Supporting Information

A concise and unexpected one-pot methodology for synthesis of pyrazinone-fused pyridones

Jie Lei, ${ }^{\dagger, \ddagger}$ Jia Xu, ${ }^{\dagger}$ Dian-YongTang, ${ }^{\dagger}$ Jing-Wei Shao, ${ }^{\ddagger}$ Hong-yu Li, ${ }^{\ddagger, \star}$ Zhong-ZhuChen, ${ }^{\dagger, *}$ Zhi-Gang Xu ${ }^{\text {t,* }}$${ }^{\dagger}$ College of Pharmacy, National \& Local Joint Engineering Research Center of Targeted andInnovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as InnovativeMedicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.${ }^{7}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for MedicalSciences, Little Rock, AR 72205, USA*e-mail: HLi2@uams.edu;18883138277@163.com; xzg@cqwu.edu.cn
Table of Contents Page
General Experimental 2
Experimental Sections 3
(a) General procedures for compounds 7a-7o 3
(b) General procedures for compounds $\mathbf{7 p - 7 t}$ 3
(c) General procedures for compounds 11a-11h 3
(d) Gram scale for compound $7 \mathbf{7 a}$ 4
(e) General procedures for compound 14 5
(f) DFT calculations for compound 7a. 5
NMR Characterization Data and Figures of Products 7

General Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift in $\mathrm{ppm}(\delta)$, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), relative intensity. ${ }^{13} \mathrm{C}$ NMR data are reported as follows: chemical shift in ppm (δ). LC/MS analyses were performed on a Shimadzu-2020 LC-MS instrument using the following conditions: Shim-pack VP-ODS C18 column (reverse phase, $150 \times 4.6 \mathrm{~mm}$); a linear gradient from 10% water and 90% acetonitrile to 75% acetonitrile and 25% water over 6.0 min ; flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$; UV photodiode array detection from 200 to 400 nm . The products were purified by Biotage Isolera ${ }^{\text {TM }}$ Spektra Systems and hexane/EtOAc solvent systems. All reagents and solvents were obtained from commercial sources and used without further purification. All microwave irradiation experiments were carried out in a Biotage ${ }^{\circledR}$ Initiator Classic microwave apparatus with continuous irradiation power from 0 to 400 W with utilization of the standard absorbance level of 250 W maximum power (external surface sensor for temperature monitoring). The reactions were carried out in 10 mL glass tubes, sealed with microwave cavity. The reaction was irradiated at a required ceiling temperature using maximum power for the stipulated time. Then it was cooled to $50^{\circ} \mathrm{C}$ with gas jet cooling.

Experimental Sections

(a) General procedures for compound 7a-7o.

Aldehyde (0.3 mmol) and propargylamine (0.3 mmol) were stirred in TFE (2.0 mL) for 30 min , then phenylacetic acid $(0.3 \mathrm{mmol})$ and aromatic isocyanide $(0.3 \mathrm{mmol})$ were added to TFE solution. Subsequently, the four-component reaction was stirred for 5 h at room temperature. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under nitrogen blowing. Then the crude residue was subjected to DIPA (2.0 equiv.) and DMF (2.0 mL) solution at 130 ${ }^{\circ} \mathrm{C}$ for 2 h . After the reaction was cooled to room temperature and the solvent was removed, the residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane $(0-100 \%)$ to afford the relative targeted product 7a-7o.

(b) General procedures for compound $7 \mathbf{p - 7 t}$.

Aldehyde (0.3 mmol) and propargylamine (0.3 mmol) were stirred in TFE (2.0 mL) for 30 min , then phenylacetic acid $(0.3 \mathrm{mmol})$ and aliphatic isocyanide $(0.3 \mathrm{mmol})$ were added to TFE solution. Subsequently, the four-component reaction was stirred for 5 h at room temperature. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under nitrogen blowing. Then the crude residue was subjected to DIPA (2.0 equiv.) and DMF (2.0 mL) solution at 130 ${ }^{\circ} \mathrm{C}$ for 2 h . After evaporated the solvent, the residue was directly subjected to the solution of $50 \% \mathrm{HCl} / \mathrm{AcOH}$ under microwave irradiation condition at $120^{\circ} \mathrm{C}$ for 10 min . The crude compound was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane ($0-100 \%$) to afford the relative targeted product 7p-7t.
(c) General procedures for compound 11a-11h.

