SUPPORTING INFORMATION

for the
communication
entitled

An Approach towards the Tetracyclic Skeleton of Palhinine Alkaloids

authored by

Congcong Han, Yang Chen, Yin-Cheung Ching, Chi-Sing Lee, Shuzhong He*

Table of Contents

General Experimental Information S3
Experimental Procedures and Compound Characterizations. S3
Crystallographic data of $\mathbf{9}$ and 16 S16
Detailed Studies of Reaction Scope and Reaction Conditions S20
References S22

GENERAL EXPERIMENTAL INFROMATION.

All reactions were performed in flame-dried glassware under nitrogen atmosphere. Solvents were distilled prior to use. Reagents were used as purchased from Aladdin, Macklin, Innochem, or TCI unless otherwise noted. Chromatographic separations were performed using Silica Gel, AR, 200-300 mesh. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Varian VI-400, VI-500 and VI-600 spectrometers using CDCl_{3} as the solvent. Infrared spectra were obtained on Thermo Scientific Nicolet iS 50. TLC analysis was visualized using UV, p-anisoladehyde and phosphomolybdic acid stains. High-resolution mass spectra were obtained using AB SCIEX X500R QTOF. All spectral data obtained for new compounds are reported here.

EXPERIMENTAL PROCEDURES AND COMPOUND

CHARACTERIZATION

Synthesis of S1. ${ }^{1}$

To a solution of cyclohexane-1,3-dione 10 ($22.4 \mathrm{~g}, 200 \mathrm{mmol}, 1.0$ equiv) in benzene (123 mL) was added 2-methylpropan-1-ol ($55 \mathrm{~mL}, 600 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(190 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.005$ equiv) at rt . The reaction mixture was heated with a Dean-Stark trap at $90^{\circ} \mathrm{C}$ for 12 h . The solution was then concentrated under reduced pressure. The residue was purified using flash column chromatography (eluent: petroleum ether $(\mathrm{PE}) /$ EtOAc, ratio $=5: 1)$ to give a yellow oil $(30.9 \mathrm{~g}, 184$ $\mathrm{mmol}, 92 \%$) as the product $\mathbf{S 1}$.

S1: $R_{f}=0.27$ (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=5: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.19$ (s, $1 \mathrm{H}), 3.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-$
$1.80(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.79(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,177.9,102.6$, $74.5,36.7,28.9,27.6,21.1,19.0$; IR (KBr) $\mathrm{cm}^{-1} 3455 \mathrm{~m}, 2962 \mathrm{~s}, 1650 \mathrm{~m}, 1610 \mathrm{~s}$, 1373m,1218s, 1002m; HRMS: $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 169.1223, found 169.1222 .

Synthesis of S2. ${ }^{2}$

To a solution of $i-\operatorname{Pr}_{2} \mathrm{NH}$ ($3.7 \mathrm{~mL}, 26.5 \mathrm{mmol}, 1.1$ equiv) in THF (100 mL) was added $n-\mathrm{BuLi}\left(15 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in hexanes, $24.0 \mathrm{mmol}, 1.0$ equiv) slowly at $-7{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min . Then compound $\mathbf{S} \mathbf{1}(4.03 \mathrm{~g}, 24.0$ mmol, 1.0 equiv) in THF (20 mL) was added slowly to the mixture at $-78^{\circ} \mathrm{C}$. The mixture was left stirring at $-78^{\circ} \mathrm{C}$ for 45 min . Then to the solution was added 1-bromo-2-propyne ($4.28 \mathrm{~g}, 36 \mathrm{mmol}, 1.5$ equiv) at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h and then allowed to warm to rt . After 6 h , the reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=20: 1)$ to give a yellow oil $(3.76 \mathrm{~g}, 18.2$ mmol, 76\%) as the product $\mathbf{S 2}$.

S2: $R_{f}=0.52$ (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $\left.=10: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.18(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dt}, J=16.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.27(\mathrm{~m}$, 2H), $2.26-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 198.2,177.4,102.0,82.3,74.7,69.7,44.1,28.5,27.6$, 26.1, 19.03, 18.97, 18.95; IR (KBr) cm ${ }^{-1}$ 3286m, 2953s, 2869w, 1666m, 1604s, 1373s, 1203s, 547s; HRMS: $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 207.1380, found 207.1377.

