Information for

Discovery and Characterization of Four Glycosyltransferases
 Involved in Anthraquinone Glycoside Biosynthesis in Rubia
 yunnanensis

Shanyong Yi\#, Tongdong Kuang\#, Yuanyuan Miao, Yanqing Xu, Zhe Wang, Liao-Bin Dong, Ninghua Tan*

State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
*Corresponding authors. E-mail addresses: nhtan@cpu.edu.cn (N. T.).
\#S. Y. and T. K. contributed equally to this work.

Table of Contents

1 Experimental Procedures S5
1.1 General remarks S5
1.2 Plant materials S6
1.3 Transcriptome analysis, molecular cloning and phylogenetic analysis for screening candidates genes S6
1.4 Heterologous expression, protein purification and enzyme catalytic activity assay S8
1.5 Effects of pH , temperature, and divalent metal ions S10
1.6 Kinetic studies S10
1.7 Homology modeling and site-directed mutagenesis S10
1.8 One-pot reactions catalyzed by RyUGT3A and preparative-scale reactions S12
1.9 MS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of glycosylated products S13
1.10 Gene expression and real-time quantitative PCR (RT-qPCR) analysis S18
1.11 Subcellular localization S19
2 Supplemental Tables S20
Table S1. Information of 31 target GT unigenes with significantly differential expressions used in this study S20
Table S2. Primers used for 5'-RACE and 3'-RACE. S22
Table S3. Putative GT genes cloned from R. yunnanensis S23
Table S4. Gene-specific primers, restriction sites corresponding to pET-28a(+),endonucleases used and protein expression.S24
Table S5. LC-MS data summary of glycosylated compounds S26
Table S6. Primers used in site-directed mutagenesis S29
Table S7. Primers used for RT-qPCR normalization S31
Table S8. Primers used for constructing pCAMBIA1302-RyUGT3A and -RyUGT12 vectors. S31
3 Supplementary Figures S32
Figure S1. Chemical structures of anthraquinones with high contents isolated fromR. yunnanensis.S32
Figure S2. Results of 3 '-RACE, 5 '-RACE and their assemble and alignment of‘TRINITY_DN123143_c0_g2_i4'. ..S33Figure S3. Phylogenetic analysis of 32 GTs from R. yunnanensis and 122 GTs fromA. thalianaS34
Figure S4. Compounds 33-52 are not transglucosylized by RyUGT3A and RyUGT12 S35
Figure S5. SDS-PAGE and Western Blotting detection of soluble expressions of the four His-tagged RyUGTs S36
Figure S6. Effects of reaction time (A), temperature (B), reaction buffer (C), anddivalent metal ions (D) on the activities of RyUGT3A.S37Figure S7. Effects of reaction time (A), temperature (B), reaction buffer (C), anddivalent metal ions (D) on the activities of RyUGT12.S38
Figure S8. Determination of kinetic parameters for purified RyUGT3A (A)/RyUGT12 (B)S39
Figure S9. Assessment of UDP-sugar donor catalyzed by RyUGT3A and RyUGT12.S39

Figure S10. Percent yields of glucosylated products catalyzed by RyUGT11.

Figure S11. HPLC analysis of time course of the reactions in one-pot method..S41

Figure S12. Key 2D NMR correlations of four new compounds
Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of compound 1b in DMSO- d_{6}.S42

Figure S14. ${ }^{13}$ C NMR spectrum $(100 \mathrm{MHz})$ of compound $\mathbf{1 b}$ in DMSO $-d_{6} . \ldots$. S43

Figure S15. HSQC spectrum of compound 1b in DMSO- d_{6}............................S44

Figure S16. HMBC spectrum of compound 1b in DMSO- $d_{6} \ldots . S 45 ~$

Figure S17. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1 b}$ in DMSO- d_{6}.S46

Figure S18. ROESY spectrum of compound 1b in DMSO- $d_{6} \ldots . S 47 ~$

Figure S19. HR-ESI-MS spectrum of compound 1b.S48

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of compound $\mathbf{1 c}$ in DMSO- $d_{6} \ldots . . .$. S49

Figure S21. ${ }^{13}$ C NMR spectrum (125 MHz) of compound $\mathbf{1 c}$ in DMSO- $d_{6} \ldots . .$. S50
Figure S22. HSQC spectrum of compound 1c in DMSO- d_{6}.S51

Figure S23. HMBC spectrum of compound 1c in DMSO-d6...........................S52
Figure S24. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1 c}$ in DMSO- $d_{6} \ldots S 53$

Figure S25. ROESY spectrum of compound 1c in DMSO- $d_{6} . S 54 ~$

Figure S26. HR-ESI-MS spectrum of compound 1c.S55

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of compound 2a in DMSO- $d_{6} \ldots \mathrm{S} 56$

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz) of compound 2a in DMSO- $d_{6} \ldots . .$. .S57

Figure S29. HR-ESI-MS spectrum of compound 2a.S58

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of compound 3a in DMSO- $d_{6} \ldots \mathrm{S} 59$
Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz) of compound 3a in DMSO- d_{6} S60
Figure S32. HR-ESI-MS spectrum of compound 3a S61
Figure S33. (A) Homology model of RyUGT3A. (B) Ramachandran plot forRyUGT3A.S62
Figure S34. (A) Homology model of RyUGT12. (B) Ramachandran plot for
RyUGT12. S62
Figure S35. Multiple sequence alignment of PSPG motifs of four UGTs S63
Figure S36. Western blotting analysis of mutants of RyUGT3A and RyUGT12 S63
Figure S37. Specificity of primer pairs for RT-qPCR amplification. S64
Figure S38. Quantitative comparison of relative expression levels of four RyUGTsin root and stem leaf (SL) of R. yunnanensis by RT-qPCR and FPKMS65
Figure S39. Chemical structures of anthraquinone glycosides 54, 55, and 56 isolatedfrom R. yunnanensisS66
References S67

1. Experimental Procedures

1.1 General remarks

6-Hydroxyalizarin (1), xanthopurpurin (7), 1-hydroxy-2-hydroxymethyl-9,10anthraquinone (10), 1-hydroxy-2-hydroxymethyl-9,10-anthraquinone $2-\mathrm{CH}_{2}-O-\beta$-Dglucopyranoside (10a), rubiarbonol G (42), RA-V (52), rubiquinone-3- $O-\beta$-D-xylopyranosyl-($1 \rightarrow 2$)-(6'- O-acetyl)- β-D-glucopyranoside (54), rubiquinone-3- $O-\beta$-L-rhamnopyranosyl-($1 \rightarrow 2$)- β-D-glucopyranoside (55), and rubiquinone-3- $O-\beta$-Dglucopyranoside (56) were previously isolated from R. yunnanensis. ${ }^{1}$ 2-Methyl-3-hydroxy-9,10-anthraquinone (2), 3,6-dihydroxy-xanthen-9-one (3), emodin (4), 2-hydroxy-9,10-anthraquinone (5), 2-amino-3-hydroxy-9,10-anthraquinone (6), 2,6-dihydroxy-9,10-anthraquinone (8), aloe-emodin (9), purpurin (11), 2,6-diamino-9,10anthraquinone (12), apigenin (13), baicalein (14), kaempferol (15), luteolin (16), quercetin (17), myricetin (18), naringenin (19), daidzein (20), phloretin (21), butein (22), hematoxylin (23), silibinin (24), resveratrol (25), bis-demethoxycurcumin (26), magnolol (27), chlorogenic acid (28), ferulic acid (29), paeonol (30), 3,4-dichloroaniline (31), 3,4dichlorobenzenethiol (32), chrysophanol (33), anthrarufin (34), 1,4-dihydroxy-9,10anthraquinone (35), 2-hydroxy-1,4-naphthoquinone (36), 5-hydroxy-1,4naphthalenedione (37), mollugin (38), β-mangostin (39), cyanidin chloride (40), senegenin (41), dihydroartemisinin (43), cyclovirobuxine D (44), andrographolide (45), camptothecin (46), 7-hydroxycoumarin (47), L-tyrosine (48), 4-hydroxyphenethyl alcohol (49), 4-hydroxybenzyl alcohol (50), crocetin (51), and 4-nitrophenyl β-Dglucopyranoside (53) were purchased from Yuanye Bio-Technology Co., Ltd (Shanghai, China). UDP-glucose, UDP-galactose, UDP-N-acetylgluccosamine and UDP-glucuronic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). Vectors, the chemically competent cells, and Trelief ${ }^{\text {TM }}$ SoSoo Clonging Kit were purchased from Tsingke Biotech Co., Ltd (Beijing, China); Universal DNA Purification Kit were purchased from Vazyme Biotech Co., Ltd. (Nanjing, China). Rabbit Anti-His Tag antibody (bs-10582R) and antirabbit IgG/HRP antibody (bs-0295G-HRP) were purchased from Bioss Biotechnology

Co., Ltd. (Nanjing, China). SuperSignal West Pico Chemiluminescent Substrate was purchased from Pierce, Waltham, USA. Methanol and acetonitrile (Merck, Germany) were of HPLC grade. Substrate specificity and conversion rates were analyzed by HPLC on Waters ACQUITY Arc with YMC-Triart C_{18} column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$). LC-MS analysis was performed on Waters Xevo-TQD MS spectrometer with Waters ACQUITY UPLC BEH C_{18} column ($2.1 \times 50 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$). The glycosylated products were isolated and purified by LC-3000 HPLC spectrometer (Beijing Chuangxintongheng Science \& Technology Co., Ltd.) with YMC-Pack ODS-A C 18 column ($10 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) and YMC-Pack ODS-A C ${ }_{18}$ column ($20 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). NMR spectra were recorded on a Bruker AVANCE III-400/500 instrument at 400/500 $\left({ }^{1} \mathrm{H}\right)$ and $100 / 125\left({ }^{13} \mathrm{C}\right) \mathrm{MHz}$ in DMSO- d_{6} and HR-ESI-MS spectra were obtained with Agilent Q-6200-TOF spectrometer.

1.2 Plant materials

The one-year-old R. yunnanensis materials were collected as described in our previous report. ${ }^{2}$

1.3 Transcriptome analysis, molecular cloning and phylogenetic analysis for screening candidate genes

1.3.1 Transcriptome analysis

Anthraquinone glycosides are one of the major natural products produced in R. yunnanensis. According to our previous work, interestingly, the roots produced more anthraquinone glycosides than those from the stems or leaves (Figure S1), which is extremely useful to screen out the candidate GT genes by comparing the expression levels in the transcriptome of different parts of R. yunnanensis. Thus, the transcriptome data of root and stem leaf (mixed stem and leaf) of annual R. yunnanensis were finished by our laboratory (unpublished data). A total of 187 and 312 candidate unigenes were annotated as GT genes based on the results of comparison with Nr and Swiss-prot databases, and then 57 and 111 candidate genes were further screened out from the above two groups by
significant difference expression analysis, respectively (unpublished data). Then, 31 target GT unigenes (Table S1) were selected as target genes according to the analysis results of GO molecular function enrichment and significant difference expression using the criterion of high gene expression in root or stem leaf (unpublished data). Among them, 17 GT unigenes were found to have full-length protein coding sequences (CDs) referring to prediction results of their open reading frames (ORFs) based on ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/).

1.3.2 Molecular cloning

The methods of total RNA isolation and quality control were described in our previous report. ${ }^{2}$ First-strand cDNA was prepared with total or poly A^{+}RNA according to the instructions suggested in SMARTer ${ }^{\text {TM }}$ RACE cDNA Amplification Kit (Clontech Laboratories, Inc., Mountain View, CA, USA). The full-length CDs of 17 GT genes were obtained with 17 full-length unigenes by regular PCR and the remaining 14 unigenes without the full-length CDs were used as the templates to design gene-specific primers (Table S2) for amplification of 5'- and/or 3'- end fragments by SMARTer ${ }^{\text {TM }}$ RACE cDNA Amplification Kit. All the 5'- and 3'- end fragments were sequenced to assemble full length cDNA. Among them, we used the "RyUGT3: >TRINITY_DN123143_c0_g2_i4" as the template to design RACE primers (Table S2). The amplification results were shown in Figure S2A. Then, the recovered products from line 2 and 3 were connected to the clone vector, and positive clones were selected for sequencing, so as to obtain the gene information of the 3 ' and 5 ' -ends of the target genes. Finally, the splicing was carried out with the help of DNAMAN software, and the nucleotide sequence of the splicing results was further compared. Results as shown in Figure S2B, two different splicing results were observed among the nine positive clones randomly selected. The sequence information named UGT3A4, UGT3A8, UGT3A9 was relatively consistent with the template sequence used, while the other six sequences (named $U G T 3 B-1 \sim 7$) were quite different from the template sequence used. But their sequences also have many identical parts, which may be explained by the fact that there is another gene sequence with high similarity to the template sequence used. Therefore, considering that there are two $U G T$ sequences similar
to transcript "RyUGT3", they are named as RyUGT3A and RyUGT3B, respectively. Thus, 15 sequences were obtained from the 14 partial unigenes by RACE with genespecific primers designed by their nucleotide sequences. Finally, we totally obtained 32 GT genes containing the complete CDs.

1.3.3 Phylogenetic analysis

For the phylogenetic analysis, the full-length amino acid sequences of 32 GTs from R. yunnanensis were aligned with 122 GTs from Arabidopsis thaliana using ClustalW.3,4 The resulting alignment was used to build an unrooted phylogenetic tree using the neighbor-joining method in the MEGA6.0. One thousand bootstrapped replicates were applied to estimate the confidence of each tree clade (Figure S3). The respective protein names and genebank numbers are listed in Table S3.