Aldehyde (0.3 mmol) and amine (0.3 mmol) were stirred in TFE (2.0 mL) for 30 min , then phenylacetic acid $(0.3 \mathrm{mmol})$ and isocyanide $(0.3 \mathrm{mmol})$ were added to TFE solution. Subsequently, the four-component reaction was stirred for 5 h at room temperature. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under nitrogen blowing. Then the crude residue was subjected to DIPA (2.0 equiv.) and DMF (2.0 mL) at $130{ }^{\circ} \mathrm{C}$ for 2 h . After the reaction was cooled to room temperature, the residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100\%) to afford the relative targeted product 11a-11h.
(d) Gram scale for compound 7a

The mixture of Chromone-3-carboxaldehyde (2.0 mmol) and propargylamine (2.0 mmol) was stirred in TFE (10.0 mL) at room temperature for 30 min . Then 4-nitrophenylacetic acid (2.0 mmol) and 2,6-dimethylphenyl isocyanide (2.0 mmol) were added, respectively. When the addition was completed, the reaction was stirred under room temperature for 6 h . When the reaction was completed, the solvent was removed under reduced pressure. Then the crude residue was subjected to DIPA (2.0 equiv.) and DMF (10.0 mL) at $130{ }^{\circ} \mathrm{C}$ for 2 h . The compound 7 a was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100\%) in yield of $81 \%(0.844 \mathrm{~g})$.

(e) General procedures for compounds 14 and 17.

3-Methylbutanal $\mathbf{1 2}$ or cyclohexanone $\mathbf{1 6}(0.3 \mathrm{mmol})$ and prop-2-yn-1-amine $\mathbf{2}$ (0.3 mmol) were stirred in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ for 30 min , then benzo $[d][1,3]$ dioxole-5-carboxylic acid $13(0.3 \mathrm{mmol})$ and 2,6-dimethylphenyl isocyanide $4 \mathbf{a}(0.3 \mathrm{mmol})$ were added to MeOH solution. Subsequently, the four-component reaction was stirred overnight at room temperature. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100\%) to afford the relative targeted product $\mathbf{1 4}$ with 92% yield and product $\mathbf{1 7}$ with 89% yield.
(f) Density functional theory (DFT) calculations, unit: kcal/mol.

The mechanism was investigated via DFT using the B3LYP functional ${ }^{1}$ with the $6-31 G^{*}$ basis sets ${ }^{2}$ as implemented in Gaussian 09 package, ${ }^{3}$ which was used in the geometric optimizations of intermediates (IMs) and transition states (TSs). To considerate the weak interaction, the D3 version of Grimme's dispersion with Becke-Johnson damping were employed during the optimization ${ }^{4}$. To check the IMs and TSs structures, vibrational frequency calculations at the same level of theory were performed. Intrinsic reaction coordinates (IRC) ${ }^{5}$ were performed to confirm the transition states connecting with the corresponding reactant and product intermediates.

1. a) A. D. Becke, Phys. Rev. A, 1988, 38, 3098; b) B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 1989, 157, 200.
2. R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.
3. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al, Gaussian, Inc., Wallingford CT, 2009.
4. S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 2011, 32, 1456.
5. a) K. Fukui, Acc. Chem. Res. 1981, 14, 363; b) H. P. Hratchian and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years, Ed. C. E. Dykstra, G. Frenking, K. S. Kim, and G. Scuseria (Elsevier, Amsterdam, 2005) 195-249.

NMR Characterization Data and Figures of Products

N-(2,6-dimethylphenyl)-2-(2-(4-nitrophenyl)-N-(prop-2-yn-1-yl)acetamido)-2-(4-ox o-4H-chromen-3-yl)acetamide

5a white solid, $140 \mathrm{mg}, 89 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=$ 16.1 Hz, 2H), $2.20(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.50$, $170.37,166.85,157.36,155.89,146.77,141.71,135.30,133.89,133.18,130.18$, $128.10,127.44,125.52,125.32,123.42,118.61,118.15,78.97,73.30,53.70,40.14$, 36.55, 18.44, LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 524.18$, found 524.18.

