Supporting Information

Palladium-catalyzed domino Heck/ring opening of sulfolenes/desulfitative coupling: regio- and stereoselective synthesis of alkylated conjugated dienes

Xin-Xing Wu,*^a Hao Ye,^a Hong Dai,^a Bing Yang,^a Yang Wang,^a Shufeng Chen^b and Lanping Hu*^a

^a College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China ^b Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

> E-mail: wuxinxng@163.com E-mail: hlp@ntu.edu.cn

Table of Contents

1. General considerations	S2
2. Preparation of substrates	S2
3. Screening of palladium catalyst	S2
4. Experiment procedure	S2-S3
5. Large-scale preparation of 3a	S3
6. Synthetic transformation of 3b	S3
7. Mechanistic studies	S4-S5
8. GC/MS experiment of 3a	S5
9. Spectra data	S6-S14
10. References	S14
11. Crystallographic data of 3i	S15
12. NMR spectra	S16-S50

1. General considerations

All reactions were carried out under a nitrogen atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. Solvents were purified and dried according to standard methods prior to use. For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90) are used. ¹H NMR spectra were recorded on a Bruker advance III 400 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 101 MHz in CDCl₃ using TMS as internal standard, Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR is reported in terms of chemical shift (δ , ppm). High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II.

2. Preparation of substrates

Subatrates **1a-1i**¹,**1q**², **2a-2d**³ were reported in the literatures.

Pd(C₃H₅)Cll₂ (5.0 mol%) ligand (10 mol%) base, solvent 90 °C 1a 2a 3a catalyst base Z/E Ratio entry ligand solvent yield (%) 1 ^tBuOK/K₂CO₃ Pd(OAc)₂ P(p-tolyl)₃ >20:1 dioxane 41 ^tBuOK/K₂CO₃ 2 Pd(TFA)₂ P(p-tolyl)₃ dioxane 29 18:1 3 PdCl₂(PPh₃)₂ P(p-tolyl)₃ ^tBuOK/K₂CO₃ dioxane 46 >20:1 4 Pd₂(dba)₃ P(p-tolyl)₃ ^tBuOK/K₂CO₃ dioxane 7:1 16

3. Screening of palladium catalyst

1a (0.2 mmol), **2a** (0.4 mmol), catalyst (5 mol%), ligand (10 mol%), base (0.4 mmol), solvent (2.0 mL, 0.1 M), 90 ℃, 12 h under argon atmosphere conditions.

dioxane

71

>20:1

^tBuOK/K₂CO₃

4. Experiment procedure

P(p-tolyl)₃

 $[Pd(C_{3}H_{5})Cl]_{2}$

5

1 (0.2 mmol), **2** (0.4 mmol), $[Pd(C_3H_5)Cl]_2$ (5 mol%), $P(p-tolyl)_3$ (10 mol%), ^{*t*}BuOK (0.4 mmol), K₂CO₃ (0.4 mmol) were added to a sealed tube, dioxane (2.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 15 min firstly, and then was heated at 90 °C about for 12 h until completion (monitored by TLC). After

cooling at room temperature, the mixture was extracted with ethyl acetate, dried with anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified through silica gel chromatography to afford the products **3**.

5. Large-scale preparation of 3a

1a (2.0 mmol, 0.6 g), **2a** (4.0 mmol, 0.47 g), $[Pd(C_3H_5)CI]_2$ (0.1 mmol, 36.4 mg), P(p-tolyl)₃ (0.2 mmol, 60.8 mg), ^tBuOK (4.0 mmol, 0.45 g), K₂CO₃ (4.0 mmol, 0.55 g) were added to a sealed tube, dioxane (40.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 15 min firstly, and then was heated at 90 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the mixture was extracted with ethyl acetate, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford the product **3a** (0.29 g, 64%).

6. Synthetic transformation of 3b

To a solution of **3b** (0.2 mmol) in 2.0 mL of THF was added a solution of LiAlH₄ (3.0 equiv.) in THF at 0 °C. The ice bath was removed and the reaction was allowed to stir for about 3 h at 60 °C. The reaction mixture was diluted with ice water (5.0 mL) and extracted with EtOAc (10 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was purified by a silica gel column chromatography to afford **3b'** as the product.