1.4 Heterologous expression, protein purification and enzyme catalytic activity assay

1.4.1 Heterologous expression and protein purification

Multiple sequence alignment of amino acid sequences of the 32 candidate GTs were conducted by DNAMAN. The results showed that the amino acid identities of RyUGT3A and RyUGT10, RyUGT3B and RyUGT21, RyUGT11 and RyUGT24, and RyUGT12 and RyUGT13 were $98.8 \%, 99.8 \%, 99.9 \%$, and 99.8%, respectively, which indicated that they are orthologous genes. Therefore, the 28 GT genes (except RyUGT10, RyUGT13, RyUGT24, and RyUGT21) were inserted into pET-28a (+) vector according to the manual of Trelief ${ }^{\text {TM }}$ SoSoo Clonging Kit. After verifying by sequencing, all the pET28a (+)-UGT expression constructs were transformed in E. coli BL21(DE3) or E. coli BL21(DE3) plysS. The colonies were grown at $37^{\circ} \mathrm{C}$ in 50 mL of Luria-Bertani (LB) media containing $50 \mathrm{mg} / \mathrm{L}$ kanamycin. The cells were induced with 0.5 mM isopropyl β-D-thiogalactoside (IPTG) when the OD600 value was reached $0.6-0.8$. After growing about 16 h at $16^{\circ} \mathrm{C}$ with shaking, the cultures were harvested by centrifugation at $12,000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ for 15 min and stored at $-80^{\circ} \mathrm{C}$. Frozen cells were resuspended in 15 mL pre-cooling lysis buffer (20 mM phosphate buffer, $50 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.5$) and disrupted by sonication in ice-water bath. The cell lysate was centrifuged at $12,000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ for 15 min to obtain the
supernatant (the crude enzyme solution). The supernatant was further confirmed by SDSPAGE and Western Blotting (WB) and then purified referring to a previous study (Figure S5A and S5B). ${ }^{5,6}$ The purified protein was further confirmed by SDS-PAGE (Figure S5C). After their concentrations were determined according to BCA protein assay kit (Beyotime Institute of Biotechnology, Shanghai, China), all recombinant enzymes were stored at $-80^{\circ} \mathrm{C}$ until used for catalytic activity assays. Finally, 16 recombinant RyUGTs were soluble in E. coli and the rest were either not expressed (seven RyUGTs) or formed in inclusion body (five RyUGTs) (Table S4).

1.4.2 Enzyme catalytic activity assay

A standardized procedure was conducted with different native substrates for all RyUGTs screening. The glycosylation reactions were performed in $200 \mu \mathrm{~L}$ system containing 50 mM Tris- HCl buffer (pH 7.5), $14 \mathrm{mM} \beta$-mercaptoethanol, 5 mM UDP-Glc, 0.5 mM substrate and $100 \mu \mathrm{l}$ crude enzyme. After incubation at $30^{\circ} \mathrm{C}$ for 2 h , the reactions were terminated by adding equal volume of methanol. Then the mixed samples were centrifuged at 12000 rpm for 15 min . Negative controls were carried out without adding sugar donor. HPLC and LC/MS were employed to analyze the collected supernatants. Specifically, samples were analyzed by Waters ACQUITY Arc. HPLC and LC-MS analysis were performed on Waters ACQUITY Arc and Waters Xevo-TQD MS spectrometer with YMC-Triart C_{18} column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$) or Waters ACQUITY UPLC BEH C_{18} column ($2.1 \times 50 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$), respectively. Two different HPLC programs (method a and \mathbf{b}) with a mobile phase of water containing 0.1% formic acid (A) and acetonitrile (B) were applied: method a with a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$ and injection volume $20 \mu \mathrm{~L}$ for YMC-Triart C_{18} column: 0-5 min, $5 \%-20 \% \mathrm{~B}$; 5-8 min, 20\%$22 \% \mathrm{~B} ; 8-17 \mathrm{~min}, 22-25 \% \mathrm{~B} ; 17-23 \mathrm{~min}, 25-35 \% \mathrm{~B} ; 23-25 \mathrm{~min}, 35-50 \% \mathrm{~B} ; 25-32 \mathrm{~min}$, $50-100 \% \mathrm{~B}$; method \mathbf{b} with a flow rate of $0.2 \mathrm{~mL} / \mathrm{min}$ and injection volume $2 \mu \mathrm{~L}$ for BEH C_{18} column: 0-3 $\mathrm{min}, 10-100 \% \mathrm{~B}$. The mass spectrum program was set as follows: ion source, ESI (negative mode); capillary voltage 2.5 kV ; N_{2} flow rate $800 \mathrm{~L} / \mathrm{h}$; dissociation temperature $500^{\circ} \mathrm{C}$. In addition, three other sugar donors (UDP-GluA, UDP-GlcNAc, and UDP-Gal) were tested to explore the promiscuity of sugar donor when using $\mathbf{1}$ as acceptor
under the condition mentioned above (Figure S10). After confirming that the substrates are glycosylated by RyUGT3A/RyUGT12, new glycosylation reactions were performed in $200 \mu \mathrm{~L}$ system containing 50 mM Tris- HCl buffer ($\mathrm{pH} 9.0 / 8.0$), $14 \mathrm{mM} \beta$ mercaptoethanol, $5 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ UDP-Glc, 0.5 mM substrate and $5 \mu \mathrm{~g}$ purified enzyme. The reaction conditions and sample treatment are the same as above. The conversion rates (\%) were measured by HPLC peak area ($\mathrm{A}_{\text {product }}$ Asubstrate + product $\times 100 \%$) and listed in Table S5.

1.5 Effects of pH , temperature, and divalent metal ions

In order to optimize the reaction temperature of RyUGT3A and RyUGT12 (Figures S6 and S7), different temperatures from $4-60^{\circ} \mathrm{C}$ were investigated at pH 7.5 . The optimal pH were determined at $30^{\circ} \mathrm{C}$ in the range of $\mathrm{pH} 5.0-6.0$ (Citric acid-sodium citrate buffer) and 7.0-11.0 (Tris-HCl buffer). To explore the metal dependence of RyUGT3A and RyUGT12, reactions were performed at $30^{\circ} \mathrm{C}$ and pH 7.5 in the presence of different metals, $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Co}^{2+}$ and Ba^{2+}, at a final concentration of 5 mM . Experiment with 5 mM EDTA or Tris- $\mathrm{HCl}(\mathrm{pH} 7.5$, control blank) was performed as a negative control. All experiments were performed in triplicate and the mean value was used.

1.6 Kinetic studies

For determination of the kinetic parameters of the acceptor (Figure S8), reactions were performed in a final volume of $200 \mu \mathrm{~L}$ containing 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 9.0 / 8.0), 50 \mu \mathrm{~g}$ of purified enzymes (RyUGT3A and RyUGT12), varying concentrations ($0.65 \mathrm{mM}, 1.3$ $\mathrm{mM}, 1.95 \mathrm{mM}, 2.6 \mathrm{mM}, 3.25 \mathrm{mM}$ and 3.9 mM) of $\mathbf{1}$. All the kinetic experiments were incubated at $30^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$ for 10 min and repeated in triplicate. After adding $200 \mu \mathrm{~L}$ methanol, the samples were centrifuged and analyzed as the methods described above. All reactions were carried out with UDP-Glc as a donor and $\mathbf{1}$ as an acceptor. The K_{m} values were calculated using the Lineweaver-Burk plot methods.

1.7 Homology modeling and site-directed mutagenesis

1.7.1 Homology modeling and molecular docking

Homology modeling was conducted in MOE v2015.1001 (Chemical Computing Group, Canada) according to the method described by Liu et al. ${ }^{7}$ The template protein crystal structures of RyUGT3A and RyUGT12 were identified through BLAST and downloaded from RCSB Protein Data Bank (PDB ID: 5NLM and 2ACW), respectively. The Chain A of 5NLM was utilized as template for RyUGT3A and that of 2ACW for RyUGT12. The overall identity of the amino acid sequence was 40.45% and 30.94% for protein 12 and 3 A , respectively. The protonation state of the proteins and the orientation of the hydrogens were optimized by LigX at pH 7 and the temperature of 300 K . First, the target sequence was aligned to the template sequence, and ten independent intermediate models were built. These different homology models were the results of the permutational selection of different loop candidates and side chain rotamers. Then, the intermediate model which scored the best according to the GB/VI scoring function was chosen as the final model, and was subjected to further energy minimization using the AMBER10: EHT force field (Figures S33 and S34).

The 2D structures of UDP-Glc and substrate (1) were converted to 3D structures in MOE through energy minimization. Prior to docking, the force field of AMBER10: EHT and the implicit solvation model of Reaction Field (R-field) were selected. MOE-Dock was used for molecular docking. The binding sites of RyUGT3A and RyUGT12 were confirmed by superimposing their structures with the structure of the templates. The docking workflow followed the "induced fit" protocol, ${ }^{8}$ in which the side chains of the receptor pocket were allowed to move according to ligand conformations, with a constraint on their positions. The weight used for tethering side chain atoms to their original positions was 10 . Before conducting molecular docking, we have referred to the work of other researchers. ${ }^{9,10}$ In their work, sugar groups are also stable and participate in interactions. So when we do molecular docking, UDP-Glc was firstly docked into RyUGT3A and RyUGT12 individually. All docked poses of which were ranked by London dG scoring first, then a force field refinement was carried out on the top 20 poses
followed by a rescoring of GBVI/WSA dG. The conformations with the lowest free energies of binding were selected as the best (probable) binding modes for further docking of substrate (1) by using the same "induced fit" protocol. Molecular graphics were generated by PyMOL (http://www.pymol.org).

1.7.2 Site-directed mutagenesis and their mutant activity assay

According to the results, site-directed mutagenesis experiment was carried out by overlap PCR method and the corresponding primers were listed in Table S6. The products of sitedirected mutagenesis were transformed in E. coli BL21(DE3). After confirming the expression of each enzyme, they were purified in turn for analyzing the conversion yield of each enzyme to compound $\mathbf{1}$.

1.8 One-pot reactions catalyzed by RyUGT3A and preparative-scale reactions

1.8.1 One-pot reactions

Firstly, verification test of reversible reaction of RyUGT3A was conducted with $200 \mu \mathrm{~L}$ Tris- $\mathrm{HCl}(50 \mathrm{mM}, \mathrm{pH} 9.0)$ containing $14 \mathrm{mM} \beta$-mercaptoethanol, 50 mM 4-nitrophenyl-β-D-glucopyranoside (53), 5 mM UDP, and $5 \mu \mathrm{~g}$ purified RyUGT3A. Then, the reaction was incubated at $30{ }^{\circ} \mathrm{C}$ for 24 h . After adding with $200 \mu \mathrm{~L}$ ice-cold methanol, the centrifuged supernatant was analyzed by HPLC and LC-MS as described above. Finally, the $200 \mu \mathrm{~L}$ reaction contained 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 9.0), 14 \mathrm{mM} \beta$-mercaptoethanol, 50 mM 53, 5 mM UDP, 0.5 mM substrate (1) and $5 \mu \mathrm{~g}$ purified RyUGT3A was incubated at the optimum condition for 24 h . The same treatment and detect method were used to analysis the clarified reaction mixture. The negative control reaction was without UDP, and the positive control was directly using UDP-Glc as sugar donor.

1.8.2 Preparative-scale reactions

Eleven aglycones were selected to prepare their corresponding glycosylated products for determining the glycosylation sites by scaled-up one-pot glycosylation reactions of RyUGT3A. The specific amplification system was as follows: 100 mL reaction contained 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 9.0$), $14 \mathrm{mM} \beta$-mercaptoethanol, 50 mM 53, 5 mM UDP, 0.5 mM
substrate and $250 \mu \mathrm{~g}$ purified RyUGT3A. After incubation at $30^{\circ} \mathrm{C}$ for 24 h , the reactions were terminated by adding 100 mL methanol. The mixtures were centrifuged at 12000 rpm for 25 min and then the supernatants were concentrated and dissolved in 50% methanol. All the chromatograms were obtained and detected between 190 nm and 400 nm . The glycosylated products were purified by a reverse-phase preparative HPLC on an LC 3000 instrument (Tong Heng, Beijing, China) equipped with an YMC-Pack ODS-A C_{18} column ($250 \mathrm{~mm} \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$). The purified products were characterized by LCMS, NMR and HR-ESI-MS (Figures S12-S32).

1.9 MS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathbf{C}$ NMR data of glycosylated products

6-Hydroxyalizarin 3-O- $\boldsymbol{\beta}$-D-glucoside (1a) (12.4 mg): brownish yellow powder. ESIMS for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{10}[\mathrm{M}-\mathrm{H}]^{-}: ~ 431.35 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 7.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$, 7.42 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 7.17 ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-7$), 8.06 ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8$), 5.09 (1 H , d, $\left.J=6.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.34\left(2 \mathrm{H}\right.$, overlap, H-2', $\left.5^{\prime}\right), 3.25$ (1 H , overlap, H-4'), $3.41(1 \mathrm{H}$, overlap, H-3'), 3.70 ($1 \mathrm{H}, \mathrm{d}, ~ J=11.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 3.54 ($1 \mathrm{H}, \mathrm{dd}, J=11.8,5.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}$), $2.16\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 161.3$ (s, C-1), 120.8 ($\mathrm{s}, \mathrm{C}-2$), 160.6 (s, C-3), 105.5 (d, C-4), 113.1 (d, C-5), 165.0 (s, C-6), 121.8 (d, C-7), 129.6 (d, C-8), 186.2 ($\mathrm{s}, \mathrm{C}-9$), 181.8 ($\mathrm{s}, \mathrm{C}-10$), 110.6 ($\mathrm{s}, \mathrm{C}-1 \mathrm{a}$), 132.0 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 135.3 (s, C-5a), 123.6 (s, C-8a), 100.4 (d, C-1'), 73.2 (d, C-2'), 77.3 (d, C-3'), 69.4 (d, C-4'), 76.3 (d, C$\left.5^{\prime}\right), 60.5\left(\mathrm{t}, \mathrm{C}-6^{\prime}\right), 8.5\left(\mathrm{q}, 2-\mathrm{CH}_{3}\right) .{ }^{11}$

6-Hydroxyalizarin 6- \boldsymbol{O} - $\boldsymbol{\beta}$-D-glucoside (1b) (10.8 mg): brownish black powder. HR-ESI-MS calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 433.1129$; found: 433.1139. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.63(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-7), 8.12$ ($1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-8$), 5.13 ($1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 3.22-3.71 (6 H , sugar protons), $2.04\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 163.5$ (s, C-1), 117.4 (s, C-2), 162.4 (s, C-3), 108.2 (d, C-4), 113.3 (d, C-5), 161.8 (s, C-6), 121.7 (d, C-7), 128.9 (d, C-8), 185.2 (s, C-9), 181.7 ($\mathrm{s}, \mathrm{C}-10$), 107.9 (s, C-1a), 131.8 (s, C-4a), 134.9 (s, C-5a), 127.2 (s, C-8a), 100.1 (d, C-1'), 73.1 (d, C-2'), 77.3 (d, C-3'), 69.5 (d, C-4'), 76.3 (d, C$\left.5^{\prime}\right), 60.5$ (t, C-6'), $8.1\left(\mathrm{q}, 2-\mathrm{CH}_{3}\right)$.