2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-7-(4-nitrophenyl)-2H-pyrido [1,2-a]pyrazine-1,6-dione

7a yellow solid, $130 \mathrm{mg}, 84 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.73$ (s, $1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=4.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.51, 162.49, 156.21, 155.24, 136.50, 135.66, 131.68, 129.84, 129.59, 129.14, 128.91, 128.47, 123.69, $119.45,118.83,118.69,103.86,29.70,17.36$. LC-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$522.17, found 522.17.

4-(2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-1,6-dioxo-1,6-dihydro-2H -pyrido[1,2-a]pyrazin-7-yl)benzonitrile

7b yellow solid, $117 \mathrm{mg}, 78 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.30\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=18.6$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}$, 3 H), $1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.57, 162.52, 156.23, 155.27, $139.95,136.45,135.46,132.24,131.69,129.82,129.34,128.34,120.53,119.50$, 118.80, 118.69, 118.59, 112.41, 103.86, 29.71, 17.33. LC-MS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 502.18$, found 502.18.

7-(2,4-dichlorophenyl)-2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-2H-p yrido[1,2-a]pyrazine-1,6-dione

7c light yellow solid, $93 \mathrm{mg}, 57 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.40\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.70(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=9.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=18.6$, $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.84$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.52, 162.31, 155.90, 155.25, 137.20, $136.34,135.28,134.93,134.06,132.90,132.23,131.68,129.86,129.70,129.04$, 127.24, 120.43, 118.77, 118.54, 116.90, 29.66, 17.35. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$545.10, found 545.10.

2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-7-(2-nitrophenyl)-2H-pyrido

 [1,2-a]pyrazine-1,6-dione

7d yellow solid, $123 \mathrm{mg}, 79 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right)$, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=15.0,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=16.9,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.60,162.36,155.96,155.27,149.15,136.36$, $134.43,134.04,133.38,131.95,131.76,129.79,129.68,129.00,128.89,127.88$, 124.65, 120.49, 119.36, 118.89, 118.48, 103.86, 29.68, 17.18. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 522.17$, found 522.17.

2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-7-(2-(trifluoromethyl)phenyl) -2H-pyrido[1,2-a]pyrazine-1,6-dione

7e yellow solid, $108 \mathrm{mg}, 66 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right)$, ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.69(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}$, 3 H), $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.00$ (s), 175.75, $175.02,174.13,162.75,156.96,155.68,154.56,137.75,136.84,136.69,135.42$, $134.52,134.47,133.36,132.15,132.01,131.62,130.81,130.02,129.83,129.35$, 129.31, 129.25, 129.15, 128.59, 128.56, 128.10, 126.89, 126.29, 125.93, 120.83, $119.18,119.02,118.79,118.49,104.24,30.08,17.55$. LC-MS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$545.17, found 545.17.

2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-7-(2-nitro-4-(trifluoromethyl)phenyl)-2H-pyrido[1,2-a]pyrazine-1,6-dione

7f yellow solid, $145 \mathrm{mg}, 82 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right)$, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.67(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.22,162.40,155.64,155.11,136.49,134.87$, $133.92,132.84,131.65,129.79,129.05,128.95,128.47,122.02$, 120.42, 119.29, 118.93, 118.58, 103.77, 29.68, 17.21. LC-MS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 590.15$, found 590.15 .

2-(2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-1,6-dioxo-1,6-dihydro-2H

 -pyrido[1,2-a]pyrazin-7-yl)benzonitrile
$7 \mathbf{g}$ yellow solid, $71 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.70(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{dd}, J=$ $11.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=18.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.57, 162.52, 156.23, 155.27, 139.95, 136.45, 135.37, 134.94, 134.08, 132.24, 131.69, 129.82, 129.34, 128.71, 128.34, 120.53, 119.50, 118.80, 118.69, 112.41, 103.86, 29.71, 17.33. LC-MS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 502.18$, found 502.18.