3b': colorless oil; Z:E = 10:1. ¹H NMR (400 MHz, CDCl₃) δ 6.89 (d, J = 7.4 Hz, 1H), 6.67-6.55 (m, 1H), 6.54-6.49 (m, 1H), 6.31 (s, 1H), 6.11 (t, J = 11.1 Hz, 1H), 5.47 (dt, J = 10.9, 8.0 Hz, 1H), 5.19 (dd, J = 16.9, 2.0 Hz, 1H), 5.09 (dt, J = 10.0, 1.9 Hz, 1H), 3.18 (d, J = 8.7 Hz, 1H), 2.93 (d, J = 8.7 Hz, 1H), 2.72 (s, 3H), 2.46 (dd, J = 8.0, 1.5 Hz, 2H), 2.30 (s, 3H), 1.28 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 152.5, 137.6, 135.0, 132.3, 131.5, 128.7, 122.0, 118.4, 117.5, 108.4, 68.0, 43.8, 37.8, 35.9, 24.9, 21.8. HRMS (ESI) calcd for C₁₆H₂₂N [M+H]⁺ : 228.1747, found: 228.1750.

7. Mechanistic studies

A solution of **2a** (118 mg, 1.0 mmol) in 10 mL of dioxane at 90 °C was stirred. Then a mixture of ^{*i*}BuOK (224 mg, 2.0 mmol) in 4 mL of dioxane was added dropwise. During the addition, a mustard-yellow precipitate was observed. After stirring 2 h, the solid went to a pale yellow color. The solution was evaporated under vacuum and the residue was washed five times with dioxane (10 ml) and dried under vacuum to afford the potassium sulfinate **5** in 90 yield. ¹H NMR (400 MHz, D₂O) δ 7.03 (dddd, J = 16.8, 11.2, 10.1, 1.1 Hz, 1H), 6.46 (ddd, J = 11.3, 10.2, 0.8 Hz, 1H), 6.06-5.84 (m, 1H), 5.54-5.24 (m, 2H). ¹³C NMR (101 MHz, D₂O) δ 144.3, 133.8, 131.1, 123.2. The results are consistent with the previous literature.⁴

$$\begin{array}{ccc} 1a & + & & & \\ (0.2 \text{ mmol}) & & 5 & \\ \end{array} \xrightarrow{SO_2K} & \underline{\text{standard conditions}} & 3a \\ & & 81\% \ Z:E = 20:1 \end{array}$$

1 (0.2 mmol), **5** (0.4 mmol), $[Pd(C_3H_5)Cl]_2$ (5 mol%), P(p-tolyl)₃ (10 mol%), ^tBuOK (0.4 mmol), K₂CO₃ (0.4 mmol) were added to a sealed tube, dioxane (2.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 15 min firstly, and then was heated at 90 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the mixture was extracted with ethyl acetate, dried with anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified through silica gel chromatography to afford the products **3**.

1a (0.2 mmol), **5** (0.4 mmol), $[Pd(C_3H_5)CI]_2$ (5 mol%), P(p-tolyl)₃ (10 mol%), K_2CO_3 (0.4 mmol) were added to a sealed tube, dioxane (2.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 15 min firstly, and then was heated at 90 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the mixture was extracted with ethyl acetate, dried with anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified through silica gel chromatography to afford the products **3a**.

1a+
$$SO_2K$$
standard conditions
without K_2CO_3 3a(0.2 mmo)529% yield Z:E = 16:1
57% of 1a recovered

1a (0.2 mmol), **5** (0.4 mmol), $[Pd(C_3H_5)CI]_2$ (5 mol%), $P(p-tolyl)_3$ (10 mol%), ^tBuOK (0.4 mmol) were added to a sealed tube, dioxane (2.0 mL) were added via syringe. The mixture was flushed with N₂ and stirred at room temperature for 15 min firstly, and then was heated at 90 °C about for 12 h until completion (monitored by TLC). After cooling at room temperature, the mixture was extracted with ethyl acetate, dried with anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified through silica gel chromatography to afford the products **3a**.