Synthesis of 5. ${ }^{3}$

To a solution of compound $\mathbf{S} 2(4.13 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv) in THF (100 mL) was added $\mathrm{CH}_{3} \mathrm{Li}\left(37.5 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in ethyl ether, $60 \mathrm{mmol}, 3.0$ equiv) slowly at $0^{\circ} \mathrm{C}$. After stirred at rt for 1 h the mixture was treated with $1 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at rt for 30 min and then extracted with ethyl acetate (three times). The combined organic layers were washed with equal volume of sat aq NaHCO_{3} and sat aq NaCl , then dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: PE/EtOAc, ratio $=20: 1)$ to give a yellow oil $(1.87 \mathrm{~g}, 12.6 \mathrm{mmol}, 63 \%)$ as the product 5.

5: $R_{f}=0.30$ (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=5: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83$ (s, $1 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 198.9, 162.7, 127.9, 81.4, 70.7, 38.5, 34.6, 27.2, 22.6, 21.4; IR (KBr) cm ${ }^{-1} 3887 \mathrm{~m}, 3810 \mathrm{~s}, 2190 \mathrm{~m}, 1666 \mathrm{~s}, 1434 \mathrm{w}, 547 \mathrm{~m}$; HRMS: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 149.0961, found 149.0962.

Synthesis of 6

To a solution of compound 5 ($37.0 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL}$) was added $\mathrm{Et}_{3} \mathrm{~N}$ ($88.6 \mathrm{mg}, 0.875 \mathrm{mmol}, 3.5$ equiv) and TIPSOTf ($115 \mathrm{mg}, 0.375$ mmol, 1.5 equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then quenched with sat aq NaHCO_{3}. The mixture was extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude dienol
silane was flushed through a short column ($\mathrm{Et}_{3} \mathrm{~N}$-neutralized silica gel, eluent: PE) and used directly in the next step.

Synthesis of 7

To a solution of ZnBr_{2} ($11.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.2$ equiv) in anhydrous acetonitrile (1.0 mL) was added freshly distilled acrolein ($140 \mathrm{mg}, 2.5 \mathrm{mmol}, 10$ equiv) at $0^{\circ} \mathrm{C}$. After 15 min , to the above mixture was added a solution of compound $\mathbf{6}(0.25 \mathrm{mmol}, 1.0$ equiv) in anhydrous acetonitrile $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at rt for 6 h and then heated to $60^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then diluted with ethyl acetate and washed with equal volume of sat aq NaCl . The organic layer was dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: PE/EtOAc, ratio $=15: 1$) to give a colorless oil ($38.8 \mathrm{mg}, 0.19 \mathrm{mmol}, \mathrm{dr}=2: 1,76 \%$ total yield for two steps) as the product 7 . The ratio of $\mathbf{7 a}$ and $\mathbf{7 b}$ was determined by ${ }^{1} \mathrm{H}$ NMR.

7 (diastereomeric mixture): $R_{f 7 \mathrm{a}}=0.34$ (eluent: $\mathrm{PE} / E t O A c$, ratio $=5: 1$), $R_{f 7 \mathrm{~b}}=0.31$ (eluent: PE/EtOAc, ratio $=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $2 \mathrm{H}), 9.60(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.96(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.89$ $(\mathrm{s}, 1 \mathrm{H}), 2.76-2.58(\mathrm{~m}, 8 \mathrm{H}), 2.28-2.09(\mathrm{~m}, 8 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 8 \mathrm{H}), 1.84-1.77(\mathrm{~m}$, 2 H), $1.42-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $212.3,211.8,202.7,202.3,145.3,144.2,112.5,112.4,66.1,63.1,49.4,48.7,46.0$, 45.6, 41.1, 40.8, 40.1, 39.3, 38.0, 36.6, 32.0, 31.6, 26.8,26.7, 21.4, 20.8; IR (KBr) cm^{-} ${ }^{1} 3424 \mathrm{~s}, 2925 \mathrm{~s}, 2869 \mathrm{w}, 2530 \mathrm{~m}, ~ 1725 \mathrm{~s}, 1450 \mathrm{~m}, 1218 \mathrm{~m}, ~ 894 \mathrm{w}, ~ 524 \mathrm{~m} ;$ HRMS: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 205.1223, found 205.1220 .