9-(2-hydroxybenzoyl)-2-(4-methoxyphenyl)-3-methyl-7-(2-nitro-4-(trifluoromethyl)p henyl)-2H-pyrido[1,2-a]pyrazine-1,6-dione

7h yellow solid, $133 \mathrm{mg}, 75 \%\left(\mathrm{EA} / \mathrm{Hex}=35 \%, \mathrm{R}_{\mathrm{f}}=0.45\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.78, 161.21, 160.18, $159.52,157.18,156.16,139.17,135.08,133.86,129.58,128.85,123.64,121.31$, 120.61, 115.24, 114.34, 110.45, 103.51, 55.56, 18.34. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 592.13$, found 592.13.

7 i yellow solid, $138 \mathrm{mg}, 77 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.71(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=15.0,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=16.9,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $198.60,162.36,155.96,149.15,136.36,135.02,134.43,134.04,133.38,131.86$, $130.90,129.73,128.95,124.65,120.49,119.36,118.89,118.48,103.86,29.68,17.77$. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 600.08$, found 600.08.

9-(5-bromo-2-hydroxybenzoyl)-2-(2,6-dimethylphenyl)-3-methyl-7-(4-nitrophenyl)-2 H-pyrido[1,2-a]pyrazine-1,6-dione

7j yellow solid, $145 \mathrm{mg}, 80 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.35\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.07-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~s}$, $1 \mathrm{H}), 7.49$ (dd, $J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 197.66, 161.23, 156.20, 155.29, 147.81, 141.66, 138.96,
$135.57,135.12,134.95,133.91,133.36,131.63,129.94,129.61,129.22,129.11$, 128.56, 123.70, 121.93, 120.80, 118.37, 110.39, 104.06, 29.52, 17.15. LC-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 600.08$, found 600.08.

9-(5-chloro-2-hydroxybenzoyl)-2-(2,6-dimethylphenyl)-3-methyl-7-(4-nitrophenyl)-2 H-pyrido[1,2-a]pyrazine-1,6-dione

7k yellow solid, $129 \mathrm{mg}, 77 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right)$, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.64(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.07-7.99(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H})$, 7.37 (dd, $J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=9.9,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $197.72,160.79,156.19,155.29,147.78$, 141.66, 136.23, 135.55, 135.11, 134.90, $133.89,131.61,130.35,129.95,129.61,129.22,129.13,128.56,123.72,123.51$, 121.22, 120.42, 118.41, 104.05, 17.53. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}_{6}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 556.13$, found 556.13.

2-(2-chloro-6-methylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-7-(4-nitrophenyl)-2H-p yrido[1,2-a]pyrazine-1,6-dione

71 yellow solid, $110 \mathrm{mg}, 67 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.68(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.03-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, 1H), $7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.50,162.41,156.12,147.69,141.68,136.61$, $135.62,132.46,132.08,130.78,129.65,129.55,128.21,128.06,123.64,119.05$, 118.47, 103.80, 29.67, 17.14. LC-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 542.11, found 542.11.

9-(5-bromo-2-hydroxybenzoyl)-2-(2-chloro-6-methylphenyl)-3-methyl-7-(2-nitrophe nyl)-2H-pyrido[1,2-a]pyrazine-1,6-dione

7m yellow solid, $130 \mathrm{mg}, 70 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.67(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~s}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.46$, 160.91, 134.35, 133.76, 133.38, 132.43, 131.96, 130.76, 130.44, 129.93, 129.60,
128.10, 124.71, 120.67, 120.44, 118.43, 29.88, 16.67. LC-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{BrClN}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 620.02$, found 620.02.

2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-1,6-dioxo-1,6-dihydro-2H-py rido[1,2-a]pyrazine-7-carbonitrile

7n yellow solid, $105 \mathrm{mg}, 82 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.20\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.49(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}$, $3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.52, 162.42, 155.18, 142.47, 136.80, 134.80, 134.51, 133.57, 131.42, 130.58, 130.07, 129.23, 129.11, 120.07, 118.99, 118.71, 118.38, 114.55, 103.93, 103.54, 29.67, 17.34. LC-MS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 426.14$, found 426.14 .