8. GC/MS experiment of 3a

1,3-dimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3a): 33 mg; 71% yield; yellow oil; Z:E = 21:1. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.18 (m, 2H), 7.04 (td, J = 7.5, 1.0 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.58 (dddd, J = 16.5, 11.0, 10.1, 1.1 Hz, 1H), 5.95 (td, J = 11.0, 1.3 Hz, 1H), 5.18-5.04 (m, 3H), 3.20 (s, 3H), 2.76-2.57 (m, 2H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 143.1, 133.4, 132.1, 131.8, 127.8, 125.6, 122.9, 122.3, 118.0, 107.9, 48.1, 36.0, 26.1, 22.7. HRMS (ESI) calcd for C₁₅H₁₈NO [M+H]⁺ : 228.1383, found: 228.1385.

1,3,6-trimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3b): 36 mg; 74% yield; yellow oil; $Z:E = 10:1.^{1}$ H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 7.5 Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 6.73-6.49 (m, 2H), 5.95 (t, J = 10.9 Hz, 1H), 5.21-5.00 (m, 3H), 3.17 (s, 3H), 2.75-2.52 (m, 2H), 2.37 (s, 3H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 143.1, 137.7, 132.0, 131.8, 130.4, 125.8, 122.7, 122.5, 117.9, 108.8, 47.8, 35.9, 256.0, 22.7, 21.7. HRMS (ESI) calcd for C₁₆H₂₀NO [M+H]⁺ : 242.1539, found: 242.1542.

6-fluoro-1,3-dimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3c): 37 mg; 76% yield; colorless oil; *Z*:*E* = 20:1. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (dd, *J* = 8.2, 5.4 Hz, 1H), 6.71 (ddd, *J* = 9.6, 8.1, 2.3 Hz, 1H), 6.62-6.46 (m, 2H), 5.96 (ddd, *J* = 12.7, 10.9, 1.9 Hz, 1H), 5.21-5.01 (m, 3H), 3.18 (s, 3H), 2.76-2.55 (m, 2H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.3, 164.0, 144.5, 132.3, 131.6, 128.6, 128.5, 125.2, 123.8, 123. 7, 118.2, 108.3, 108.1, 96.8, 96.6, 47.8, 36.0, 26.2, 22.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.8. HRMS (ESI) calcd for C₁₅H₁₇NFO [M+H]⁺ : 246.1289, found: 246.1291.

1,3,5-trimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3d): 30 mg; 62% yield; colorless oil; Z:E = 13:1. ¹H NMR (400 MHz, CDCl₃) δ 7.12-6.95 (m, 2H), 6.71 (d, J = 7.8 Hz, 1H), 6.58 (dddd, J = 17.0, 11.3, 10.2, 1.2 Hz, 1H), 5.95 (t, J = 10.6 Hz, 1H), 5.21-4.98 (m, 3H), 3.17 (s, 3H), 2.78 -2.53 (m, 2H), 2.33 (s, 3H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0, 140.7, 133.4, 132.0, 131.8, 131.7, 127.9, 125.7, 123.7, 117.8, 107.5, 48.1, 35.9, 26.1, 22.6, 21.0. HRMS (ESI) calcd for C₁₆H₂₀NO [M+H]⁺ : 242.1539, found: 242.1542.

5-methoxy-1,3-dimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3e): 24 mg; 46% yield; colorless oil; Z:E = 15:1. ¹H NMR (400 MHz, CDCl₃) δ 6.84-6.71 (m, 3H), 6.58 (dt, J = 16.6, 10.4 Hz, 1H), 5.96 (t, J = 11.0 Hz, 1H), 5.20-5.03 (m, 3H), 3.78 (s, 3H), 3.17 (s, 3H), 2.78-2.53 (m, 2H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.6, 155.8, 136.5, 134.7, 132.1, 131.7, 125.5, 118.0, 111.8, 110.5, 108.0, 55.7, 48.4, 35.8, 26.1, 22.6. HRMS (ESI) calcd for C₁₆H₂₀NO₂ [M+H]⁺ : 258.1489, found: 258.1491.

5-fluoro-1,3-dimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3f): 34 mg; 69% yield; pale yellow oil; *Z:E* = 16:1. ¹H NMR (400 MHz, CDCl₃) δ 6.99-6.90 (m, 2H), 6.75 (dd, *J* = 9.2, 4.2 Hz, 1H), 6.56 (dtd, *J* = 17.0, 10.6, 1.3 Hz, 1H), 6.03-5.90 (m, 1H), 5.19-5.05 (m, 3H), 3.19 (s, 3H), 2.76-2.55 (m, 2H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.6, 160.3, 157.9, 139.0, 138.9, 135.0, 135.0, 132.4, 131.5, 125.0, 118.3, 113.9, 113.7, 111.2, 110.9, 108.2, 108.2, 48.5, 48.5, 35.8, 26.2, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.9. HRMS (ESI) calcd for C₁₅H₁₇NFO [M+H]⁺ : 246.1289, found: 246.1291.