6-Hydroxyalizarin 3,6-di-O- $\boldsymbol{\beta}$-D-glucoside (1c) (9.7 mg): brownish black powder. HR-ESI-MS calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 617.1477; found: 617.1475. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta: 7.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.68(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-5), 7.52(1 \mathrm{H}, \mathrm{dd}, J=$ 8.6, 2.5 Hz, H-7), 8.19 ($1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-8$), 5.15 ($1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 5.12 (1 H , d, $\left.J=6.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$, 3.23-3.70 (12 H , sugar protons), $2.18\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 161.0(\mathrm{~s}, \mathrm{C}-1), 120.8$ ($\mathrm{s}, \mathrm{C}-2$), 161.4 ($\mathrm{s}, \mathrm{C}-3$), 105.8 (d, C-4), 113.4 (d, C-5), 162.1 ($\mathrm{s}, \mathrm{C}-6$), 121.9 (d, C-7), 129.2 ($\mathrm{s}, \mathrm{C}-8$), 186.4 (s, C-9), 181.2 ($\mathrm{s}, \mathrm{C}-10$), 110.7 ($\mathrm{s}, \mathrm{C}-1 \mathrm{a}$), 132.0 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 135.0 ($\mathrm{s}, \mathrm{C}-5 \mathrm{a}$), 126.9 (s, C-8a), 100.3 (d, C-1'), 73.2 (d, C-2'), 77.3 (d, C-3'), 69.5 (d, C-4'), 75.7 (d, C-5'), 60.5 (t, C-6'), 100.0 (d, C-1"), 73.1 (d, $\left.\mathrm{C}-2^{\prime \prime}\right), 77.3$ (d, C-3"), 69.4 (d, C-4"), 76.3 (d, C-5"), 60.5 (t, C-6"), 8.5 ($\mathrm{q}, 2-\mathrm{CH}_{3}$).

2-Hydroxy-3-methyl-9,10-anthraquinone 2-O- $\boldsymbol{\beta}$-D-glucoside (2a) (7.9 mg): bronzing powder. HR-ESI-MS calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 401.1231$; found: 401.1229. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 7.71(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 8.13$ (2 H , overlap, H-5, 8), 7.88 (2 H , overlap, H-6, 7), $5.13\left(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.28-3.72$ (6 H , sugar protons), $2.36\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 110.7(\mathrm{~d}, \mathrm{C}-1), 160.2(\mathrm{~s}, \mathrm{C}-2)$, 134.3 ($\mathrm{s}, \mathrm{C}-3$), 129.5 (d, C-4), 126.7 (d, C-5, 8), 134.4 (d, C-6), 134.5 (d, C-7), 182.2 (s , C-9), 181.7 ($\mathrm{s}, \mathrm{C}-10$), 133.1 ($\mathrm{s}, \mathrm{C}-1 \mathrm{a}, 8 \mathrm{a}$), 127.0 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 133.0 (s, C-5a), 100.5 (d, C1^{\prime}), 73.3 (d, C-2'), 77.4 (d, C-3'), 69.5 (d, C-4'), 76.4 (d, C-5'), 60.5 (t, C-6'), 16.5 (q, 3CH_{3}).

Xanthen-9-one 3-O- $\boldsymbol{\beta}$-D-glucoside (3a) (8.5 mg): yellow oil. HR-ESI-MS calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 391.1024$; found: 391.1031. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 7.94$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-1), 6.94(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, \mathrm{H}-2), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-$ 4), $6.09(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-5), 6.31(1 \mathrm{H}, \mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, \mathrm{H}-7), 7.66(1 \mathrm{H}, \mathrm{d}, J=9.0$ $\mathrm{Hz}, \mathrm{H}-8), 5.06\left(1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.28-3.72\left(6 \mathrm{H}\right.$, sugar protons). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 126.9$ (d, C-1), 112.5 (d, C-2), 161.0 (s, C-3), 103.0 (d, C-4), 102.0 (d, C-5), 177.0 ($\mathrm{s}, \mathrm{C}-6$), 119.8 (d, C-7), 126.7 (d, C-8), 172.5 ($\mathrm{s}, \mathrm{C}-9$), 116.6 ($\mathrm{s}, \mathrm{C}-1 \mathrm{a}$), 156.8 (s, C-4a), 159.5 (s, C-5a), 106.9 (s, C-8a), 100.0 (d, C-1'), 73.3 (d, C-2'), 77.2 (d, C-3'), 69.7 ($d, C-4$), 76.6 ($\left.d, C-5^{\prime}\right), 60.8\left(t, C-6^{\prime}\right)$.

Xanthen-9-one 3,6-di-O- $\boldsymbol{\beta}$-D-glucoside ($\mathbf{3 b}$) (7.9 mg): yellow oil. ESI-MS calcd. for
$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{14}[\mathrm{M}+\mathrm{H}]^{+}: 553.24 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 8.10(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-1,8), 7.10(2 \mathrm{H}, \mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, \mathrm{H}-2,7), 7.21(2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-4,5), 5.17(2 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}, 1^{\prime \prime}$), 3.16-3.70 (12 H , sugar protons). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 127.6$ (d, C-1, 8), 114.6 (d, C-2, 7), 162.5 ($\mathrm{s}, \mathrm{C}-3,6$), 103.1 (d, C-4, 5), 174.3 ($\mathrm{s}, \mathrm{C}-9$), 115.9 (s, C-1a, 8a), 157.3 (s, C-4a, 5a), 99.8 (d, C-1', 1'), 73.2 (d, C-2', 2"), 77.2 (d, C$\left.3^{\prime}, 3^{\prime \prime}\right), 69.6$ (d, C-4', 4'), 76.4 (d, C-5', 5"), 60.7 (t, C-6', 6"). ${ }^{12}$

Emodin 6-O- $\boldsymbol{\beta}$-D-glucoside (4a) (14.6 mg): brownish black powder. ESI-MS for $\left.\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{10}[\mathrm{M}-\mathrm{H}]\right]^{-}: 431.31 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.43$ (1H, s, H-4), 7.10 (1H, s, H-5), 6.91 (1H, s, H-7), 5.11 (1H, d, J=7.2 Hz, H-1'), 3.32 (2H, overlap, H-2', 5^{\prime}), 3.46 (1 H , overlap, H-3'), 3.22 (1 H , overlap, H-4'), 3.71 ($1 \mathrm{H}, \mathrm{d}, J=10.8$ Hz, H-6'a), 3.52 (1 H , overlap, H-6'b), 2.38 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta: 163.8$ (s, C-1), 124.3 (d, C-2), 148.4 (s, C-3), 120.5 (d, C-4), 108.8 (d, C-5), 164.5 (s, C-6), 109.2 (d, C-7), 161.7 (s, C-8), 189.7 (s, C-9), 181.1 (s, C-10), 113.5 (s, C-1a), 134.8 (s, C-4a), 132.8 (s, C-5a), 110.8 (s, C-8a), 100.0 (d, C-1'), 73.1 (d, C-2'), 77.3 (d, C-3'), 69.5 (d, C-4'), 76.3 (d, C-5'), 60.6 (t, C-6'), $21.6\left(\mathrm{q}, 3-\mathrm{CH}_{3}\right) .{ }^{13}$

2-Hydroxy-9,10-anthraquinone 2- \boldsymbol{O} - $\boldsymbol{\beta}$-D-glucoside (5a) (11.2 mg): brown powder. ESI-MS for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{10}[\mathrm{M}+\mathrm{HCOO}]^{-}$: 431.17. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 7.70$ (1H, s, H-1), 7.53 ($1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-3$), 8.18 (3H, overlap, H-4, 5, 8), 7.92 (2H, d, $J=$ 6.1 Hz, H-6, 7), 5.15 ($1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 3.34 (2 H , overlap, H-2', 5^{\prime}), $3.46(1 \mathrm{H}$, overlap, H-3'), 3.23 (1 H , overlap, H-4'), 3.71 ($1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), 3.52 (1 H , overlap, H-6'b). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 113.2$ (d, C-1), 162.0 (s, C-2), 122.0 (d, C-3), 129.5 (d, C-4), 126.8 (d, C-5), 134.7 (d, C-6), 134.3 (d, C-7), 126.7 (d, C-8), 182.2 ($\mathrm{s}, \mathrm{C}-9$), 181.4 ($\mathrm{s}, \mathrm{C}-10$), 135.0 ($\mathrm{s}, \mathrm{C}-1 \mathrm{a}), 127.3$ ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 133.1 (s, C-5a), 133.1 (s, C-8a), 100.1 (d, C-1'), 73.2 (d, C-2'), 77.3 (d, C-3'), 69.5 (d, C-4'), 76.4 (d, C-5'), 60.5 (t, C-6'). ${ }^{14}$

2-Amino-3-hydroxy-9,10-anthraquinone 3-O- $\boldsymbol{\beta}$-D-glucoside (6a) (8.7 mg): brownish red powder. ESI-MS for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{8}[\mathrm{M}-\mathrm{H}]^{-}: 400.35 .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ : 7.39 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1$), 7.70 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4$), 8.10 (2H, d, H-5, 8), 7.83 (2 H , overlap, H-6, 7), 4.89 $\left(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.39\left(4 \mathrm{H}\right.$, overlap, $\left.\mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\right), 3.73(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{H}-$
$\left.6^{\prime} \mathrm{a}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J=11.9,4.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 6.43\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 110.2$ (d, C-1), 145.2 ($\mathrm{s}, \mathrm{C}-2$), 147.7 ($\mathrm{s}, \mathrm{C}-3$), 112.7 (d, C-4), 126.3 (d, C-5, 8), 133.5 (d, C-6, 7), 182.6 ($\mathrm{s}, \mathrm{C}-9$), 180.4 ($\mathrm{s}, \mathrm{C}-10$), 129.9 ($\mathrm{s}, \mathrm{C}-1 \mathrm{a}$), 122.4 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 133.7 ($\mathrm{s}, \mathrm{C}-5 \mathrm{a}$), 134.1 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 101.7 (d, C-1'), 73.2 (d, C-2'), 77.3 (d, C-3'), 69.6 (d, C$\left.4^{\prime}\right), 75.7$ (d, C-5'), 60.5 (t, C-6'). ${ }^{15}$

Apigenin 7-O- $\boldsymbol{\beta}$-D-glucoside (13a) (13.2 mg): brown powder. ESI-MS for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{10}$ $[\mathrm{M}-\mathrm{H}]^{-}: 431.35 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$, $6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 7.94\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 6.94\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right)$, 5.07 ($1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), 3.28 (2 H , overlap, H-2", H-5"), 3.48 (2H, overlap, H-3", H-6"b), 3.19 ($1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}$), $3.72\left(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta: 164.3$ ($\mathrm{s}, \mathrm{C}-2$), 103.1 (d, C-3), 182.0 ($\mathrm{s}, \mathrm{C}-4$), 161.6 ($\mathrm{s}, \mathrm{C}-5$), 99.6 (d, C-6), 163.0 (s, C-7), 94.8 (d, C-8), 157.0 ($\mathrm{s}, \mathrm{C}-9$), 105.4 ($\mathrm{s}, \mathrm{C}-10$), 120.9 (s, C-1'), 128.7 (d, C-2', 6'), 116.7 (d, C-3', 5'), 161.3 (s, C-4'), 99.9 (d, C-1"), 73.2 (d, C-2"), 77.2 (d, C$\left.3^{\prime \prime}\right), 69.6$ ($\mathrm{d}, \mathrm{C}-4^{\prime \prime}$), 76.5 ($\mathrm{d}, \mathrm{C}-5^{\prime \prime}$), 60.7 (t, C-6"). ${ }^{16}$

Baicalein 6-O- $\boldsymbol{\beta}$-D-glucoside (14a) (12.1 mg): brown powder. ESI-MS for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{10}$ $[\mathrm{M}-\mathrm{H}]^{-}: 431.31 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, $8.06\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 7.58$ (3 H , overlap, H-3', $4^{\prime}, 5^{\prime}$), 4.80 ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, $\mathrm{H}-1^{\prime \prime}$), 3.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}$), 3.16 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}$), 3.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}$), 3.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}$), $3.64\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 3.48\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,4.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 163.1$ ($\mathrm{s}, \mathrm{C}-2$), 104.7 (d, C-3), 182.1 ($\mathrm{s}, \mathrm{C}-4$), 152.6 ($\mathrm{s}, \mathrm{C}-5$), 128.8 ($\mathrm{s}, \mathrm{C}-6$), 158.6 ($\mathrm{s}, \mathrm{C}-7$), 94.7 (d, C-8), 153.2 ($\mathrm{s}, \mathrm{C}-9$), 103.9 ($\mathrm{s}, \mathrm{C}-10$), 130.8 ($\mathrm{s}, \mathrm{C}-1$ '), 126.4 (d, C-2', 6^{\prime}), 129.2 ($\left.\mathrm{d}, \mathrm{C}-3^{\prime}, 5^{\prime}\right), 132.0$ (d, C-4'), 104.4 (d, C-1"), 74.0 (d, C-2'), 77.3 (d, C-3"), 69.6 (d, C-4"), 76.3 (d, C-5"), 60.7 (t, C-6"). ${ }^{17}$