Further purification using column chromatography could give pure $\mathbf{7 a}$.
7a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$, $2.76(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.16-$
$2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.8,202.8,144.0,113.0,66.3,49.7,46.2,41.2$, 39.4, 36.73, 31.7, 27.0, 21.6; IR (KBr) cm ${ }^{-1} 3424 \mathrm{~s}, 2925 \mathrm{~s}$, 2869w, 1725s, 1450m, 1218m, 1187w, 971w, 894w, 524m; HRMS: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 205.1223, found 205.1220.

Synthesis of 8

To a solution of ZnBr_{2} ($11.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.2$ equiv) in anhydrous acetonitrile (1.0 mL) was added N -phenylmaleimide ($432 \mathrm{mg}, 2.5 \mathrm{mmol}$, 10 equiv) at $0{ }^{\circ} \mathrm{C}$. After 15 min , to the above mixture was added a solution of compound $\mathbf{6}$ ($0.25 \mathrm{mmol}, 1.0$ equiv) in anhydrous acetonitrile $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 6 h and then heated at $70^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then diluted with ethyl acetate and washed with equal volume of sat aq NaCl . The organic layer was dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=5: 1$) to give a white solid ($51.4 \mathrm{mg}, 0.16 \mathrm{mmol}, 64 \%$ in two steps from compound $\mathbf{5}$) as the product $\mathbf{8}$.

8: $R_{f}=0.32$ (eluent: PE/EtOAc, ratio $=2: 1$); mp $242-244{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.34(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=9.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.59(\mathrm{dd}, J=13.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.0, 175.9, 175.3, 143.8, 131.5, 129.2, 128.9 , 126.6, 113.9, 63.8, 46.3, 45.8, 43.4, $43.2,39.4,31.5,20.4$; IR (KBr) cm ${ }^{-1} 3471 \mathrm{~m}, 2314 \mathrm{~m}, 1712 \mathrm{~s}, 1496 \mathrm{w}, 1388 \mathrm{~s}, 1203 \mathrm{~s}$, 694m; HRMS: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 322.1438, found 322.1436;

Synthesis of 9

To a solution of ZnBr_{2} ($11.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.2$ equiv) in anhydrous acetonitrile (1.0 mL) was added nitroethene ($182 \mathrm{mg}, 2.5 \mathrm{mmol}, 10$ equiv) at rt. After 15 min , to the above mixture was added a solution of compound 6 ($0.25 \mathrm{mmol}, 1.0$ equiv) in anhydrous acetonitrile $(1.0 \mathrm{~mL})$ at rt . The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 12 h (using a sealed tube). The reaction mixture was then diluted with ethyl acetate and washed with equal volume of sat aq NaCl . The organic layer was dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=15: 1$) to give a yellow solid (21.9 $\mathrm{mg}, 0.10 \mathrm{mmol}, 40 \%$ in two steps from compound 5) as the product 9 .

9: $R_{f}=0.31$ (eluent: PE/EtOAc, ratio $=5: 1$); mp $89-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 2.77$ - $2.68(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9$, $144.0,113.4,86.1,62.2,47.6,40.5,38.6,38.5,33.1,31.5,19.1$; IR (KBr) cm^{-1} $3409 \mathrm{~m}, 2962 \mathrm{~s}, 1712 \mathrm{~s}, 1550 \mathrm{~s}, 1373 \mathrm{~s}$, 894 s , 678 s , 524 s ; HRMS: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 222.1125 , found 222.1121;

Synthesis of $11 .{ }^{4}$

To a solution of cyclohexane-1,3-dione $10(67.3 \mathrm{~g}, 600 \mathrm{mmol}, 1.0$ equiv) in a mixed solvent of N, N-diisopropylethylamine (90 mL) and water (90 mL) was added 1,3dibromopropane ($30.6 \mathrm{~mL}, 300 \mathrm{mmol}, 0.5$ equiv) slowly at rt . The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 3.5 h and then treated with $2 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$ slowly at rt . After 15 min , the reaction was extracted four times with ethyl acetate. The combined
organic layers were washed with equal volume of sat aq NaHCO_{3} and sat aq NaCl , then dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=2: 1$) to give a colorless oil ($20.5 \mathrm{~g}, 135 \mathrm{mmol}, 45 \%$) as the product 11 .

