0.2783	49.762	0.643		

Methyl (3R,6S)-6-ethyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3p)

\#	Time	Area	Height	Width	Area\%	Symmetry
1	5.753	1446.6	100.4	0.2201	97.882	0.621
2	6.878	31.3	1.7	0.2737	2.118	0.588

Methyl -2-(4-methoxyphenyl)-6-octyl-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3q)

Methyl (3R,6S)-2-(4-methoxyphenyl)-6-octyl-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3q)

\#	Time	Area	Height	Width		Area\% $\%$ Symmetry	
1	4.795	6056.7	684.4	0.1475	96.616	0.731	
2	5.265	212.1	15.6	0.2273	3.384	0.788	

Methyl-6-benzyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3r)

Methyl (3R,6S)-6-benzyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl)oxy] -3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3r)

Methyl -6-isopropyl-2-(4-methoxyphenyl)-3-phenyl-5-[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (rac-3s)

Methyl (3R,6S)-6-isopropyl-2-(4-methoxyphenyl)-3-phenyl-5-
[(triisopropylsilyl)oxy]-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (3s)

Methyl-6-ethyl-5-hydroxy-2,3-diphenyl-3,6-dihydro-2H-1,2-oxazine-4carboxylate (rac-5a)

Methyl (3R,6S)-6-ethyl-5-hydroxy-2,3-diphenyl-3,6-dihydro-2H-1,2-oxazine-4 -carboxylate (5a)

4-Methoxybenzyl-6-ethyl-5-hydroxy-2,3-diphenyl-3,6-dihydro-2H
-1,2-oxazine-4-carboxylate (rac-5i)

Time		Area		Height		
\#	Width	Area\%		Symmetry		
1	4.646	1358.8	113.3	0.1828	50.683	0.593
2	7.684	1322.2	76.2	0.2664	49.317	0.656

4-Methoxybenzyl (3R,6S)-6-ethyl-5-hydroxy-2,3-diphenyl-3,6-dihydro-2H -1,2-oxazine-4-carboxylate (5i)

4-Methoxybenzyl-(3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-hydroxy-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (5k)

4-Methoxybenzyl (3R,6S) (3-chlorophenyl)-3-(4-chlorophenyl)-6-ethyl-5-hydroxy-3,6-dihydro-2H-1,2-oxazine-4-carboxylate (5k)

\#	Time							Area	Height	Width	Area\%		Symmetry
1	4.912	7537.9	617.4	0.186	95.060	0.632							
2	6.281	391.7	27.1	0.2206	4.940	0.659							