Baicalein 7-O- $\boldsymbol{\beta}$-D-glucoside (14b) (10.3 mg): brown powder. ESI-MS for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{10}$ $[\mathrm{M}-\mathrm{H}]^{-}: 431.35 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 7.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$, 8.07 ($2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{H}, \mathrm{H}-2^{\prime}, 6^{\prime}$), $7.60\left(3 \mathrm{H}\right.$, overlap, $\left.\mathrm{H}-3^{\prime}, 4^{\prime}, 5^{\prime}\right), 5.02(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, H-1"), 3.19-3.76 (6 H , sugar protons). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 163.5$ (s, C-2), 104.7 (d, C-3), 182.6 ($\mathrm{s}, \mathrm{C}-4$), 146.5 (s, C-5), 130.9 (s, C-6), 151.7 (s, C-7), 94.3 (d, C-8), 149.2 (s, C-9), 106.1 ($\mathrm{s}, \mathrm{C}-10$), 130.7 ($\left.\mathrm{s}, \mathrm{C}-1^{\prime}\right), 126.4$ (d, C-2', 6^{\prime}), 129.2 (d, C-3', 5^{\prime}),
132.1 (d, C-4'), 101.0 (d, C-1"), 73.2 (d, C-2') 77.4 (d, C-3"), 69.7 (d, C-4"), 75.9 (d, C$\left.5^{\prime \prime}\right), 60.7$ (t, C-6"). ${ }^{18}$

Kaempferol 3-O- $\boldsymbol{\beta}$-D-glucoside (15a) (10.5 mg): brownish black powder. ESI-MS for $\left.\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{11}[\mathrm{M}-\mathrm{H}]\right]^{-}: 447.33 .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 6.21(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.43$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 8.03\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 6.88\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 5.46$ ($1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), 3.08-3.53 (6 H , sugar protons). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta: 156.4$ ($\mathrm{s}, \mathrm{C}-2$), 133.2 ($\mathrm{s}, \mathrm{C}-3$), 177.5 ($\mathrm{s}, \mathrm{C}-4$), 161.2 ($\mathrm{s}, \mathrm{C}-5$), 98.8 (d, C-6), 164.4 (s , C-7), 93.7 (d, C-8), 156.2 (s, C-9), 103.9 ($\mathrm{s}, \mathrm{C}-10$), 120.9 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 130.9 (d, C-2', 6^{\prime}), 115.1 (d, C-3', 5^{\prime}), 160.0 ($\left.\mathrm{s}, \mathrm{C}-4^{\prime}\right), 100.9$ (d, C-1"), 74.2 (d, C-2"), 77.5 (d, C-3'), 69.9 (d, C-4"), 76.4 (d, C-5"), 60.9 (t, C-6"). ${ }^{19}$

Kaempferol 7-O- $\boldsymbol{\beta}$-D-glucoside ($\mathbf{1 5 b}$) (11.6 mg): brownish black powder. ESI-MS for $\left.\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{11}[\mathrm{M}-\mathrm{H}]\right]^{-}: 447.33 .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 6.42(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.80$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8$), 8.09 ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 6.95 ($2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}$), 5.07 ($1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), 3.28 (1 H , overlap, H-2"), 3.47 (1 H , overlap, H-3"), 3.17 (1 H , overlap, H-4"), 3.28 (1 H , overlap, H-5"), $3.70\left(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right.$), 3.47 (1 H , overlap, H-6"b). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 147.5$ (s, C-2), 136.4 (s, C-3), 176.2 (s, C-4), 160.4 ($\mathrm{s}, \mathrm{C}-5$), 98.8 (d, C-6), 162.7 ($\mathrm{s}, \mathrm{C}-7$), 94.3 (d, C-8), 155.8 ($\mathrm{s}, \mathrm{C}-9$), 104.7 (s, C-10), 121.6 ($\mathrm{s}, \mathrm{C}-\mathrm{l}^{\prime}$), 129.5 (d, C-2', 6'), 115.5 (d, C-3', 5'), 159.4 (s, C-4'), 99.9 (d, C-1"), 73.1 (d, C-2"), 77.2 (d, C-3"), 69.6 (d, C-4"), 76.5 (d, C-5"), 60.6 (t, C-6"). ${ }^{19}$

Kaempferol 3,7-di-O- $\boldsymbol{\beta}$-D-glucoside ($\mathbf{1 5 c}$) (12.3 mg): brownish black powder. ESI-MS for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{16}[\mathrm{M}-\mathrm{H}]^{-}: ~ 609.34 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 6.42(1 \mathrm{H}, \mathrm{d}, J=2.1$ Hz, H-6), 6.77 ($1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-8$), 8.04 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$), 6.89 (2H, d, J $\left.=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 5.06\left(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 5.45\left(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}\right), 3.06-$ 3.67 (12 H , sugar protons), $12.6\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{OH}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta: 156.8$ (s, C-2), 133.4 (s, C-3), 177.6 ($\mathrm{s}, \mathrm{C}-4$), 160.8 ($\mathrm{s}, \mathrm{C}-5$), 99.3 (d, C-6), 162.8 ($\mathrm{s}, \mathrm{C}-7$), 94.5 (d, C-8), 156.0 (s, C-9), 105.6 ($\mathrm{s}, \mathrm{C}-10$), 120.7 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 130.9 (d, C-2', 6^{\prime}), 115.2 (d, C$\left.3^{\prime}, 5^{\prime}\right), 160.2$ (s, C-4'), 99.7 (d, C-1"), 73.1 (d, C-2"), 77.1 (d, C-3"), 69.6 (d, C-4"), 76.4 (d, C-5"', $5^{\prime \prime \prime}$), 60.8 (t, C-6"), 100.7 (d, C-1"'), 74.2 (d, C-2"'), 77.5 (d, C-3"'), 69.9 (d, C$4^{\prime \prime \prime}$), 60.6 (t, C-6"'). ${ }^{20}$

Daidzin (20a) (9.2 mg): brownish yellow powder. ESI-MS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+}: 417.38$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta: 8.38(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 8.05(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5), 7.14$ ($1 \mathrm{H}, \mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, \mathrm{H}-6$), $7.23(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-8), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-$ $\left.2^{\prime}, 6^{\prime}\right), 6.82\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 3.18-3.74(6 \mathrm{H}$, sugar protons). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta: 153.3$ (d, C-2), 123.7 (s, C-3), 174.8 (s, C-4), 127.0 (d, C-5), 115.6 (d, C-6), 161.4 (s, C-7), 103.4 (d, C-8), 157.0 (s, C-9), 118.5 ($\mathrm{s}, \mathrm{C}-10$), 122.3 ($\left.\mathrm{s}, \mathrm{C}-\mathrm{1}^{\prime}\right), 130.1$ (d, C-2', 6^{\prime}), 115.0 (d, C-3', 5'), 157.3 ($\left.\mathrm{s}, \mathrm{C}-4^{\prime}\right)$, 100.0 (d, C-1"), 73.2 (d, C-2"), 77.2 (d, C-3"), 69.7 (d, C-4"), 76.5 (d, C-5"), 60.7 (t, C$6^{\prime \prime}$). ${ }^{21}$

Resveratrol 3-O- $\boldsymbol{\beta}$-D-glucoside (25a) (7.5 mg): brownish yellow powder. ESI-MS for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 413.39 .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta: 6.73(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 6.34$ $(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-4), 6.57(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.86(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, \mathrm{H}-7), 7.03(1 \mathrm{H}, \mathrm{d}, J$ $=16.3 \mathrm{~Hz}, \mathrm{H}-8), 7.40\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 6.76\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 4.80$ ($1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$), $3.17-3.73$ (6 H , sugar protons). ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta: 139.4$ ($\mathrm{s}, \mathrm{C}-1$), 102.8 (d, C-2), 158.9 ($\mathrm{s}, \mathrm{C}-3$), 104.8 (d, C-4), 158.4 ($\mathrm{s}, \mathrm{C}-5$), 107.2 (d, C-6), 125.2 (d, C-7), 128.0 (d, C-8), 128.6 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 127.9 (d, C-2', 6^{\prime}), 115.5 ($\left.\mathrm{d}, \mathrm{C}-3^{\prime}, 5^{\prime}\right)$, 157.3 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 100.7 (d, C-1"), 73.3 (d, C-2"), 77.1 (d, C-3"), 69.8 (d, C-4"), 76.1 (d, C$\left.5^{\prime \prime}\right), 60.8$ (t, C-6" ${ }^{\prime \prime} .^{22}$

Resveratrol 3,4'-di- \boldsymbol{O} - $\boldsymbol{\beta}$-D-glucoside (25b) (8.7 mg): brownish yellow powder. ESI-MS for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{13} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 575.45 .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta: 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, $6.36(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.59(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 6.97(1 \mathrm{H}, \mathrm{d}, J=16.3 \mathrm{~Hz}, \mathrm{H}-7), 7.09(1 \mathrm{H}, \mathrm{d}, J=16.3$ Hz, H-8), 7.51 ($2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$), $7.02\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 4.88$ (1 H , d, $\left.J=7.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}\right), 3.18-3.72$ (12 H , sugar protons). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d d_{6}) $\delta: 139.4$ (s, C-1), 103.1 (d, C-2), 158.9 (s, C-3), 105.0 (d, C-4), 158.4 (s, C-5), 107.4 (d, C-6), 126.8 (d, C-7), 128.1 (d, C-8), 130.8 (s, C-1'), 127.7 (d, C-2', 6^{\prime}), 116.4 (d, C-3', 5^{\prime}), 157.1 ($\left.\mathrm{s}, \mathrm{C}-4^{\prime}\right), 100.7$ (d, C-1"), 73.3 (d, C-2'), 77.2 (d, C-3"), 69.8 (d, C-4"), 76.7 (d, C-5"), 60.8 (t, C-6"'), 100.3 (d, C-1"'), 73.3 (d, C-2"'), 77.1 (d, C-3"'), 69.8 (d, C-4"'), 76.7 (d, C-5"''), 60.7 (t, C- $6^{\prime \prime \prime}$). ${ }^{23}$

1.10 Gene expression and real-time quantitative PCR (RT-qPCR) analysis

To determine the expression levels of four putative RyUGTs (RyUGT3A, RyUGT3B, RyUGT11 and RyUGT12) involved in the anthraquinone biosynthesis in different tissues (roots, stems and leaves) of R. yunnanensis, RT-qPCR analysis was conducted on a StepOne ${ }^{\text {TM }}$ Real-time PCR instrument (Thermo Fisher Scientific, USA) using SYBR Green PCR Master Mix (Vazyme, Nanjing, China). The mean values of three replicates was normalized with $h n R N P$ gene based on our previous report. ${ }^{2}$ RT-qPCR analysis was conducted with three biological and technical replicates and all primers used for RTqPCR were listed in Table S7. The $2^{-\Delta \Delta C t}$ method was used to calculate their relative expression levels. ${ }^{24}$ The way to determine whether the designed primer pairs are specific is to refer to our previous work (Figure S37). ${ }^{2}$ In order to better explain the specificity and applicability of the designed primers for RT-qPCR, four RyUGTs genes were firstly normalized for the expression levels of root and stem leaf with the same RNA templates as that applied for de novo transcriptome sequencing of root and stem leaf of R. yunnanensis (Figure S38). To explore the possible function of these four putative RyUGT genes in R. yunnanensis, one-year old R. yunnanensis plants were treated with $200 \mu \mathrm{M}$ MeJA according to the method reported. ${ }^{25}$ Then, the treated samples (roots, stems and leaves) and the untreated control samples were harvested for analysis at $1,6,12$ and 24 h after elicitation, respectively. In addition, hairy roots of R. yunnanensis established by our laboratory were used to analyze the changes in this main anthraquinone aglycone (1) and its three corresponding anthraquinone glycosides (54, 55, and 56, Figure S39) after MeJA treatment. Specifically, 0.3 g hair roots were cultured in $100 \mathrm{~mL} 1 / 2 \mathrm{MS}$ liquid medium in an orbital shaker at $25^{\circ} \mathrm{C}$ in dark. MeJA $(100 \mu \mathrm{M})$ was supplemented to the growing hairy roots culture at day 45 , and the hairy roots were harvested at day 59 . The contents of $\mathbf{1}$, 54, 55, and 56 were quantified via LC-MS/MS analysis with the MRM method established by our lab (unpublished). The controls of the above experiments were without MeJA treatment. The experiments were repeated three times.

1.11 Subcellular localization

The recombined pCAMBIA1302-RyUGT3A and -RyUGT12 vectors were constructed using the specific primers listed in Table S8. Specifically, the ORF of each RyUGT gene were inserted into pCAMBIA1302 at the 5'-terminal of the GFP gene under the control of the CaMV 35S promoter. The Agrobacterium tumefaciens strain GV3101 containing the recombined vectors was obtained based on a freeze-thaw protocol and transient transformation of tobacco (Nicotiana benthamiana) epidermal cells were performed according to Sparkes et al. ${ }^{26,27}$ After 36 h infiltration with the transgenic tobacco, the infected areas were cut and then torn off the epidermis for imaging with a Zeiss LSM700 confocal laser scanning microscope (Zeiss, Germany). Meanwhile, the empty vector pCAMBIA1302 was infiltrated into tobacco leaves as control. Subcellular localization was further confirmed with three replications.