11: $R_{f}=0.20$ (eluent: PE/EtOAc, ratio $=4: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.03(\mathrm{t}, J$ $=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.1,171.5,111.6,67.3,36.6,28.6,21.4$, 20.8, 17.5; IR (KBr) cm ${ }^{-1} 3517 \mathrm{w}, 2946 \mathrm{~m}, 2360 \mathrm{~m}, 1650 \mathrm{~s}, 1619 \mathrm{~s}, 1403 \mathrm{~s}, 863 \mathrm{~m}$; HRMS: $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 153.0910, found 153.0907.

Synthesis of 12

To a solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(7.4 \mathrm{~mL}, 53 \mathrm{mmol}, 1.1$ equiv) in THF (200 mL) was added n-BuLi ($31.9 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, $51 \mathrm{mmol}, 1.06$ equiv) slowly at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min . Then compound $\mathbf{1 1}(7.30 \mathrm{~g}, 48$ mmol, 1.0 equiv) in THF (20 mL) was added slowly to the mixture at $-78^{\circ} \mathrm{C}$. The mixture was left stirring at $-78^{\circ} \mathrm{C}$ for 1.5 h . Then to the reaction was added a solution of 3-trimethylsilyl-1-bromo-2-propyne ($13.76 \mathrm{~g}, 72 \mathrm{mmol}, 1.5$ equiv) in THF (20 mL) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h and then allowed to warm to rt. After 6 h , the reaction was quenched with sat aq $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=10: 1$) to give a white solid $(10.50 \mathrm{~g}, 40 \mathrm{mmol}, 83 \%)$ as the product 12.

12: $R_{f}=0.36$ (eluent: PE/EtOAc, ratio $=8: 1$); mp $71-75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.20-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.92(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=17.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.51-2.07(\mathrm{~m}, 7 \mathrm{H}), 1.89-1.63(\mathrm{~m}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,170.9,110.8,105.4,85.8,67.2,43.9,27.8,25.6,21.3,20.8,17.5,0.00$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 2962 \mathrm{~m}, 2175 \mathrm{~s}, 1866 \mathrm{~m}, 1619 \mathrm{~s}$, 833s; HRMS: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 263.1462, found 263.1455;

Synthesis of S4. ${ }^{5}$

To a solution of 3-bromopropan-1-ol $\mathbf{S 3}\left(10.0 \mathrm{~g}, 72 \mathrm{mmol}\right.$, 1.0equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (180 mL) was added imidazole ($7.82 \mathrm{~g}, 115 \mathrm{mmol}, 1.6$ equiv) at rt. After $15 \mathrm{~min}, \mathrm{TBSCl}$ $\left(12.9 \mathrm{~g}, 86 \mathrm{mmol}, 1.2\right.$ equiv) was added to the mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 18 h and then quenched with sat aq NaHCO_{3}. The mixture was extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: PE) to give a colorless oil ($16.7 \mathrm{~g}, 66 \mathrm{mmol}, 92 \%$) as the product $\mathbf{S 4}$.

S4: $R_{f}=0.48$ (eluent: PE); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.72(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.50(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 60.4,35.6,30.5,25.9,18.3,-5.4$; $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3394 \mathrm{~s}, 2931 \mathrm{~s}$, $2854 \mathrm{~m}, 1249 \mathrm{~s}, 1101 \mathrm{~s}, 833 \mathrm{~s}, 771 \mathrm{~s}$; HRMS could not be obtained.

Synthesis of S5

To a mixture of magnesium turnings ($4.32 \mathrm{~g}, 180 \mathrm{mmol}, 3$ equiv) in THF (46 mL) was added 1,2 -dibromoethane ($1.13 \mathrm{~g}, 6 \mathrm{mmol}, 0.1$ equiv) slowly at rt . The reaction mixture was stirred at rt for 20 min . Then compound $\mathbf{S} 4(0.25 \mathrm{mmol}, 1.0$ equiv) in THF (46 mL) was added slowly to the mixture at $50^{\circ} \mathrm{C}$. After stirring at $50^{\circ} \mathrm{C}$ for 15
min , THF was added slowly to the solution until the precipitate was completely dissolved at rt . The solution of $\mathbf{S 5}$ was used directly in the next step.