5-chloro-1,3-dimethyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3g): 31 mg; 59% yield; yellow oil; Z:E = 17:1. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.16 (m, 2H), 6.76 (t, J = 7.5 Hz,

1H), 6.62-6.47 (m, 1H), 5.97 (t, J = 11.1 Hz, 1H), 5.21-5.02 (m, 3H), 3.18 (s, 3H), 2.76-2.56 (m, 2H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.4, 141.6, 135.0, 132.4, 131.4, 127.6, 127.5, 124.8, 123.3, 118.3, 108.7, 48.3, 35.7, 26.1, 22.4. HRMS (ESI) calcd for C₁₅H₁₇NOCI [M+H]⁺ : 262.0993, found: 262.0996.

methyl 1,3-dimethyl-2-oxo-3-(penta-2,4-dien-1-yl)indoline-5-carboxylate (3h): 22 mg; 39% yield; yellow solid; mp = 89-91 °C; Z:E = 22:1. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 8.2, 1.7 Hz, 1H), 7.88 (d, J = 1.7 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.64-6.50 (m, 1H), 5.95 (t, J = 11.0 Hz, 1H), 5.20-4.98 (m, 3H), 3.91 (s, 3H), 3.23 (s, 3H), 2.81-2.59 (m, 2H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.4, 166. 9, 147.3, 133.3, 132.5, 131.6, 130.6, 124.9, 124.3, 124.1, 118.4, 107.4, 52.0, 48.1, 36.0, 26.3, 22.6. HRMS (ESI) calcd for C₁₇H₂₀NO₃ [M+H]⁺ : 286.1438, found: 286.1440.

1,3-dimethyl-3-(penta-2,4-dien-1-yl)-5-(trifluoromethyl)indolin-2-one (3i): 30 mg; 51% yield; yellow solid; mp = 101-102 °C; *Z*:*E* = 18:1. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.43 (d, *J* = 1.9 Hz, 1H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.52 (dtd, *J* = 16.8, 10.5, 1.2 Hz, 1H), 6.01-5.91 (m, 1H), 5.18-5.04 (m, 3H), 3.23 (s, 3H), 2.78-2.60 (m, 2H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 146.2, 134.0, 132.8, 131.5, 125.7, 125. 7, 124.8, 124.6, 120.0, 120.0, 118.6, 107.6, 48.3, 35.9, 26.4, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4. HRMS (ESI) calcd for C₁₆H₁₇NF₃O [M+H]⁺ : 296.1257, found: 296.1259.

1-methyl-3-(penta-2,4-dien-1-yl)-3-phenylindolin-2-one (3j) : 28 mg; 48% yield; yellow oil; Z:E = 9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dt, J = 6.2, 1.4 Hz, 2H), 7.35-7.23 (m, 5H), 7.09 (td, J = 7.6, 1.0 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.63-6.49 (m, 1H), 5.98-5.86 (m, 1H), 5.16-5.02 (m, 3H), 3.26-3.08 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0, 143.9, 139.5, 132.4, 131.9, 131.6, 128.6, 128.3, 127.4, 127.1, 125.5, 125.2, 122.6, 118.3, 108.3, 56.1, 35.9, 26.5. HRMS (ESI) calcd for C₂₀H₂₀NO [M+H]⁺ : 290.1539, found: 290.1542.

1-ethyl-3-methyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3k): 32 mg; 67% yield; pale yellow oil; Z:E = 11:1.¹H NMR (400 MHz, CDCl₃) δ 7.28-7.16 (m, 2H), 7.03 (td, J = 7.5, 1.0 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.69-6.47 (m, 1H), 5.93 (t, J = 11.1 Hz, 1H), 5.18-4.98 (m, 3H), 3.89-3.73 (m, 1H), 3.66 (dq, J = 14.3, 7.2 Hz, 1H), 2.75 (ddd, J = 14.0, 8.3, 1.4 Hz, 1H), 2.60 (ddd, J = 13.9, 7.5, 1.5 Hz, 1H), 1.39 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.6, 142.2, 133.5, 132.1, 131.8, 127.7, 125.6, 122.9, 122.0, 117.9, 107.9, 47.9, 36.1, 34.4, 22.6, 12.7. HRMS (ESI) calcd for C₁₆H₂₀NO [M+H]⁺ : 242.1539, found: 242.1542.