2 Supplemental Tables

Table S1. Information of 31 target GT unigenes with significantly differential expressions used in this study

Gene Name	Gene ID	R1_FPKM	R2_FPKM	R3_FPKM	SL1_FPKM	SL2_FPKM	SL3_FPKM	P Value
RyUGT1	TRINITY_DN128349_c5_g1	1.07	4.56	1.77	5.68	19.93	6.44	0.00932349
RyUGT2	TRINITY_DN129196_c0_g3	16.79	1.64	55.75	1.04	13.31	1.66	$4.03 \mathrm{E}-05$
RyUGT3	TRINITY_DN123143_c0_g2	583.47	666.89	494.28	83.04	137.99	179.47	0.000983536
RyUGT4	TRINITY_DN127830_c1_g1	16.04	17.14	11.38	7.52	3.27	2.07	0.008577635
RyUGT5	TRINITY_DN129704_c0_g1	10.77	5.75	2.9	0.64	0.1	0.62	$3.21 \mathrm{E}-06$
RyUGT6	TRINITY_DN129045_c0_g3	59.97	54.75	31.95	0.68	0	0.46	$6.05 \mathrm{E}-24$
RyUGT8	TRINITY_DN128241_c3_g1	5.02	5.35	1.52	9.49	25.34	62.01	0.0002304
RyUGT9	TRINITY_DN127760_c1_g2	263.2	291.4	281.29	3.24	16.3	35.1	$5.18 \mathrm{E}-11$
RyUGT10	TRINITY_DN128133_c4_g1	175.2	142.08	173.2	48	56.89	134.7	0.010716415
RyUGT11	TRINITY_DN131159_c3_g3	322.1	230.76	335.54	22.19	47.86	42.13	$2.10 \mathrm{E}-08$
RyUGT12	TRINITY_DN131626_c3_g1	155.1	233.5	133.87	0.47	1.57	0.09	$6.29 \mathrm{E}-34$
RyUGT13	TRINITY_DN131750_c7_g2	240.6	282.67	174.86	0	0.25	0.08	2.28E-56
RyUGT14	TRINITY_DN122510_c0_g1	36.61	108.55	50.03	0.82	3.59	2.38	$1.57 \mathrm{E}-17$

RyUGT15	TRINITY_DN122681_c7_g3	28.81	30.6	15.91	2.44	3.08	2.16	$1.09 \mathrm{E}-12$
RyUGT16	TRINITY_DN129109_c3_g5	28.6	31.66	44.67	5.33	1.83	6.55	5.38E-09
RyUGT18	TRINITY_DN124382_c1_g1	227.4	237.99	151.42	2.21	1.4	1.31	4.81E-38
RyUGT19	TRINITY_DN131204_c1_g4	73.65	92.69	91.7	12.19	9.12	19.57	$9.09 \mathrm{E}-09$
RyUGT20	TRINITY_DN131204_c1_g1	184.1	112.86	301.63	81.04	30.66	129.44	0.005131196
RyUGT21	TRINITY_DN128133_c4_g8	397.6	450.37	309.81	3.63	16.25	18.16	$2.02 \mathrm{E}-20$
RyUGT22	TRINITY_DN131492_c0_g9	108.9	362.3	450.9	51.28	116.44	102.73	$3.57 \mathrm{E}-05$
RyUGT23	TRINITY_DN126735_c3_g3	142.3	120.11	131.19	1.62	1.6	3.03	1.70E-35
RyUGT24	TRINITY_DN130359_cl_g11	207.8	165.97	271.04	4.16	0.84	2.12	$1.67 \mathrm{E}-25$
RyUGT26	TRINITY_DN123452_cl_g1	28.39	23.59	20.19	2.11	9.71	3.24	$4.42 \mathrm{E}-05$
RyUGT27	TRINITY_DN128407_c1_g1	11.48	15.52	18.77	1.36	1.91	3.84	$1.61 \mathrm{E}-07$
RyUGT28	TRINITY_DN128133_c4_g9	15.51	23.6	41	9.35	15.42	10.69	0.008183448
RyUGT29	TRINITY_DN123424_c2_g7	11.67	24.62	21.36	7.8	12.17	11.53	0.009155941
RyUGT32	TRINITY_DN130075_cl_g1	172.2	192.41	94.04	0	0	0.06	$4.29 \mathrm{E}-54$
RyUGT33	TRINITY_DN131897_c2_g2	22.07	91.81	104.75	789.32	653.43	556.28	$2.53 \mathrm{E}-07$
RyUGT34	TRINITY_DN130529_c0_g	115.3	129.75	80.54	88.69	249.93	107.91	0.767266167

RyUGT35	TRINITY_DN130201_c2_g9	2.12	2.27	0.41	36.14	23.01	22.61	$3.46 \mathrm{E}-09$
RyUGT36	TRINITY_DN123035_c10_g2	56.09	62.93	73.35	73.42	98.8	90.22	0.685501246

Note: Gene ID: the assembled gene ID; FPKM: the relative expression of the gene in root (R1, R2 and R3), stem and leaf samples (SL1, SL2 and SL3) of R. yunnanensis under three biological duplication; P Value: the lower the value, the more significant the difference of gene expression.

Table S2. Primers used for 5'-RACE and 3'-RACE

Primer name	$5^{\prime} \rightarrow 3^{\prime}$
RyUGT1-5'-GSP1	GATTACGCCAAGCTTGCTCCTTCCGCTTTCATTCAATCCCTC
RyUGT2-3'-GSP1	GATTACGCCAAGCTTAGGGATGAAGTTGAGGGTTTGGTGAGG
RyUGT2-5'-GSP1	GATTACGCCAAGCTTCCTCCACTCCAAAGCCTTCTCCCTCAT
RyUGT3-3'-GSP1	GATTACGCCAAGCTTGCCGTCACATCCACCATCATCACAA
RyUGT3-5'-GSP1	GATTACGCCAAGCTTGAGGCAATCTGGGCGGAGTTCTTCT
RyUGT3-3'-GSP2	GATTACGCCAAGCTTCCAAATCTTCTCCAACCTTCAAAAACGC
RyUGT3-5'-GSP2	GAGGCAATCTGGGCGGAGTTCTTCT
RyUGT10-3'-GSP1	GATTACGCCAAGCTTGACAGCGAGAAATGGTTCCCGAAGG
RyUGT10-5'-GSP1	GATTACGCCAAGCTTCCCTTTCAGAACCTCCACATTCACCCTA
RyUGT11-3'-GSP1	GATTACGCCAAGCTTCGCCTCAGGTTGCGATTCTTTCCC
RyUGT11-5'-GSP1	GATTACGCCAAGCTTTCCAGCCACAGTGCGAAACAAAGC
RyUGT12-3'-GSP1	GATTACGCCAAGCTTGCAAATCGCCTACGCACTTCAGACC
RyUGT12-5'-GSP1	GATTACGCCAAGCTTGTCAAGTCGATACTCGCAAACGTGCC
RyUGT13-3'-GSP1	GATTACGCCAAGCTTCCACCTGTTTACCCAATCGGCCCTCT
RyUGT18-5'-GSP1	GATTACGCCAAGCTTCCGAAATTGACCAAGACAACCGATGA
RyUGT19-3'-GSP1	GATTACGCCAAGCTTGGCCAAATCCGCAGCTCCATCA
RyUGT19-5'-GSP1	GATTACGCCAAGCTTGCACCGTGATCTTCTCGCTTTCGTC
RyUGT21-3'-GSP1	GATTACGCCAAGCTTTCATCCAATGGCTAGATTCCAAACCTCA
RyUGT21-5'-GSP1	GATTACGCCAAGCTTCCCTTTCCGTTTGCTTTGATTCTGTCC
RyUGT22-3'-GSP1	GATTACGCCAAGCTTAACTGGAGCCTCCGGTGACGTGTATT
RyUGT24-3'-GSP1	GATTACGCCAAGCTTGGAGACGAAAGGGCTCATCATCAACAC
RyUGT24-5'-GSP1	GATTACGCCAAGCTTGATGATGAGCCCTTTCGTCTCCCTGTAC

RyUGT26-3'-GSP1 GATTACGCCAAGCTTCCTCGTACAGGGGATAGAATTGTGGAGC

RyUGT27-5'-GSP1 GATTACGCCAAGCTTGCTCCAAACCGCAGGCTAGTTCAGTG

RyUGT28-3'-GSP1 GATTACGCCAAGCTTTGAGGGCGGAATCAGAGAAGTGATGC

Table S3. Putative GT genes cloned from R. yunnanensis

No.	Name/Family	Accession No.	No.	Name/Family	Accession No.
RyUGT1	UGT75M2	MT075677	RyUGT18	UGT94AM1	MT075693
RyUGT2	UGT85A94	MT075678	RyUGT19	UGT84A63	MT075694
RyUGT3A	UGT73A27	MT075679	RyUGT20	UGT84A64	MT075695
RyUGT3B	UGT73A28	MT075680	RyUGT21	UGT73A30	MT075696
RyUGT4	UGT76AB1	MT075681	RyUGT22	UGT85AK1	MT075697
RyUGT5	UGT91AC1	MT075682	RyUGT23	UGT71AS4	MT075698
RyUGT6	UGT91AD1	MT075683	RyUGT24	UGT71AS1	MT075687
RyUGT8	UGT75Y1	MT075684	RyUGT26	UGT709T1	MT075699
RyUGT9	UGT71AR1	MT075685	RyUGT27	UGT72AL3	MT075700
RyUGT10	UGT73A29	MT075686	RyUGT28	UGT71AR2	MT075701
RyUGT11	UGT71AS1	MT075687	RyUGT29	UGT79A14	MT075702
RyUGT12	UGT71AS2	MT075688	RyUGT32	UGT71AS5	MT075703
RyUGT13	UGT71AS3	MT075689	RyUGT33	UGT88A31	MT075704
RyUGT14	UGT86A19	MT075690	RyUGT34	UGT72B52	MT075705
RyUGT15	*None	MT075691	RyUGT35	UGT85K33	MT075706
RyUGT16	*None	MT075692	RyUGT36	UGT87AA1	MT075707

Note: "*" indicated that are unable to assign name since it does not align with other named glycosyltransferases, which might be another different transferase superfamily.

Table S4. Gene-specific primers, restriction sites corresponding to pET-28a $(+)$, endonucleases used and protein expression

Primer name	Primer pairs ($5^{\prime} \rightarrow \mathbf{3}^{\prime}$) (Containing homologous sequences from pET-28a(+) vectors)	Endonuclease	Protein expression or not	kDa
RyUGT1	UGT1-F: AATGGGTCGCGGATCCGAATTCATGGTGGAAAAGCAGCACC UGT1-R: CTCGAGTGCGGCCGCAAGCTTGTTATGATCCCAGATTCTGTAAAAAG	EcoR I/Hind III	Yes	51.54
RyUGT2	UGT2-F: ACAGCAAATGGGTCGCGGATCCATGGATGCACCTGATCATCAGC UGT2-R: CTCGAGTGCGGCCGCAAGCTTGCTACTGCATGATTGCTTCTATAAACTTGTC	BamH I/Hind III	Yes	54.20
RyUGT3A	UGT3A-F: AATGGGTCGCGGATCCGAATTCATGGGCCGGAAGCAGCTG UGT3A-R: CTCGAGTGCGGCCGCAAGCTTGTCAATTATTTGAATGGTATGCACTCAATTCTT	EcoR I/Hind III	Yes	54.45
RyUGT3B	UGT3B-F: ACAGCAAATGGGTCGCGGATCCATGGGGCGGCAGCAGCTG UGT3B-R: TGGTGCTCGAGTGCGGCCGCATCAACGGTACGCACTCAATTCC	BamH I/Not I	Yes	53.51
RyUGT4	UGT4-F: AATGGGTCGCGGATCCGAATTCATGGCAAAACCCAGGGCAC UGT4-R: CTCGAGTGCGGCCGCAAGCTTGTCACGGGAATGAGCAGATAAAATCTG	EcoR I/Hind III	inclusion body	47.63
RyUGT5	UGT5-F: AATGGGTCGCGGATCCGAATTCATGGCTACTGAAACTAAGAAGCATCA UGT5-R: TGGTGCTCGAGTGCGGCCGCATTAAACGGGACGTTTGAATTTCTCAA	EcoR I/Not I	inclusion body	51.50
RyUGT6	UGT6-F: AATGGGTCGCGGATCCGAATTCATGGAGAGCAAAACTGATCAAATCCA UGT6-R: CTCGAGTGCGGCCGCAAGCTTGCTAGCATAACTTTTTTCACCCCATTGA	EcoR I/Hind III	Yes	50.94
RyUGT8	UGT8-F: AATGGGTCGCGGATCCGAATTCATGGAAAAATGCCATTTTCTCATCGT UGT8-R: CTCGAGTGCGGCCGCAAGCTTGCTAAGTCAAAAGCAAAGAATTATTGACACA	EcoR I/Hind III	inclusion body	52.88