Synthesis of 13

To a solution of 12 ($4.49 \mathrm{~g}, 17.1 \mathrm{mmol}, 1.0$ equiv) in THF (17 mL) was added Grignard reagent $\mathbf{S 5}\left(120 \mathrm{~mL}, 60 \mathrm{mmol}, 3.5\right.$ equiv) slowly at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 4 h and then treated with $1.5 \% \mathrm{H}_{2} \mathrm{SO}_{4}(26 \mathrm{~mL})$ slowly at 0 ${ }^{\circ} \mathrm{C}$. After the reaction was stirred at rt for another 10 min , the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaHCO_{3} and sat aq NaCl , then dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=4: 1$) to give a yellow oil $(4.78 \mathrm{~g}, 10.9$ $\mathrm{mmol}, 64 \%$) as the product 13 .

13: $R_{f}=0.19$ (eluent: PE/EtOAc, ratio $=4: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.56(\mathrm{t}, J$ $=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.19(\mathrm{~m}, 8 \mathrm{H}), 2.19-1.90(\mathrm{~m}$, $3 \mathrm{H}), 1.71-1.33$ (m, 4H), 0.81 (s, 9H), 0.03 (s, 9H), -0.03 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.7,161.7,135.8,104.5,87.0,62.4,61.1,37.5,33.8,32.4,31.6$, 29.0, 26.6, 25.9, 23.2, 20.8, 18.2, 0.0, -5.3; IR (KBr) cm ${ }^{-1} 3363 \mathrm{~m}, 2951 \mathrm{~s}, 2175 \mathrm{~s}$, 1650s, 1249s, 1187m, 1095s, 845s, 771s; HRMS: $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si}_{2}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 437.2902, found 437.2894.

Synthesis of 14

To a solution of $\mathbf{1 3}(1.44 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.0$ equiv) in THF (35 mL) was added 2nitrobenzenesulfonamide ($2.00 \mathrm{~g}, 9.9 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{PPh}_{3}(1.21 \mathrm{~g}, 4.6 \mathrm{mmol}$, 1.4 equiv) at rt. After $10 \mathrm{~min}, \operatorname{DIAD}(0.87 \mathrm{~g}, 4.3 \mathrm{mmol}, 1.3$ equiv) was added to the above mixture at rt . The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 12 h before being concentrated under reduced pressure. The crude sulfonamide was flushed through a short column (silica gel, eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=5: 1$) and then used directly in the next step.

To a solution of the crude sulfonamide in THF (35 mL) was added TBAF (1.0 M in THF; $13 \mathrm{~mL}, 13 \mathrm{mmol}, 3.9$ equiv) slowly at rt . The reaction mixture was stirred for 12 h at rt before being quenched with sat $\mathrm{aq} \mathrm{NH}_{4} \mathrm{Cl}$. Then the mixture was extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=1: 1$) to give a yellow oil $(1.06 \mathrm{~g}, 2.4 \mathrm{mmol}, 74 \%)$ as the product 14.

14: $R_{f}=0.14$ (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $\left.=1: 1\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11-$ $8.00(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 6.05-5.89(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.17-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.82-1.83(\mathrm{~m}, 13 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.69-$ $1.40(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 199.0, 161.2, 148.0, 135.4, 133.7, 133.6, $132.8,130.9,125.2,82.0,70.7,62.0,43.4,37.3,33.6,31.3,29.3,29.0,26.3,22.1$, 21.7; IR (KBr) cm ${ }^{-1} 3293 \mathrm{~m}, 2931 \mathrm{~s}, 2329 \mathrm{~m}, 1655 \mathrm{~s}, 1543 \mathrm{~s}, 1342 \mathrm{~s}, 1172 \mathrm{~s}, 848 \mathrm{~m}, 740 \mathrm{~s} ;$ HRMS: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 435.1584, found 435.1580 .

Synthesis of 15

To a solution of compound $\mathbf{1 4}$ ($1.30 \mathrm{~g}, 3 \mathrm{mmol}, 1.0$ equiv) in toluene (200 mL) was added $\mathrm{PPh}_{3}(2.44 \mathrm{~g}, 9.3 \mathrm{mmol}, 3.1$ equiv) at rt . After 10 min , a solution of DEAD ($1.57 \mathrm{~g}, 9 \mathrm{mmol}, 3.0$ equiv) in toluene (4 mL) was added slowly to the above mixture at rt . The reaction was stirred at rt for 1 h before being concentrated under reduced pressure. The crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=1: 1$) to give the crude 15. To a mixture of the crude 15 in $\mathrm{EtOH}(30$ $\mathrm{mL})$ was added $\mathrm{ZnCl}_{2}(0.82 \mathrm{~g}, 6 \mathrm{mmol})$ at rt . The reaction mixture was stirred at rt for 18 h before being filtered and concentrated. The crude product was purified using flash column chromatography (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=2: 1$) to give a white solid $(0.86 \mathrm{~g}, 2.1 \mathrm{mmol}, 70 \%)$ as the product 15.