3-methyl-3-(penta-2,4-dien-1-yl)-1-propylindolin-2-one (3l): 32 mg; 62% yield; yellow oil; Z:E = 9:1. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.16 (m, 2H), 7.02 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.67-6.52 (m, 1H), 5.97-5.86 (m, 1H), 3.77-3.66 (m, 1H), 3.58 (dt, J = 14.1, 7.2 Hz, 1H), 2.75 (ddd, J = 14.0, 8.2, 1.4 Hz, 1H), 2.61 (ddd, J = 14.0, 7.5, 1.6 Hz, 1H), 1.67 (h, J = 7.2 Hz, 2H), 1.39 (s, 3H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 142.6, 133.4, 132.0, 131.8, 127.6, 125.6, 122.8, 122.0, 117.8, 108.1, 47.9, 41.2, 36.0, 22.9, 20.6, 11.2. HRMS (ESI) calcd for C₁₇H₂₂NO [M+H]⁺ : 256.1696, found: 256.1698.

1-butyl-3-methyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3m): 29 mg; 53% yield; yellow oil; *Z*:*E* = 7:1. ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.18 (m, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.67-6.51 (m, 1H), 5.93 (t, *J* = 11.0 Hz, 1H), 5.17-5.00 (m, 3H), 3.75 (dt, *J* = 14.3, 7.2 Hz, 1H), 3.61 (dt, *J* = 14.1, 7.2 Hz, 1H), 2.74 (ddd, *J* = 14.1, 8.4, 1.4 Hz, 1H), 2.64-2.51 (m, 1H), 1.61 (q, *J* = 7.4 Hz, 2H), 1.39 (s, 3H), 1.37-1.32 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 142.6, 133.6, 132.1, 131.9, 127.7, 125.7, 122.9, 122.0, 117.9, 108.1, 48.0, 39.6, 36.1, 29.5, 22.9, 20.1, 13.7. HRMS (ESI) calcd for $C_{18}H_{24}NO$ [M+H]⁺ : 270.1852, found: 270.1855.

1-benzyl-3-methyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3n): 27 mg; 45% yield; yellow oil; Z:E = 24:1. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.19 (m, 6H), 7.13 (td, J = 7.7, 1.3 Hz, 1H), 7.01 (td, J = 7.5, 1.1 Hz, 1H), 6.73-6.56 (m, 2H), 5.95 (t, J = 11.0 Hz, 1H), 5.20-4.98 (m, 4H), 4.76 (d, J = 15.6 Hz, 1H), 2.85 (ddd, J = 14.0, 8.5, 1.3 Hz, 1H), 2.65 (ddd, J = 14.0, 7.3, 1.5 Hz, 1H), 1.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 142.3, 136.0, 133.4, 132.3, 131.9, 128.6, 127.7, 127.5, 127.3, 125.7, 122.9, 122.4, 118.2, 109.0, 48.2, 43.6, 36.1, 23.2. HRMS (ESI) calcd for C₂₁H₂₂NO [M+H]⁺ : 304.1696, found: 304.1699.

3-methyl-1-(4-methylbenzyl)-3-(penta-2,4-dien-1-yl)indolin-2-one (30): 36 mg; 56% yield; yellow oil; Z:E = 6:1. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.14 (m, 3H), 7.10 (td, J = 8.0, 1.6 Hz, 3H), 6.99 (td, J = 7.5, 1.0 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 6.68-6.58 (m, 1H), 5.95 (t, J = 11.1 Hz, 1H), 5.20-5.07 (m, 3H), 4.98 (d, J = 15.4 Hz, 1H), 4.71 (d, J = 15.5 Hz, 1H), 2.84 (ddd, J = 13.9, 8.5, 1.3 Hz, 1H), 2.64 (ddd, J = 14.0, 7.2, 1.5 Hz, 1H), 2.29 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 142.3, 137.1, 133.3, 132.9, 132.3, 131.9, 129.4, 129.2, 127.7, 127.3, 125.8, 122.8, 122.3, 118.1, 109.0, 48.2, 43.4, 36.1, 23.2, 21.0. HRMS (ESI) calcd for C₂₂H₂₄NO [M+H]⁺ : 318.1852, found: 318.1855.