RyUGT9		EcoR I/Hind III	Yes	50.69
	UGT9-R: CTCGAGTGCGGCCGCAAGCTTGCTAGTTTGAATATTCTTCAATGAAGCGC			
RyUGT11	UGT11-F: AATGGGTCGCGGATCCGAATTCATGAAGAAAGCCGAGCTGGT	EcoR I/Hind III	Yes	52.64
	UGT11-R: CTCGAGTGCGGCCGCAAGCTTGTCAAGGGATACTGTCGATTACATTGTCA			
RyUGT12	UGT12-F: ACAGCAAATGGGTCGCGGATCCATGGGAAAAGATACGAAGAATGCAGA	BamH I/Not I	Yes	52.73
	UGT12-R: TGGTGCTCGAGTGCGGCCGCATCATGAACTGATGTTATCCAACGCA			
RyUGT14	UGT14-F: ACAGCAAATGGGTCGCGGATCCATGGCGGGCACCAACC	BamH I/Not I	Yes	54.67
	UGT14-R: TGGTGCTCGAGTGCGGCCGCACTAATGGCCATTAGCCGTTATCATCC			
RyUGT15	UGT15-F: AATGGGTCGCGGATCCGAATTCATGCGGGGTTCTCATCATCA	EcoR I/Hind III	Yes	52.33
	UGT15-R: CTCGAGTGCGGCCGCAAGCTTGTTAGCCATCCTTCTGCTCCG			
RyUGT16	UGT16-F: AATGGGTCGCGGATCCGAATTCATGTACTCCAAGAATAGAACTCACGG	EcoR I/Hind III	No	50.57
	UGT16-R: CTCGAGTGCGGCCGCAAGCTTGTTAAGCTAATAATTCCTCAGATTCGCCG			
RyUGT18	UGT18-F: AATGGGTCGCGGATCCGAATTCATGGAGAAGCTTGAAAATTCCTCT	EcoR I/Hind III	Yes	47.60
	UGT18-R: CTCGAGTGCGGCCGCAAGCTTGCTAGTTTTTTTCCCTCATATCATTCCCA			
RyUGT19	UGT19-F: AATGGGTCGCGGATCCGAATTCATGGTCGGCCAAATCCGC	EcoR I/Not I	Yes	52.09
	UGT19-R: TGGTGCTCGAGTGCGGCCGCACTACCCTAAAGTAACAGTTTGAATGTCA			
RyUGT20	UGT20-F: AATGGGTCGCGGATCCGAATTCATGGTGGCCCAAACCTACGA	EcoR I/Hind III	No	51.96
	UGT20-R: CTCGAGTGCGGCCGCAAGCTTGCTACCCTAAAGTAACAGTTTGAATGTCA			
RyUGT22	UGT22-F: AATGGGTCGCGGATCCGAATTCATGGCGTCCTCCCCGC	EcoR I/Not I	Yes	52.73
	UGT22-R: TGGTGCTCGAGTGCGGCCGCATTATGGGGCACATGAGGTCTTT			

Table S5. LC-MS data summary of glycosylated compounds

No.	Compound name	Detected Substrate Mass (m/z)	Product Retention Time (min)		Detected Product$\operatorname{Mass}(m / \mathbf{z})$		Product Type		Yield (\%)	
			by RyUGT3A	$\begin{gathered} \text { by } \\ \text { RyUGT12 } \end{gathered}$	by RyUGT3A	by RyUGT12	$\begin{gathered} \text { by } \\ \text { RyUGT3A } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { by } \\ \text { RyUGT12 } \end{gathered}\right.$	by RyUGT3A	$\begin{gathered} \text { by } \\ \text { RyUGT12 } \end{gathered}$
1	6-Hydroxyalizarin	$269.43[\mathrm{M}-\mathrm{H}]^{-}$	27.294	27.294	$431.31[\mathrm{M}-\mathrm{H}]^{-}$	$431.31[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	78	9
			28.111	28.111	$431.31[\mathrm{M}-\mathrm{H}]^{-}$	$431.31[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	17	88
			15.109	15.109	$\begin{gathered} 639.15 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	$\begin{gathered} 639.15 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	Di-	Di-	5	1.5
2	2-Methyl-3-hydroxy -9,10-anthraquinone	$269.30[\mathrm{M}-\mathrm{H}]^{-}$	27.273	27.273	$551.33[\mathrm{M}-\mathrm{H}]^{-}$	$551.33[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	50	41
3	3,6-Dihydroxy-xanthen-9-one	$227.41[\mathrm{M}-\mathrm{H}]^{-}$	13.277	13.277	$389.46[\mathrm{M}-\mathrm{H}]^{-}$	$389.46[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	5	46
			18.83	N.D.	$551.15[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Di-	-	94	-
4	Emodin	$269.25[\mathrm{M}-\mathrm{H}]^{-}$	28.87	28.87	$431.31[\mathrm{M}-\mathrm{H}]^{-}$	$431.31[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	98	85
5	2-Hydroxy-9,10anthraquinone	$223.26[\mathrm{M}-\mathrm{H}]^{-}$	24.482	24.482	$\begin{gathered} 431.17 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	$\begin{gathered} 431.17 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	Mono-	Mono-	78	42

6	2-Amino-3-hydroxy- 9,10-anthraquinone	$238.29[\mathrm{M}-\mathrm{H}]^{-}$	23.315	23.315	$400.35[\mathrm{M}-\mathrm{H}]^{-}$	$400.35[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	77	60
7	1,3-Dihydroxy- 9,10-anthraquinone	$239.09[\mathrm{M}-\mathrm{H}]^{-}$	27.018	27.018	$\begin{gathered} 447.18 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	$\begin{gathered} 447.18 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	Mono-	Mono-	79	65
8	2,6-Dihydroxy- 9,10-anthraquinone	$239.24[\mathrm{M}-\mathrm{H}]^{-}$	16.266	16.266	$401.34[\mathrm{M}-\mathrm{H}]^{-}$	$401.34[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	65	35
9	Aloe-emodin	$269.30[\mathrm{M}-\mathrm{H}]^{-}$	27.705	N.D.	$431.40[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	25	-
10	1-Hydroxy-2-hydroxymethyl- 9,10-anthraquinone	$253.28[\mathrm{M}-\mathrm{H}]^{-}$	27.195	N.D.	$415.33[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	5	-
11	Purpurin	$255.38[\mathrm{M}-\mathrm{H}]^{-}$	32.4	32.4	$417.35[\mathrm{M}-\mathrm{H}]^{-}$	$417.35[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	85	84
12	$\begin{gathered} \text { 2,6-Diamino- } \\ \text { 9,10-anthraquinone } \end{gathered}$	$239.42[\mathrm{M}+\mathrm{H}]^{-}$	13.747	13.747	$423.10[\mathrm{M}+\mathrm{Na}]^{+}$	$423.10[\mathrm{M}+\mathrm{Na}]^{+}$	Mono-	Mono-	88	40
			20.914	20.914	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	95	43
			21.876	N.D.	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	4	-
			24.755	24.755	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	90	68
			27.973	27.973	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	$431.35[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	9	-

15	Kaempferol	$285.32[\mathrm{M}-\mathrm{H}]^{-}$	20.267	20.267	$447.33[\mathrm{M}-\mathrm{H}]^{-}$	$447.33[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	51	27
			20.972	20.972	$447.33[\mathrm{M}-\mathrm{H}]^{-}$	$447.33[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	2	36
			9.89	N.D.	$609.34[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Di-	-	46	-
16	Luteolin	$285.27[\mathrm{M}-\mathrm{H}]^{-}$	16.248	16.248	$447.28[\mathrm{M}-\mathrm{H}]^{-}$	$447.28[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	19	78
			21.435	N.D.	$447.28[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	55	-
17	Quercetin	$301.25[\mathrm{M}-\mathrm{H}]^{-}$	16.805	16.805	463.26[M-H] ${ }^{-}$	$463.26[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	38	25
			15.838	15.838	$625.4[\mathrm{M}-\mathrm{H}]^{-}$	625.4[M-H] ${ }^{-}$	Di-	Di-	60	72
18	Myricetin	$317.37[\mathrm{M}-\mathrm{H}]^{-}$	13.524	13.524	$479.54[\mathrm{M}-\mathrm{H}]^{-}$	479.54[M-H] ${ }^{-}$	Mono-	Mono-	51	47
			18.432	18.432	479.54[M-H] ${ }^{-}$	479.54[M-H] ${ }^{-}$	Mono-	Mono-	28	5
			20.034	20.03	$479.54[\mathrm{M}-\mathrm{H}]^{-}$	$479.54[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	14	17
19	Naringenin	$271.32[\mathrm{M}-\mathrm{H}]^{-}$	20.944	20.944	$433.38[\mathrm{M}-\mathrm{H}]^{-}$	$433.38[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	79	59
			22.08	N.D.	$433.38[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	19	-
20	Daidzein	$253.28[\mathrm{M}-\mathrm{H}]^{-}$	12.941	N.D.	$415.33[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	98	-
21	Phloretin	$273.25[\mathrm{M}-\mathrm{H}]^{-}$	23.26	23.26	$435.45[\mathrm{M}-\mathrm{H}]^{-}$	$435.45[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	8.4	5
			25.796	25.796	$435.45[\mathrm{M}-\mathrm{H}]^{-}$	$435.45[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	3.7	47

			28.166	28.166	$435.45[\mathrm{M}-\mathrm{H}]^{-}$	$435.45[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	76	3
22	Butein	271.32[M-H] ${ }^{-}$	25.663	25.663	$433.38[\mathrm{M}-\mathrm{H}]^{-}$	$433.38[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	30	91.5
			19.453	N.D.	$433.38[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-	13	-
			13.354	N.D.	$595.38[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Di-	-	49	-
23	Hematoxylin	$301.44[\mathrm{M}-\mathrm{H}]^{-}$	7.47	N.D.	$463.45[\mathrm{M}-\mathrm{H}]^{-}$	N.D.	Mono-	-.	36	-.
24	Silibinin	$481.45[\mathrm{M}-\mathrm{H}]^{-}$	13.938	13.938	$643.39[\mathrm{M}-\mathrm{H}]^{-}$	$643.39[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	62	13
			11.5	11.5	$643.39[\mathrm{M}-\mathrm{H}]^{-}$	$643.39[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	34	9
			11.15	11.15	$643.39[\mathrm{M}-\mathrm{H}]^{-}$	$643.39[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	3	77
25	Resveratrol	$227.31[\mathrm{M}-\mathrm{H}]^{-}$	16.504	16.504	$389.32[\mathrm{M}-\mathrm{H}]^{-}$	$389.32[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	13	14
			13.293	13.293	$551.33[\mathrm{M}-\mathrm{H}]^{-}$	$551.33[\mathrm{M}-\mathrm{H}]^{-}$	Di-	Mono-	63	61
26	Bis-demethoxycurcumin	$307.37[\mathrm{M}-\mathrm{H}]^{-}$	23.731	23.731	$469.38[\mathrm{M}-\mathrm{H}]^{-}$	$469.38[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	18	52
			28.916	28.916	$631.43[\mathrm{M}-\mathrm{H}]^{-}$	$631.43[\mathrm{M}-\mathrm{H}]^{-}$	Di-	Di-	72	4
27	Magnolol	$265.43[\mathrm{M}-\mathrm{H}]^{-}$	30.203	30.203	427.12[M-H] ${ }^{-}$	427.12[M-H] ${ }^{-}$	Mono-	Mono-	97	30
28	Chlorogenic acid	$353.43[\mathrm{M}-\mathrm{H}]^{-}$	9.139	9.139	$515.46[\mathrm{M}-\mathrm{H}]^{-}$	$515.46[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	35	33
29	Ferulic acid	193.44[M-H] ${ }^{-}$	11.692	11.692	$355.36[\mathrm{M}-\mathrm{H}]^{-}$	$355.36[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	99	99
30	Paeonol	$165.50[\mathrm{M}-\mathrm{H}]^{-}$	12.028	12.028	373.42	373.42	Mono-	Mono-	91	96

					$[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}$	[M+HCOOH-H] ${ }^{-}$				
31	3,4-Dichloroaniline	$160.23[\mathrm{M}-\mathrm{H}]^{-}$	11.378	11.378	$322.37[\mathrm{M}-\mathrm{H}]^{-}$	$322.37[\mathrm{M}-\mathrm{H}]^{-}$	Mono-	Mono-	83	36
32	3,4-Dichlorobenzenethiol	$177.06[\mathrm{M}-\mathrm{H}]^{-}$	11.927	11.927	$\begin{gathered} 385.28 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	$\begin{gathered} 385.28 \\ {[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}} \end{gathered}$	Mono-	Mono-	99	70
Note:	N.D.	indicates			glycosylation	prod				dete