7-(4-bromophenyl)-2-(2,6-dimethylphenyl)-9-(2-hydroxybenzoyl)-3-methyl-2H-pyrid o[1,2-a]pyrazine-1,6-dione

7o yellow solid, $55 \mathrm{mg}, 33 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 11.72(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J$
$=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.88,162.51,156.49,155.08,136.31,134.92$, $134.45,131.73,131.65,130.22,129.67,129.02,128.88,127.77,123.27,118.73$, 118.54, 103.86, 29.53, 17.29. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 555.09, found 555.09.

2-butyl-9-(2-hydroxybenzoyl)-3-methyl-7-(4-nitrophenyl)-2H-pyrido[1,2-a]pyrazine-1,6-dione

7p yellow solid, 75 mg (for three steps), $64 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.40\right),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.30-8.22(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~s}$, $1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.38$ (s, 3H), $1.62-1.57$ (m, $2 \mathrm{H}), 1.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $199.00,162.41,156.05,147.52,141.85,136.51,135.46,132.02,129.48,128.30$, 127.61, 123.58, 120.44, 118.98, 118.68, 118.56, 103.68, 44.18, 29.67, 20.04, 17.34, 13.61. LC-MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 474.17$, found 474.17 .

$7 \mathbf{q}$ yellow solid, $63 \mathrm{mg}, 37 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.40\right),{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.81(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, 2H), $7.45(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.89,162.31,156.17,155.36,149.14,136.35,134.90,134.13,132.84$, 132.03, 131.78, 129.70, 128.77, 127.51, 121.97, 120.51, 119.04, 118.33, 11820, 103.65, 60.30, 29.53, 26.16, 24.41, 18.34. LC-MS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+}$568.17, found 568.17.

2-cyclohexyl-9-(2-hydroxybenzoyl)-3-methyl-7-(4-nitrophenyl)-2H-pyrido[1,2-a]pyr azine-1,6-dione

$7 \mathbf{r}$ yellow solid, $41 \mathrm{mg}, 28 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.40\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}$, $1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.98$ - $3.84(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-$
$0.80(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.19, 162.22, 156.16, 155.39, 142.04, $136.33,135.60,131.83,129.60,129.42,128.62,127.34,123.62,120.57,118.83$ 118.41, 60.29, 28.94, 26.11, 25.22, 11.44. LC-MS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 500.18$, found 500.18 .

9-(5-bromo-2-hydroxybenzoyl)-3-methyl-7-(4-nitrophenyl)-2-phenethyl-2H-pyrido[1 ,2-alpyrazine-1,6-dione

7s yellow solid, $66 \mathrm{mg}, 36 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 11.78(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{dd}, J=15.2,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.29,161.56,156.14,150.01,147.93,141.72$, $139.20,137.22,135.26,133.63,131.05,129.59,128.93,128.80,128.59,127.28$, 123.71, 120.74, 110.64, 103.76, 46.09. 34.43, 17.49. LC-MS (ESI) m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 600.08$, found 600.08 .

$7 \mathbf{t}$ yellow solid, $62 \mathrm{mg}, 40 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 11.85(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, $4.15-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 199.00,162.52,156.16,155.97,147.63,141.86,137.32,136.64,135.52$, $132.03,131.05,129.56,128.89,128.81,128.43,127.92,127.16,123.66,120.54$, $119.09,118.82,118.66,103.58,46.08,34.19,17.38$. LC-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 522.17$, found 522.17.

N-butyl-3-(2-hydroxybenzoyl)-5-(4-nitrophenyl)-6-oxo-1-(prop-2-yn-1-yl)-1,6-dihyd ropyridine-2-carboxamide

8p yellow solid, $118 \mathrm{mg}, 83 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.30\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.22-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{dd}$,
$J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=16.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=16.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{~s}, 1 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{dq}$, $J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) δ $161.96,159.99,154.56,147.11,142.97,136.33,132.92,130.44,130.20,130.13$, $129.22,129.09,123.59,122.94,119.33,116.34,86.72,79.41,74.54,31.91,30.17$, 20.17, 14.01. LC-MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$474.17, found 474.17.