1-(4-methoxybenzyl)-3-methyl-3-(penta-2,4-dien-1-yl)indolin-2-one (3p): 41 mg; 61% yield; yellow oil; *Z*:*E* = 10:1. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, *J* = 8.2, 3.8 Hz, 3H), 7.13 (tt, *J* = 7.7, 1.2 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.81 (d, *J* = 8.2 Hz, 2H), 6.76-6.68 (m, 1H), 6.68-6.58 (m, 1H), 5.94 (t, *J* = 10.9 Hz, 1H), 5.18-5.04 (m, 3H), 4.99-4.84 (m, 1H), 4.68 (d, *J* = 15.4 Hz, 1H), 3.75 (d, *J* = 1.0 Hz, 3H), 2.90-2.79 (m, 1H), 2.63 (dd, *J* = 14.1, 7.2 Hz, 1H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 158.9, 142.2, 133.3, 132.2, 131.9, 128.7, 128.5, 128.0, 127.6, 125.7, 122.8, 122.3, 118.1, 114.1, 113.9, 108.9, 55.1, 48.1, 43.0, 36.1, 23.1. HRMS (ESI) calcd for $C_{22}H_{24}NO_2$ [M+H]⁺ : 334.1802, found: 334.1805.

3-(3,4-dimethylpenta-2,4-dien-1-yl)-1,3-dimethylindolin-2-one (3q): 29 mg; 57% yield; colorless oil; Z:E = 32:1. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (td, J = 7.7, 1.4 Hz, 1H), 7.15 (dd, J = 7.4, 1.3 Hz, 1H), 7.04 (td, J = 7.5, 1.0 Hz, 1H), 6.83 (dt, J = 7.7, 0.8 Hz, 1H), 4.90-4.81 (m, 2H), 4.53 (dt, J = 1.9, 1.0 Hz, 1H), 3.21 (s, 3H), 2.56 (dq, J = 7.2, 1.2 Hz, 2H), 1.64 (p, J = 1.3 Hz, 6H), 1.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.5, 144.8, 143.1, 141.6, 134.0, 127.5, 122.9, 122.2, 118.9, 112.7, 107.7, 48.2, 37.3, 26.1, 23.1, 22.6, 21.9. HRMS (ESI) calcd for C₁₇H₂₂NO [M+H]⁺ : 256.1696, found: 256.1699.

3-(3,4-dimethylpenta-2,4-dien-1-yl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one (3r): 41 mg; 63% yield; yellow oil; *Z*:*E* = 30:1. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.49 (m, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 6.89 (d, *J* = 8.1 Hz, 1H), 4.91-4.77 (m, 2H), 4.54-4.44 (m, 1H), 3.25 (s, 3H), 2.60 (h, *J* = 7.1 Hz, 2H), 1.67-1.62 (m, 3H), 1.59 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.4, 146.1, 144.6, 142.5, 134.5, 125.4, 125.4, 120.1, 120.0, 118.1, 112.9, 107.4, 48.3, 37.2, 26.3, 23.1, 22.5, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4. HRMS (ESI) calcd for C₁₈H₂₀NNaF₃O [M+Na]⁺ : 346.1389, found: 346.1386.

3-(3,4-dimethylpenta-2,4-dien-1-yl)-5-methoxy-1,3-dimethylindolin-2-one (3s): 27 mg; 48% yield; pale yellow oil; Z:E = 22:1. ¹H NMR (400 MHz, CDCl₃) δ 6.81-6.68 (m, 3H), 4.92-4.78 (m, 2H), 4.55 (dd, J = 2.6, 1.1 Hz, 1H), 3.80 (s, 3H), 3.19 (s, 3H), 2.55 (dd, J = 7.3, 1.4 Hz, 2H), 1.72-1.58 (m, 6H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 155.8, 144.9, 141.6, 136.7, 135.4, 118.9, 112.8, 111.5, 110.6, 107.9, 55.7, 48.6, 37.3, 26.2, 23.1, 22.7, 21.9. HRMS (ESI) calcd for C₁₈H₂₄NO₂ [M+H]⁺ : 286.1802, found: 286.1800.