Table S6. Primers used in site-directed mutagenesis

Primer name	$\mathbf{5}^{\prime} \rightarrow \mathbf{3}^{\prime}$
RyUGT3A-GLY17A-F1	CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACA
RyUGT3A-GLY17A-tbF	CTTCTTCTTCCCCATGTTAGCTCACGCCCACATGCTCCCAATCCTGGATATGGC
RyUGT3A-GLY17A-tbR	GCCATATCCAGGATTGGGAGCATGTGGGCGTGAGCTAACATGGGGAAGAAGAAG
RyUGT3A-GLY17A-R1	GCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTTCAATTATTTGAATGG
RyUGT3A-HIP18A-F1	CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACA
RyUGT3A-HIP18A-tbF	TCTTCCCCATGTTAGCTCACGGCGCCATGCTCCCAATCCTGGATATGGCA
RyUGT3A-HIP18A-tbR	TGCCATATCCAGGATTGGGAGCATGGCGCCGTGAGCTAACATGGGGAAGA
RyUGT3A-HIP18A-R1	GCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTTCAATTATTTGAATGG
RyUGT3A-ARG192A-F1	CAGGTTTCGTTATACGAGGCTAAGAAGCTCGAAACAGAGACGGAGTTTAGCAA
RyUGT3A-ARG192A-R1	TTTCGAGCTTCTTAGCCTCGTATAACGAAACCTGGCCTCTCGTCA
RyUGT3A-SER291A-F1	GTGTACGTCTGTTTCGGAGCTATGGCGAACTTCACACGCGATCAGTTGCACGAG
RyUGT3A-SER291A-R1	TGAAGTTCGCCATAGCTCCGAAACAGACGTACACCACGGAGTTTTGAGGTTT
RyUGT3A-SER375A-F1	CGCATTGCGGGTGGAATGCTACGCTGGAGAGTGTTTCTTCCGGGGTCCCGATGATA

```
RyUGT3A-GLU378A-F1 GGAATTCGACGCTGGCTAGTGTTTCTTCCGGGGTCCCGATGATA
RyUGT3A-GLU378A-R1 ACCCCGGAAGAAACACTAGCCAGCGTCGAATTCCACCCGCAATGC
RyUGT3A-GLU394A-F1 CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACA
RyUGT3A-GLU394A-tbF TGATAACATGGCCGATGTTTGCGGCGCAGTTTTTGAATGAGAAATTGCT
RyUGT3A-GLU394A-tbR AGCAATTTCTCATTCAAAAACTGCGCCGCAAACATCGGCCATGTTATCA
RyUGT3A-GLU394A-R1 GCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTTCAATTATTTGAATGG
RyUGT3A-GLN395A-F1 CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACA
RyUGT3A-GLN395A-tbF ATAACATGGCCGATGTTTGCGGAGGCGTTTTTGAATGAGAAATTGCTTA
RyUGT3A-GLN395A-tbR TAAGCAATTTCTCATTCAAAAACGCCTCCGCAAACATCGGCCATGTTAT
RyUGT3A-GLN395A-R1 GCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTTCAATTATTTGAATGG
RyUGT12-GLY19A-F1 ATGGGAAAAGATACGAAGAATGCAGAGCTGGTTTTCATTCCCACTCCCGGAGCCGCCCACTTAACATCCACCATAGAA
RyUGT12-HIP20A-F1 ATGGGAAAAGATACGAAGAATGCAGAGCTGGTTTTCATTCCCACTCCCGGAGCCGGCGCCTTAACATCCACCATAGAAGTA
RyUGT12-SER367A-F1 GAAAGATGCCGCCGGCTTCCTCCCGGGGGACTACGACAACCTGGACG
RyUGT12-SER367A-tbF GGTTCGTCTCGCACTGCGGCTGGGCTTCTACGCTGGAGAGCATCTGGT
RyUGT12-SER367A-tbR ACCAGATGCTCTCCAGCGTAGAAGCCCAGCCGCAGTGCGAGACGAACC
RyUGT12-SER367A-R1 ATTAATTCTCATGTTTGACAGCTTATCATCGATAAGCTTTAATGCGGTAGTTT
```

RyUGT12-GLU370AF1	GAAAGATGCCGCCGGCTTCCTCCCGGGGGACTACGACAACCTGGACG
RyUGT12-GLU370A-tbF	CTGCGGCTGGAATTCTACGCTGGCGAGCATCTGGTTCGGCGTTCCGA
RyUGT12-GLU370A-tbR	TCGGAACGCCGAACCAGATGCTCGCCAGCGTAGAATTCCAGCCGCAG
RyUGT12-GLU370A-R1	ATTAATTCTCATGTTTGACAGCTTATCATCGATAAGCTTTAATGCGGTAGTTT
RyUGT12-TYR384A-F1	GAAAGATGCCGCCGGCTTCCTCCCGGGGGACTACGACAACCTGGACG
RyUGT12-TYR384A-tbF	TTCGTCTCGCACTGCGGCTGGAATGCTACGCTGGAGAGCATCTGGTTCGGC
RyUGT12-TYR384A-tbR	GCCGAACCAGATGCTCTCCAGCGTAGCATTCCAGCCGCAGTGCGAGACGAA
RyUGT12-TYR384A-R1	ATTAATTCTCATGTTTGACAGCTTATCATCGATAAGCTTTAATGCGGTAGTTT
RyUGT12-GLU386A-F1	GAAAGATGCCGCCGGCTTCCTCCCGGGGGACTACGACAACCTGGACG
RyUGT12-GLU386A-tbF	AGCGTCGTGGCCGCAGTACGCGGCGCAGCAGACGAACGCGTTCTTTC
RyUGT12-GLU386A-tbR	GAAAGAACGCGTTCGTCTGCTGCGCCGCGTACTGCGGCCACGACGCT
RyUGT12-GLU386A-R1	ATTAATTCTCATGTTTGACAGCTTATCATCGATAAGCTTTAATGCGGTAGTTT

RyUGT12-SER411A-F1 TTGATTATGTGAAGGCCGTCGGAACTGAGAGCACTGAGATTGTGAGCGC

RyUGT12-SER411A-R1 CTCAGTTCCGACGGCCTTCACATAATCAATCTTGATCTCCACCGCCA

Table S7. Primers used for RT-qPCR normalization

Gene name	Primer sequence ($5^{\prime} \rightarrow 3^{\prime}$)	Amplicon length (bp*)	Primers $\mathbf{T m}^{*}\left({ }^{\circ} \mathrm{C}\right)$	\mathbf{E}^{*} (\%)	R ${ }^{\text {* }}$
RyUGT3A	For: GACTCCGAACCGTTTATTATCCC				
		287	61.2/61.9	98.02	0.999
	Rev: CCTCTTTCTGCCTTATCTTCAACC				
RyUGT3B	For: AAGCAAACGGAAAGGGACTAA				
		210	58.7/60.2	90.27	0.994
	Rev: CCACCCCAATCTTCAAAACG				
RyUGT11	For: TTCCTCCGTTGTTTTCCTTTG				
		158	59.5/59.4	98.79	0.998
	Rev: TTTCGTAGTCTTCGGGGAGC				
RyUGT12	For: AAATCGCCTACGCACTTCAG				
		148	58.2/58.7	92.03	0.996
	Rev: GCCGCTGTCCGAGTAAGAA				

Note: * bp, Tm, E and R^{2} indicate base pair, melting temperature, PCR efficiency, correlation coefficient, respectively. Specificity of primer pairs for RT-qPCR amplification was showed in Figure S37A and the melt curves with single peaks produced for all amplicons (Figure S37B). Standard curves of four target genes were shown in Figure S37C.

Table S8. Primers used for constructing pCAMBIA1302-RyUGT3A and -RyUGT12

Gene name	vectors
	For:TTGGAGAGAACACGGGGGACTCTTGACCATGGTAGATCTATGGGCCGGAAG
	CAGCTGCACGT
RyUGT3A	
	Rev:ACTCCAGTGAAAAGTTCTTCTCCTTTACTAGTATTATTTGAATGGTATGCAC
	TCAA
	For:TTGGAGAGAACACGGGGGACTCTTGACCATGGTAGATCTATGGGAAAAGAT
	ACGAAGAATGCAGA
RyUGT12	
	Rev:ACTCCAGTGAAAAGTTCTTCTCCTTTACTAGTTGAACTGATGTTATCCAACG
	CAGT

3. Supplementary Figures

Order	Name	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	\mathbf{R}_{4}	R_{5}	R_{6}
1	2-Hydroxymethyl-AQ	H	$\mathrm{CH}_{2} \mathrm{OH}$	H	H	H	H
2	2-Methoxycarbonyl-AQ	H	COOCH_{3}	H	H	H	H
3	2-Carbaldehyde-AQ	H	CHO	H	H	H	H
4	Alizarin	OH	OH	H	H	H	H
5	Xanthopurpurin	OH	H	OH	H	H	H
6	3-Hydroxy-2-hydroxymethyl-AQ	H	$\mathrm{CH}_{2} \mathrm{OH}$	OH	H	H	H
7	1,3-Dihydroxy-2-methyl-AQ (Rubiadin)	OH	CH_{3}	OH	H	H	H
8	Soranjidiol	OH	CH_{3}	H	H	H	OH
9	Anthragallol	OH	OH	OH	H	H	H
10	Anthragallol-2,3-dimethyl ether	OH	OCH_{3}	OCH_{3}	H	H	H
11	Anthragallol-3-methyl ether	OH	OH	OCH_{3}	H	H	H
12	1,4-Dihydroxy-2-methyl-AQ	OH	CH_{3}	H	OH	H	H
13	Pseudopurpurin	OH	OH	COOH	OH	H	H
14	1,3-Dihydroxy-6-methoxy-2-methyl-AQ	OH	CH_{3}	OH	H	H	OCH_{3}
15	1,3,6-Trihydroxy-2-methyl-AQ (6-Hydroxyrubiadin)	OH	CH_{3}	OH	H	H	OH
16	Rubianthraquinone	OCH_{3}	CH_{3}	OH	H	H	OH
17	Lucidin-3-O- β-D-glucopyranoside	OH	$\mathrm{CH}_{2} \mathrm{OH}$	OGlc	H	H	H
18	Rubiquinone-3-O- β-D-glucopyranoside	OH	CH_{3}	OGlc	H	H	OH

Rubiquinone-3-O- β-L-rhamnopyranosyl$(1 \rightarrow 2)-\beta$-D-glucopyranoside

$$
\mathrm{OH} \quad \mathrm{CH}_{3}
$$

-OGlc

$$
(1 \rightarrow 2)-\beta \text {-D-glucopyranoside }
$$

$(2 \rightarrow 1)$ Rha

Rubiquinone-3- O - β-L-rhamnopyranosyl-

$$
\begin{gathered}
(1 \rightarrow 2)-\left(3^{\prime}-O \text {-acetyl)- } \beta\right. \text {-D- } \\
\text { glucopyranoside }
\end{gathered}
$$

Rubiquinone-3-(6'- O-acetyl)- O - β-Dglucopyranoside

Rubiquinone-3- $O-\beta$-D-xylopyranosyl-

$$
\begin{gathered}
(1 \rightarrow 2)-\left(6^{\prime}-O \text {-acetyl)- } \beta\right. \text {-D- } \\
\text { gluconvranoside }
\end{gathered}
$$

$\mathrm{OH} \quad \mathrm{CH}_{3}$ (6'-OAc)-OGlc $(2 \rightarrow 1) \mathrm{Xyl}$

Purpurin-2-O- β-D-xylopyranosyl-($1 \rightarrow 6$)-
OGlc
OH
H
H OH
H
β-D-glucopyranoside

$$
(6 \rightarrow 1) \mathrm{Xyl}
$$

$A Q=9,10$-anthraquinone

Figure S1. Chemical structures of anthraquinones with high contents isolated from R. yunnanensis. Among them, the glycosylation sites of all anthraquinone glycosides occur in their β-hydroxyl groups.

Figure S2. Results of 3 '-RACE, 5 '-RACE and their assemble and alignment of 'TRINITY_DN123143_c0_g2_i4'. (A) The results of 3'-RACE are displayed on the left and the right one is the 5 '-RACE results. M: DL10000 Marker; 1-2: 3'-RACE by UGT3-3'-GSP1 and UGT3-3'-GSP2; 3-4: 5'-RACE by UGT3-5'-GSP1 and UGT3-5'-GSP2. (B) The assemble and alignment results of 3 '-RACE and 5'-RACE of 'RyUGT3: TRINITY_DN123143_c0_g2_i4'.

Figure S3. Phylogenetic analysis of 32 GTs from R. yunnanensis and 122 GTs from A. thaliana. The ClustalW program was employed to analyze amino acid sequences and the bootstrap consensus tree was constructed using MEGA 6.0 software with the neighborjoining method and 1000 bootstrap replicates. RyUGTs from R. yunnanensis are highlighted in green and those from A. thaliana are in black. The four RyUGTs whose functions were characterized in this study were marked with stars. The 14 subgroups are indicated in different colors, and the 32 GTs were clustered into at least 12 subfamilies (UGT71, 72, 73, 75, 76, 79, 84, 85, 86, 87, 88, and 91) or 8 groups (A, D, E, G, H, J, K, and L).

33

34

35

36

41

45

48

49

43

47

51

Figure S4. Compounds 33-52 are not transglucosylized by RyUGT3A and RyUGT12.

Figure S5. SDS-PAGE and Western Blotting detection of soluble expressions of the four His-tagged RyUGTs. (A and B): M indicated the protein Markers; Lane 1-6: crude protein extract; among them, Lane 1 and 2 indicated E. coli BL21(DE3) and the strain containing empty vector, respectively. Lane 3-6 indicated the strains containing recombinant plasmid pET-28a(+)-RyUGT11, pET-28a(+)-RyUGT12, pET-28a(+)-RyUGT3A and pET-28a(+)RyUGT3B, respectively. (C): SDS-PAGE of the four His-tagged RyUGTs purified by Ni-NTA affinity chromatography. Lane 1-4 indicated the purified recombinant protein RyUGT3A, RyUGT3B, RyUGT11 and RyUGT12, respectively.

Figure S6. Effects of reaction time (A), temperature (B), reaction buffer (C), and divalent metal ions (D) on the activities of RyUGT3A. 6-Hydroxyrubiadin (1) was used as the acceptor and UDP-Glc was used as the sugar donor. An optimized reaction time of 60 min was used for (B), (C) and (D). Experiment with 5 mM EDTA or Tris- $\mathrm{HCl}(\mathrm{pH} 7.5$, control blank (CK)) was performed as a negative control in (D). RyUGT3A exhibited its maximum activity at $\mathrm{pH} 9.0\left(50 \mathrm{mM}\right.$ Tris- HCl buffer) and $30^{\circ} \mathrm{C}$.

Figure S7. Effects of reaction time (A), temperature (B), reaction buffer (C), and divalent metal ions (D) on the activities of RyUGT12. 6-Hydroxyrubiadin (1) was used as the acceptor and UDP-Glc was used as the sugar donor. An optimized reaction time of 4 h was used for (B), (C) and (D). Experiment with 5 mM EDTA or Tris-HCl (pH 7.5, control blank (CK)) was performed as a negative control in (D). RyUGT3A exhibited its maximum activity at $\mathrm{pH} 8.0\left(50 \mathrm{mM}\right.$ Tris- HCl buffer) and $40^{\circ} \mathrm{C}$.