N-(2,6-dimethylphenyl)-1-(3,5-dimethylphenyl)-3-(2-hydroxybenzoyl)-5-(4-nitrophe nyl)-6-oxo-1,6-dihydropyridine-2-carboxamide

11a yellow solid, $140 \mathrm{mg}, 79 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.61(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}$, $1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 3 \mathrm{H}), 7.05-7.00(\mathrm{~m}$, $2 \mathrm{H}), 6.93$ (dd, $J=7.3,4.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 197.99,163.49,160.46,158.10,147.57,141.35,139.84,137.91,137.31$, 136.94, 135.03, 132.95, 131.86, 131.71, 129.49, 129.13, 128.43, 127.86, 126.13, 123.43, 119.59, 118.97, 118.82, 117.06, 29.68, 21.21, 17.95. LC-MS (ESI) m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 588.21$, found 588.21.

5-(4-cyanophenyl)-3-(2-hydroxybenzoyl)-6-oxo-N-phenethyl-1-(prop-2-yn-1-yl)-1,6-dihydropyridine-2-carboxamide

11b yellow solid, $122 \mathrm{mg}, 81 \%\left(E A / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-dO) $\delta 9.59$ (s, 1H), 7.88 (dd, $J=20.5,6.7 \mathrm{~Hz}, 5 \mathrm{H}$), 7.61 (s, 1H), $7.31-7.12$ $(\mathrm{m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.47 (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H})$, $3.12-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) δ $161.95,160.06,154.68,141.05,139.42,135.98,132.72,132.42,130.94,130.63$, $129.83,129.35,129.29,128.98,128.76,126.73,122.92,119.48,119.20,116.48$, 110.97, 86.82, 79.47, 74.60, 41.58, 34.23, 31.99. LC-MS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 502.18$, found 502.18.

3-(2-hydroxybenzoyl)-5-(4-nitrophenyl)-6-oxo-N-phenethyl-1-(prop-2-yn-1-yl)-1,6-d

 ihydropyridine-2-carboxamide

11c yellow solid, $120 \mathrm{mg}, 77 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.61$ (s, 1H), 8.23 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.95(\mathrm{dd}, J=19.4,7.8 \mathrm{~Hz}, 3 \mathrm{H})$,
$7.66(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{td}$, $J=12.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz, DMSO-d6) $\delta 161.91,160.05,154.69,147.21,143.00,139.41$, $136.27,133.02,130.66,130.48,130.22,129.35,129.29,128.98$, 128.76, 126.74, $123.65,122.89,119.49,116.50,86.82,79.45,74.64,41.58,34.21,32.04$. LC-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 522.17$, found 522.17.

3-(5-bromo-2-hydroxybenzoyl)-5-(4-nitrophenyl)-6-oxo-N-phenethyl-1-(prop-2-yn-1 -yl)-1,6-dihydropyridine-2-carboxamide

11d yellow solid, $150 \mathrm{mg}, 84 \%\left(E A / H e x=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.77(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=17.9,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.50$ - $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.53(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta 161.92,160.03,154.05,147.23,142.90$, $139.32,136.36,133.25,133.06,131.83,130.59,130.31,129.00$, 128.79, 128.49, $126.78,125.51,123.59,118.73,110.61,86.22,79.39,74.67,41.50,34.23,32.05$. LC-MS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 600.08$, found 600.08 .

11e yellow solid, $140 \mathrm{mg}, 81 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right)$, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.61$ (s, 1H), 8.19 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.66(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.6$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) δ 162.30, 160.64, 154.67, 147.10, $143.23,139.45,137.63,137.24,132.77,130.64,130.35,130.17,129.39,129.15$, $128.94,128.87,128.80,128.28,127.69,126.69,123.59,123.13,119.52,116.53$, 86.60, 45.39, 41.58, 34.21, 31.42, 22.53, 14.43. LC-MS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 574.20$, found 574.20.