1,3-dimethyl-3-(3-methylpenta-2,4-dien-1-yl)-5-(trifluoromethyl)indolin-2-one (3t): 38 mg, 61% yield, yellow oil; *Z*:*E* = 14:1. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.40 (d, *J* = 1.9 Hz, 1H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.61 (dd, *J* = 17.2, 10.7 Hz, 1H), 5.23-4.96 (m, 3H), 3.23 (s, 3H), 2.66 (qd, *J* = 14.3, 8.0 Hz, 2H), 1.72-1.68 (m, 3H), 1.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 146.1, 136.0, 134.1, 132.9, 125.6, 125.5, 125.5, 124.6, 123.0, 120.1, 120.1, 114.7, 107.5, 48.3, 35.5, 26.3, 22.3, 19.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4. HRMS (ESI) calcd for C₁₇H₁₈NNaF₃O [M+Na]⁺ : 332.1233, found: 332.1230.

1,3,6-trimethyl-3-(3-methylpenta-2,4-dien-1-yl)indolin-2-one (3u): 26 mg; 50% yield; pale yellow oil; Z:E = 24:1. ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 7.5 Hz, 1H), 6.88-6.80 (m, 1H), 6.77-6.60 (m, 2H), 5.21-5.02 (m, 3H), 3.18 (s, 3H), 2.71-2.52 (m, 2H), 2.38 (s, 3H), 1.71 (d, J = 1.1 Hz, 3H), 1.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.6, 143.1, 137.7, 135.1, 133.4, 130.7, 124.3, 122.8, 122.7, 114.1, 108.8, 48.0, 35.6, 26.1, 22.7, 21.7, 19.9. HRMS (ESI) calcd for C₁₇H₂₂NO [M+H]⁺ : 256.1696, found: 256.1699.

3-methyl-3-(3-methylpenta-2,4-dien-1-yl)-1-propylindolin-2-one (3v): 23 mg; 43% yield; yellow oil; Z:E = 18:1. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dtd, J = 15.4, 7.5, 1.3 Hz, 2H), 7.04 (qd, J = 7.4, 1.0 Hz, 1H), 6.84 (dd, J = 11.0, 7.7 Hz, 1H), 6.72 (ddd, J = 17.2, 10.8, 0.9 Hz, 1H), 5.19-4.97 (m, 3H), 3.76 (dt, J = 14.4, 7.3 Hz, 1H), 3.54 (dt, J = 14.1, 7.0 Hz, 1H), 2.78-2.70 (m, 1H), 2.58 (ddd, J = 14.4, 7.3, 1.3 Hz, 1H), 1.73-1.63 (m, 5H), 1.38 (s, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.1, 142.7, 135.1, 133.7, 133.4, 127.6, 127.5, 124.2, 123.0, 122.0, 114.1, 108.3, 108.1, 48.2, 41.3, 35.8, 22.9, 20.7, 19.8, 11.3. HRMS (ESI) calcd for C₁₈H₂₄NO [M+H]⁺ : 270.1852, found: 270.1855.

1,3-dimethyl-3-(7-methyl-3-vinylocta-2,6-dien-1-yl)indolin-2-one (3w): 22 mg; 36% yield; yellow oil; Z:E = 12:1. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 1H), 7.19 (dd, J = 7.4, 1.3 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.60 (dd, J = 17.4, 11.0 Hz, 1H), 5.19 (d, J = 17.4 Hz, 1H), 5.10-4.97 (m, 3H), 3.19 (s, 3H), 2.63 (d, J = 8.0 Hz, 2H),

2.07 (t, J = 7.7 Hz, 2H), 1.94 (q, J = 6.6, 5.9 Hz, 2H), 1.65 (d, J = 1.5 Hz, 3H), 1.53 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCI₃) δ 143.1, 139.3, 133.6, 132.4, 131.5, 127.7, 124.2, 123.6, 123.0, 122.3, 113.9, 107.8, 48.4, 35.7, 33.4, 27.6, 26.1, 25.7, 22.3, 17.6. HRMS (ESI) calcd for C₂₁H₂₈NO [M+H]⁺ : 310.2165, found: 310.2168.