Figure S8. Determination of kinetic parameters for purified RyUGT3A (A) /RyUGT12 (B). The apparent K_{m} value was determined using 6-hydroxyrubiadin (1) as the acceptor and UDP-Glc as the sugar donor at $30^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$ and $\mathrm{pH} 9.0 / 8.0$ for 10 min . The apparent K_{m} values are calculated as $20.5 \mu \mathrm{M}$ and $39.5 \mu \mathrm{M}$, respectively.

Figure S9. Assessment of UDP-sugar donor catalyzed by RyUGT3A and RyUGT12. (A and B) RyUGT3A and RyUGT12 were incubated with 6-hydroxyrubiadin (1) as an acceptor and UDP-glucose, UDP-glucuronic acid, UDP-N-acetylglucosamine and UDPgalactose as sugar donors, respectively; (C) LC-MS/MS analysis of glycosylated products ($\mathbf{1 a}^{\prime}, \mathbf{1} \mathbf{b}^{\prime}, \mathbf{1 a}^{\prime \prime}$, and $\mathbf{1} \mathbf{b}^{\prime \prime}$) in the negative ion mode.

Figure S10. Percent yields of glucosylated products catalyzed by RyUGT11. Compounds (1-32) are listed based on the structural scaffolds with numbering corresponding to the structures listed in Fig. 2B. The colors in the bar graphs (Product a, \mathbf{b}, and \mathbf{c}) represent different ratios of various glycosylated products. N.D. indicates no products are detected.

Figure S11. HPLC analysis of time course of the reactions in one-pot method. (A-E) The reaction at $30{ }^{\circ} \mathrm{C}$ for 24 h with $200 \mu \mathrm{~L}$ Tris- HCl buffer solution ($50 \mathrm{mM}, \mathrm{pH} 9.0$) containing $14 \mathrm{mM} \beta$-mercaptoethanol, 5 mM UDP, 50 mM 4-nitrophenyl- β-Dglucopyranoside (53), 0.5 mM 6-hydroxyrubiadin (1) and $5 \mu \mathrm{~g}$ purified RyUGT3A. 1, 6, 12,18 , and 24 h represent the different reaction time points. (F) The reaction at $30^{\circ} \mathrm{C}$ for 24 h with $200 \mu \mathrm{~L}$ Tris- HCl buffer solution ($50 \mathrm{mM}, \mathrm{pH} 9.0$) containing $14 \mathrm{mM} \beta$ mercaptoethanol, 0.5 mM substrate $1,0.5 \mathrm{mM}$ aglycone 53a, 5 mM UDP-Glc and $5 \mu \mathrm{~g}$ purified RyUGT3A.

1b

2a

1 c

3a

ROESY , \cdots

Figure S12. Key 2D NMR correlations of four new compounds.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz})$ of compound $\mathbf{1 b}$ in DMSO- d_{6}.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz) of compound $\mathbf{1 b}$ in DMSO- d_{6}.

Figure S15. HSQC spectrum of compound $\mathbf{1 b}$ in DMSO- d_{6}.

Figure S16. HMBC spectrum of compound 1b in DMSO- d_{6}.

Figure S17. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1 b}$ in DMSO- d_{6}.

Figure S18. ROESY spectrum of compound $\mathbf{1 b}$ in DMSO- d_{6}.

Qualitative Analysis Report

Data Filename	ysy-4.d	Sample Name	e ysy-4
Sample Type	Sample	Position	Vial 64
Instrument Name	Instrument 1	User Name	
Acq Method	method-POSI.m	Acquired Time	e 7/12/2019 9:27:26 AM (UTC+08:00)
IRM Calibration Status	5 Success	DA Method	1 m
Comment			
Sample Group		Info.	
Stream Name	LC 1	Acquisition Time (Local)	7/12/2019 9:27:26 AM (UTC+08:00)
Acquisition SW Version	6200 series TOF/6500 series Q.TOF B. 06.01 (B6157)	TOF Driver Version	6.00 .01
TOF Firmware Version	17.643		

m/z	z	Abund	
63.99844	1	10094.81	
79.02177	1	268605.16	
79.04096		17580.39	
85.05938	1	40191.91	
279.15905	1	19623.09	
Formula Calculator Element			
Element	Min		Max
C		11	31
H		10	30
0		9	11

Formula Calculator Results

Formula	Best	Mass	Igt Mass	Diff (ppm)	Ion Species	CalculatedMz
C21 H20 O10	TRUE	432.10638	432.10565	1.69	C21 H21 O10	

... End Of Report ...

Figure S19. HR-ESI-MS spectrum of compound $\mathbf{1 b}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of compound $\mathbf{1 c}$ in DMSO- d_{6}.

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum (125 MHz) of compound $\mathbf{1 c}$ in DMSO- d_{6}.

Figure S22. HSQC spectrum of compound $\mathbf{1 c}$ in DMSO- d_{6}.

Figure S23. HMBC spectrum of compound $\mathbf{1 c}$ in DMSO- d_{6}.

Figure S24. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{1 c}$ in DMSO- d_{6}.

Figure S25. ROESY spectrum of compound $\mathbf{1 c}$ in DMSO- d_{6}.

Spectra

Figure S26. HR-ESI-MS spectrum of compound $\mathbf{1 c}$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of compound 2a in DMSO- d_{6}.

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz) of compound 2a in DMSO- d_{6}.

Qualitative Analysis Report

Spectra
Collision Energy
0

 Counts vs. Mass-to-Charge (m/z)

[^0]Figure S29. HR-ESI-MS spectrum of compound 2a.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum $(400 \mathrm{MHz})$ of compound 3a in DMSO- d_{6}.

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz) of compound 3a in DMSO- d_{6}.

Qualitative Analysis Report

Data Filename	3A-24-DT.d	Sample Name	e 3A-24-DT
Sample Type	Sample	Position	Vial 1
Instrument Name	Instrument 1	User Name	
Acq Method IRM Calibration Status	method-POSI.m	Acquired Time	e 10/31/2019 9:03:06 AM (UTC+08:00)
	5 Success	DA Method	1.m
Comment			
Sample Group		Info.	
Stream Name	LC 1	Acquisition Time (Local)	$\begin{aligned} & \text { 10/31/2019 9:03:06 AM } \\ & \text { (UTC+08:00) } \end{aligned}$
Acquisition SW	6200 series TOF/6500 series	TOF Driver Version 6	6.00.01
Version	Q-TOF B.06.01 (B6157)		
TOF Firmware Version	17.643		

$\frac{\text { Spectra }}{\text { Collision Energy } \quad \text { Ionization Mode }}$

$375380 \quad 385 \quad 390395400405$
Counts vs. Mass-to-Charge (m / z)

-- End Of Report --

Figure S32. HR-ESI-MS spectrum of compound 3a.

Figure S33. (A) Homology model of RyUGT3A. (B) Ramachandran plot for RyUGT3A. Dark green dots represent the residues in favored regions; yellow dots represent the residues in allowed regions; red cross represents the residues in irrational regions.

Figure S34. (A) Homology model of RyUGT12. (B) Ramachandran plot for RyUGT12. Dark green dots represent the residues in favored regions; yellow dots represent the residues in allowed regions; red cross represents the residues in irrational regions.

Figure S35. Multiple sequence alignment of PSPG motifs of four RyUGTs. Identical residues are highlighted with a blue background and similar residues with a pink or cyan background. Gene names, GenBank accession numbers and plant species are as follows: CeUGT, XP_027161059.1, from Coffea eugenioides; GjUGT, BAK55746.1, from Gardenia jasminoides; HbUGT, XP_021684532.1, from Hevea brasiliensis; HuUGT, XP_021298085.1, from Herrania umbratica; OeUGT, XP_022868325.1, from Olea europaea; VvUGT, CAN65903.1, from Vitis vinifera.

Figure S36. Western blotting analysis of mutants of RyUGT3A (A) and RyUGT12 (B).

Figure S37. Specificity of primer pairs for RT-qPCR amplification. (A) The 2% agarose gel electrophoresis showed the expected size of a single band for each candidate reference gene, M represents the DNA size marker, lane 1-lane 4: RyUGT3A, RyUGT3B, RyUGT11, RyUGT12. (B) Melt curves with single peaks produced for these four amplicons. (C) Standard curves of four target genes directly generated by StepOne ${ }^{\mathrm{TM}}$ Real-time PCR system.

Figure S38. Quantitative comparison of relative expression levels of four RyUGTs in root and stem leaf (SL) of R. yunnanensis by RT-qPCR and FPKM. Columns indicated relative expression levels of four $R y U G T$ genes calculated by RT-qPCR (left y-axis) and $h n R N P$ was used as the reference gene ($2^{-\Delta \Delta C t}$ method); Lines indicating the relative expression levels were obtained by FPKM method (right y-axis). Error bars indicate the standard deviation of mean values of three replications.

54

55

56

Figure S39. Chemical structures of anthraquinone glycosides 54, 55, and $\mathbf{5 6}$ isolated from R. yunnanensis.

References

(1) Fan, J. T.; Kuang, B.; Zeng, G. Z.; Zhao, S. M.; Ji, C. J.; Zhang, Y. M.; Tan, N. H. J Nat Prod. 2011, 74, 2069-2080.
(2) Yi, S. Y.; Lin, Q. W.; Zhang, X. J.; Wang, J.; Miao, Y. Y.; Tan, N. H. BioMed Res Int. 2020, 2020.
(3) Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. Mol Biol Evo. 2013, 30, 2725-2729.
(4) Ross, J.; Li, Y.; Lim, E.; Bowles, D. J. Genome Biol. 2001, 2, reviews3004.
(5) Guo, D.; Wang, Y. R.; Wang, J.; Song, L. H.; Wang, Z.; Mao, B. Y.; Tan, N. H. Molecules. 2019, 24, 1-14.
(6) Feng, J.; Zhang, P.; Cui, Y. L.; Li, K.; Qiao, X.; Zhang, Y. T.; Li, S. M.; Cox, R. J.; Wu, B.; Ye, M.; Yin, W. B. Adv Synth Catal. 2017, 6, 995-1006.
(7) Liu, M. S.; Zheng, N.; Li, D. M.; Zheng, H. L.; Zhang, L. L.; Ge, H.; Liu, W. D. Med Mycol. 2016, 54, 400-408.
(8) Yin, Q. G.; Shen, G. A.; Chang, Z. Z.; Tang, Y. H.; Gao, H. W.; Pang, Y. Z. J Exp Bot. 2017, 68, 597-612.
(9) He, J. B.; Zhao, P.; Hu, Z. M.; Liu, S.; Kuang, Y.; Zhang, M.;. Li, B.; Yun, C. H.; Qiao, X.; Ye, M. Angew Chem Int Ed Engl. 2019, 58, 11513-11520.
(10) Zhang, M.; Li, F. D.; Li, K.; Wang, Z. L.; Wang, Y. X.; He, J. B.; Su, H. F.; Zhang, Z. Y.; Chi, C. B.; Shi, X. M.; Yun, C. H.; Zhang, Z. Y.; Liu, Z. M.; Zhang, L. R.; Yang, D. H.; Ma, M.; Qiao, X.; Ye, M. J Am Chem Soc. 2020, 142, 3506-3512.
(11) Itokawa, H.; Qiao, A.; Takeya, K. Phytochemistry. 1989, 28, 3465-3468.
(12) Correia-da-Silva, M.; Sousa, E.; Duarte, B.; Marques, F.; Carvalho, F.; CunhaRibeiro, L. M.; Pinto, M. M. J Med Chem. 2011, 54, 5373-5384.
(13) Zhang, W.; Ye, M.; Zhan, J. X.; Chen, Y. J.; Guo, D. Biotechnol Lett. 2004, 26, 127131.
(14) Cudlín, J.; Blumauerová, M.; Steinbeová, N.; Matějů, J.; Zalabák, V. Folia Microbiolog. 1976, 21, 54-57.
(15) Nguyen, T. T. H.; Pandey, R. P.; Parajuli, P.; Han, J. M.; Jung, H. J.; Park, Y. I.; Sohng, J. K. Molecules. 2018, 23, E2171.
(16) Masayoshi, K.; Hiroshi, S.; Tohrv, E.; Heihachiro, T.; Itiro, Y. Chem Pharm Bull. 1986, 34, 3097-3101.
(17) Liu, Q. A.; Dixon, R. J.; Mabry, T. Phytochemistry. 1993, 34, 167-170.
(18) Liu, Q.; Markhama, K. R.; Paré, P. W.; Dixon, R. A.; Mabry, T. J. Phytochemistry. 1993, 32, 925-928.
(19) He, C. N.; Wang, C. L.; Guo, S. X.; Yang, J. S.; Xiao, P. G. J Integr Plant Biol. 2006, 48, 359-363.
(20) Wu, H.; Dushenkov, S.; Ho, C. T.; Sang, S. M. Food Chem. 2009, 115, 592-595.
(21) Kinjo, J. E.; Furusawa, J. I.; Baba, J.; Takeshita, T.; Yamasaki, M.; Nohara, T. Chem Pharm Bull. 1987, 35, 4846-4850.
(22) Hanawa, F.; Tahara, S.; Mizijtani, J. Phytochemistry. 1992, 31, 3005-3007.
(23) Kanchanapoom, T.; Suga, K.; Kasai, R.; Yamasaki, K.; Kamel, M. S.; Mohamed, M. H. Chem Pharm Bull. 2002, 50, 863-865.
(24) Pfaffl, M. W. Nucleic Acids Res. 2001. 29, e45.
(25) Zhao, Y. C.; Wang, N. N.; Zeng, Z. X.; Xu, S.; Huang, C. L.; Wang, W.; Liu, T. T.; Luo, J.; Kong, L. Y. Front Plant Sci. 2016, 7, 722.
(26) Hofgen, R.; Willmitzer, L. S. Nucleic Acids Res. 1988, 16, 9877.
(27) Sparkes, I. A.; Runions, J.; Kearns, A.; Hawes, C. Nat Protoc. 2006, 1, 2019-2025.

[^0]: -- End Of Report .-.