15: $R_{f}=0.23$ (eluent: PE/EtOAc, ratio $=2: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}$, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dt}, J=15.0$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dt, $J=15.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{td}, J=13.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (ddd, $J=14.6,9.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (ddd, $J=14.6,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=13.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.31$ (m, 3H), $2.27-2.16$ $(\mathrm{m}, 2 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9,159.2,148.8,136.2,133.8,131.4,130.7,130.6,124.0$, 82.0, 70.6, 53.7, 53.3, 36.5, 33.7, 28.0, 27.4, 27.3, 26.1, 21.8, 21.5; IR (KBr) cm^{-1} 3452s, 1650s, 1357m, 848w, 740w, 571s; HRMS: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 417.1479 , found 417.1476 ; m.p. $=139-141^{\circ} \mathrm{C}$.

Synthesis of 16 (optimized procedure)

To a solution of $1 \mathbf{5}\left(33.3 \mathrm{mg}, 0.08 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(28.3 \mathrm{mg}, 0.28 \mathrm{mmol}, 3.5$ equiv) and $\operatorname{TIPSOTf}(36.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.5$ equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h before being quenched with sat aq NaHCO_{3}. The mixture was extracted three times with ethyl acetate. The combined organic layers were washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude dienol silane $\mathbf{1}$ was flushed through a short column ($\mathrm{Et}_{3} \mathrm{~N}$-neutralized silica gel, eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=$ 5:1) and then used directly in the next step.

To a solution of ZnBr_{2} ($3.6 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.2$ equiv) in anhydrous acetonitrile (0.4 mL) was added freshly distilled acrolein ($44.8 \mathrm{mg}, 0.8 \mathrm{mmol}, 10$ equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . After that, the reaction mixture was treated with a solution of crude $\mathbf{1}$ (prepared from $0.08 \mathrm{mmol} \mathbf{1 5}, 1.0$ equiv) in 0.4 mL mixed $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5:1) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 18 h and then diluted with ethyl acetate. The organic layer was washed with equal volume of sat aq NaCl and dried over anhyd MgSO_{4}. After filtration and concentration, the crude product was purified using flash column chromatography (eluent: PE/EtOAc, ratio $=4: 1)$ to give a white solid $(24.8 \mathrm{mg}, 0.053 \mathrm{mmol}, 66 \%$ in two steps from compound 15) as the product 16, a white solid ($5.1 \mathrm{mg}, 0.012 \mathrm{mmol}, 15 \%$ in two steps from compound 15) as the product 17 and a white solid ($4.1 \mathrm{mg}, 0.010 \mathrm{mmol}, 12 \%$) as the compound 15 . The reaction could be scale up to a 1.2 g scale using the same procedure.

16: $R_{f}=0.24$ (eluent: PE/EtOAc, ratio $=2: 1$), mp $168-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.62-$
$7.55(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=2.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.29(\mathrm{~m}$, $2 \mathrm{H}), 3.27-3.06(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}$, 2H), $2.03-1.80(\mathrm{~m}, 9 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{dt}, J=13.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 213.5,202.5,148.4,146.5,133.6,132.0,131.6,130.5$, 124.1, 114.6, 68.2, 50.7, 50.0, 49.3, 44.2, 41.5, 39.7, 39.7, 31.0, 30.4, 26.5, 25.1, 23.3; IR (KBr) $\mathrm{cm}^{-1} 3101 \mathrm{~m}, 2962 \mathrm{~s}, 1726 \mathrm{~s}, 1527 \mathrm{~s}, 1157 \mathrm{~s}, 848 \mathrm{~m}, 740 \mathrm{~s}, ~ 571 \mathrm{~s} ;$ HRMS: $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 473.1741, found 473.1744;