1-benzyl-3-(5-bromo-2-hydroxybenzoyl)-5-(4-cyanophenyl)-6-oxo-N-phenethyl-1,6-dihydropyridine-2-carboxamide

11f yellow solid, $148 \mathrm{mg}, 78 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right)$, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,

DMSO-d6) $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{dd}, J=15.1,7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.79(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{td}, J=12.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) δ 162.37, $160.65,154.04,141.17,139.38,137.60,137.01,133.20,132.49,132.30$, 131.88, 130.96, 129.87, 128.95, 128.86, 128.83, 128.37, 128.29, 127.70, 126.73, 125.78, 119.23, 118.76, 110.84, 110.66, 86.04, 45.35, 41.49, 34.27. LC-MS (ESI) m/z calcd for $\mathrm{C}_{305} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 632.12$, found 632.12.

N,1-dibenzyl-5-(4-cyanophenyl)-3-(2-hydroxybenzoyl)-6-oxo-1,6-dihydropyridine-2carboxamide

11 g yellow solid, $114 \mathrm{mg}, 70 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.74(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 4 \mathrm{H})$, 7.27 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 7 \mathrm{H}), 6.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta 162.87,160.64,154.55$, $141.24,137.97,137.65,136.88,132.54,132.36,130.96,130.49,129.79,129.45$, 129.17, 128.84, 128.28. 128.23, 128.20, 127.66, 127.07, 123.02, 119.38, 119.21, 116.48, 110.82, 86.82, 45.42, 43.58. LC-MS (ESI) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 540.19, found 540.19.

3-(2-hydroxybenzoyl)-5-(4-nitrophenyl)-6-oxo-N-phenethyl-1-(thiophen-2-ylmethyl)

-1,6-dihydropyridine-2-carboxamide

11h yellow solid, $120 \mathrm{mg}, 70 \%\left(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{R}_{\mathrm{f}}=0.20\right),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.57$ (s, 1H), 8.23 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.95 (dd, $J=15.6,8.3 \mathrm{~Hz}, 3 \mathrm{H}$), $7.63(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.01(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.06(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.03$ (m, 1H), $2.87(\mathrm{td}, J=12.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{td}, J=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta 162.19,160.40,154.68,147.16,143.16,139.47,138.91$, $136.58,132.82,130.63,130.30,130.17,129.37$, 129.26, 129.07, 128.95, 128.83, 127.26, 126.99, 126.70, 123.65, 123.00, 119.48, 116.50, 86.78, 41.58, 34.23, 31.42. LC-MS (ESI) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{H})^{+} 580.15$, found 580.15 .
N-(1-((2,6-dimethylphenyl)amino)-4-methyl-1-oxopentan-2-yl)-N-(prop-2-yn-1-yl)b enzo[d][1,3]dioxole-5-carboxamide

14 white solid, $116 \mathrm{mg}, 92 \%\left(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{R}_{\mathrm{f}}=0.25\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=15.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.88$ $-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 2.36$ $(\mathrm{s}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.05,168.99,149.80,147.66,134.99,133.72,128.31$, 128.10, 127.09, 122.30, 108.20, 108.07, 107.83, 101.72, 101.62, 80.28, 73.17, 57.37, 37.70, 37.31, 25.09, 22.49, 18.50. LC-MS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 421.21, found 421.21.

N-(1-((2,6-dimethylphenyl)carbamoyl)cyclohexyl)-N-(prop-2-yn-1-yl)benzo[d][1,3]d ioxole-5-carboxamide

16 white solid, $115 \mathrm{mg}, 89 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ (s, 2H), $2.40-2.29$ (m, 3H), 2.23 (s, 6H), 1.75 (s, 3H), $1.71-1.46$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.91,171.85,150.11,147.78,135.12$, 134.38, 130.08, 128.14, 126.70, 123.00, 108.55, 108.27, 101.69, 80.37, 73.86, 67.16, $38.62,32.86,25.59,22.80$ (s), 18.91 (s). LC-MS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+} 432.20$, found 432.20.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 c}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{d}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{e}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 h}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 i}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 j}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 k}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{l}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 m}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{n}$
(1)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 7 o

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7} \mathbf{p}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 q}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 r}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 7 s

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $7 \mathbf{t}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 p}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 11a

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1 b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 11c

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1 d}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1 e}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1 f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1 g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1 h}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}$