17: $R_{f}=0.26$ (eluent: $\mathrm{PE} / \mathrm{EtOAc}$, ratio $=2: 1$); mp $176-178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.26-$ $3.16(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.27-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9,163.5,148.9,145.9,133.8,131.9,131.3,130.7,130.4,124.0,111.2,58.1$, $54.3,54.0,40.9,39.8,36.2,29.3,27.6,27.0,21.1$; $\mathrm{IR}(\mathrm{KBr})_{\mathrm{cm}}{ }^{-1} 2926 \mathrm{~m}, 1664 \mathrm{~s}$, 1538s, 1355m, 1165s, 892m, 742m, 577s; HRMS: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ for $[\mathrm{M}+\mathrm{H}]^{+}$, calculated 417.1479, found 417.1474;

CRYSTALLOGRAPHIC DATA OF 9 (CCDC 1974776)

Supplementary Figure 1 X-ray structure of 9.

Identification code
Empirical formula
Formula weight
Temperature / K
Crystal system
Space group
Unit cell dimensions
$\alpha /^{\circ}, \beta /^{\circ}, \gamma{ }^{\circ}$
Volume
Z
Density (calculated)
μ / mm^{-1}
$F(000)$
Crystal size
exp_6289
$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$
221.25

110 (2) K
triclinic
P-1
$\mathrm{a}=8.0155(6) \AA$
$\mathrm{b}=11.8959$ (9) \AA
$\mathrm{c}=12.3411 \AA$
$77.623(6)^{\circ}, 81.660(6)^{\circ}, 71.099(7)^{\circ}$
$1083.77(13) \AA^{3}$
4
$1.356 \mathrm{mg} \mathrm{mm}^{-3}$
0.098

472
$0.33 \times 0.25 \times 0.24 \mathrm{~mm}^{3}$

2Θ range for data collection	6.6 to 52°
Index ranges	$-9 \leq \mathrm{h} \leq 9,-14 \leq \mathrm{k} \leq 14,-15 \leq 1 \leq 15$
Reflections collected	14444
Independent reflections	$4254[\mathrm{R}(\mathrm{int})=0.0331(\mathrm{inf}-0.9 \AA)$]
Data/restraints/parameters	4254/0/291
Goodness-of-fit on F^{2}	1.031
Final R indexes [$\mathrm{I}>2 \sigma$ (I) i.e. $\mathrm{F}_{0}>4 \sigma \mathrm{R}_{1}=0.0409, \mathrm{wR}_{2}=0.0940$ (F_{o})]	
Final R indexes [all data]	$\mathrm{R}_{1}=0.0520, \mathrm{wR}_{2}=0.1009$
Largest diff. peak/hole / e \AA	0.258/-0.233
Flack Parameters	N
Completeness	0.9982

CRYSTALLOGRAPHIC DATA OF 16 (CCDC 1905335)

Supplementary Figure 2 X-ray structure of 16.

Identification code	190322c
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$
Formula weight	472.54
Temperature / K	298 (2) K
Crystal system	Monoclinic
Space group	P2 (1)/c
Unit cell dimensions	$\mathrm{a}=8.7885$ (9) \AA
	$\mathrm{b}=8.7617$ (9) \AA
	$\mathrm{c}=28.539(3) \AA$
$\alpha /{ }^{\circ}, \beta /{ }^{\circ}, \gamma{ }^{\circ}$	$90^{\circ}, 94.8440(10)^{\circ}, 90^{\circ}$
Volume	2189.7 (4) \AA^{3}
Z	4
Density (calculated)	$1.433 \mathrm{mg} \mathrm{mm}^{-3}$
μ / mm^{-1}	0.194

$\mathrm{F}(000)$	1000
Crystal size	$0.45 \times 0.32 \times 0.27 \mathrm{~mm}^{3}$
2Θ range for data collection	2.43 to 25.02°
Index ranges	$-8 \leq \mathrm{h} \leq 10,-9 \leq \mathrm{k} \leq 10,-24 \leq 1 \leq 33$
Reflections collected	10584
Independent reflections	3868 [R (int) $=0.0370$]
Data/restraints/parameters	3868 / 0 / 298
Goodness-of-fit on F^{2}	1.031
Final R indexes $\left[\mathrm{I}>2 \sigma\right.$ (I) i.e. $\mathrm{F}_{\mathrm{o}}>4 \sigma \mathrm{R}_{1}=0.0489, \mathrm{wR}_{2}=0.1071$ (F_{o})]	
Final R indexes [all data]	$\mathrm{R}_{1}=0.0781, \mathrm{wR}_{2}=0.1186$
Largest diff. peak/hole / e \AA^{-3}	0.238 / -0.304
Completeness	0.998

DETAILED STUDIES OF REATION SCOPE AND REACTION CONDITIONS

Supplementary Table 1. Model Study using other dienophiles
Entry ${ }^{a}$
${ }^{a}$ Reactions are carried out with $0.2 \mathrm{mmol} \mathbf{6}, 2 \mathrm{mmol}$ dienophile, $0.04 \mathrm{mmol}_{\mathrm{ZnBr}}^{2}$ in 1.6 mL MeCN .

Supplementary Table 2. Optimization of the key reaction

			\qquad 1			17		
						yield (\%) ${ }^{\text {c }}$		
entry ${ }^{\text {a }}$	$-\mathrm{SiR}_{3}$	temp	solvent	acid	Equiv ${ }^{\text {b }}$	16	17	15
1	TIPS	rt to $60^{\circ} \mathrm{C}$	MeCN	ZnBr_{2}	0.2	28	33	24
2	TIPS	$0{ }^{\circ} \mathrm{C}$	MeCN	ZnBr_{2}	0.2	-	-	95
3	TIPS	rt	MeCN	ZnBr_{2}	0.2	44	21	28
4	TIPS	rt	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ZnBr_{2}	0.2	30	32	36
5	TIPS	rt	THF	ZnBr_{2}	0.2	19	12	62
6	TIPS	rt	toluene	ZnBr_{2}	0.2	23	16	53
7	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=5: 1$	ZnBr_{2}	0.2	56	22	20
8	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.2	66	15	12
7	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 1$	ZnBr_{2}	0.2	52	24	20
9	TMS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.2	6	16	74
10	TES	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.2	21	28	47
11	TBS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.2	38	32	30
12	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnCl_{2}	0.2	42	23	28
13	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnI_{2}	0.2	47	19	26
14	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	InCl_{3}	0.2	13	18	56
15	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	AlCl_{3}	0.2	-	34	53
16	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	FeCl_{3}	0.2	-	28	62
17	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	$\mathrm{BF}_{3} \bullet \mathrm{OEt}_{2}$	0.2	-	-	92
18	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	$\mathrm{Et}_{2} \mathrm{AlCl}$	0.2	-	-	84
19	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.1	24	17	52
20	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.15	40	19	36
21	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.25	42	26	28
22	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.3	28	36	34
23^{d}	TIPS	rt	$\mathrm{MeCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1$	ZnBr_{2}	0.2	53	21	24

REFERENCES

1 S. A. Loskot, D. K. Romney, F. H. Arnold and B. M. Stoltz, Enantioselective Total Synthesis of Nigelladine A via Late-Stage C-H Oxidation Enabled by an Engineered P450 Enzyme, J. Am. Chem. Soc., 2017, 139, 10196-10199.
2 K. M. Brummond and D. Chen, $\mathrm{Mo}(\mathrm{CO})^{6-}$ and $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]^{2-}$ Catalyzed Allenic Cyclocarbonylation Reactions of Alkynones: Efficient Access to Bicyclic Dienediones, Org. Lett., 2008, 10, 705-708.
3 S. J. Spessard and B. M. Stoltz, Progress toward the Synthesis of Garsubellin A and Related Phloroglucins: The Direct Diastereoselective Synthesis of the Bicyclo[3.3.1]nonane Core, Org. Lett., 2002, 4, 1943-1946.
4 H.-X. Liu, L.-Q. Huo, B. Yang, Y.-F. Yuan, W.-M. Zhang, Z.-F. Xu, S.-X. Qiu and H.-B. Tan, Biomimetic-Inspired Syntheses of Myrtucommuacetalone and Myrtucommulone, J. Org. Lett., 2017, 19, 4786-4789.
5 Y. Maeda, K. Saito, N. Akamatsu, Y. Chiba, S. Ohno, Y. Okui, M. Yamada, T. Hasegawa, M. Kako and Takeshi Akasaka, Analysis of Functionalization Degree of Single-Walled Carbon Nanotubes Having Various Substituents, J. Am. Chem. Soc., 2012, 134, 18101-18108.