5-chloro-1,3-dimethyl-3-(7-methyl-3-vinylocta-2,6-dien-1-yl)indolin-2-one (3x): 21 mg; 30% yield; yellow oil; *Z*:*E* = 7:1. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.16 (d, *J* = 2.1 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.56 (ddd, *J* = 17.4, 11.1, 1.0 Hz, 1H), 5.21 (dt, *J* = 17.4, 1.1 Hz, 1H), 5.12-4.97 (m, 3H), 3.17 (s, 3H), 2.69-2.56 (m, 2H), 2.12-2.02 (m, 2H), 2.00-1.89 (m, 2H), 1.66 (d, *J* = 1.5 Hz, 3H), 1.54 (d, *J* = 1.3 Hz, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 141.7, 139.9, 135.3, 132.2, 131.7, 127.7, 127.7, 124.2, 123.7, 122.9, 114.3, 108.7, 48.8, 35.6, 33.5, 27.7, 26.3, 25.7, 22.2, 17.7. HRMS (ESI) calcd for $C_{21}H_{27}NCIO [M+H]^+$: 344.1776, found: 344.1778.

5-fluoro-1,3-dimethyl-3-(7-methyl-3-vinylocta-2,6-dien-1-yl)indolin-2-one (3y): 29 mg; 44% yield; yellow oil; *Z*:*E* = 8:1. ¹H NMR (400 MHz, CDCl₃) δ 6.98-6.90 (m, 2H), 6.73 (ddd, *J* = 7.8, 4.0, 1.2 Hz, 1H), 6.57 (ddd, *J* = 17.5, 11.0, 0.9 Hz, 1H), 5.21 (dt, *J* = 17.5, 1.0 Hz, 1H), 5.12-4.96 (m, 3H), 3.18 (s, 3H), 2.62 (dd, *J* = 8.0, 3.9 Hz, 2H), 2.08 (t, *J* = 7.7 Hz, 2H), 1.99-1.88 (m, 2H), 1.65 (d, *J* = 1.7 Hz, 3H), 1.54 (d, *J* = 1.3 Hz, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0, 139.7, 139.0, 132.2, 131.6, 124.1, 123.0, 114.2, 113.9, 113.7, 111.4, 111.2, 108.2, 108.1, 48.8, 35.6, 33.4, 27.6, 26.2, 25.7, 22.2, 17.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.0. HRMS (ESI) calcd for C₂₁H₂₇NFO [M+H]⁺ : 328.2071, found: 328.2069.

2-benzyl-4-methyl-4-(penta-2,4-dien-1-yl)isoquinoline-1,3(2*H***,4***H***)-dione (3z): 41 mg; 62% yield; yellow oil; Z:E = 11:1. ¹H NMR (400 MHz, CDCl₃) \delta 8.23 (dt, J = 7.9, 1.9 Hz, 1H), 7.63 (td, J = 7.6, 1.5 Hz, 1H), 7.51-7.34 (m, 4H), 7.24 (ddd, J = 13.4, 7.8, 6.0 Hz, 3H), 6.40 (dt, J = 16.9, 10.7 Hz, 1H), 5.82 (t, J = 11.0 Hz, 1H), 5.29-4.98 (m, 4H), 4.75 (q, J = 1.0 Hz, 1H), 5.29-4.98 (m, 4H), 4.75 (m, 4H** 8.9 Hz, 1H), 3.16 (dd, J = 13.9, 8.8 Hz, 1H), 2.71-2.52 (m, 1H), 1.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 164.1, 142.7, 137.1, 134.0, 132.9, 131.3, 129.0, 128.8, 128.3, 127.4, 127.3, 125.4, 124.6, 118.9, 47.9, 43.7, 41.7, 27.5. HRMS (ESI) calcd for C₂₂H₂₂NO₂ [M+H]⁺ : 332.1645, found: 332.1648.

1,3,3-trimethylindolin-2-one (6): 27 mg; 77% yield; oil. ¹¹H NMR (400 MHz, CDCl₃) δ 7.31-7.16 (m, 2H), 7.07 (td, *J* = 7.5, 1.0 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 3.22 (s, 3H), 1.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 142.7, 135.9, 127.7, 122.5, 122.3, 108.0, 44.2, 26.2, 24.4.

10. References

(1) (a) Liu, X.; Ma, X.; Huang, Y.; Gu, Z. *Org. Lett.* **2013**, *15*, 4814. (b) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Tian, L.; You, J.; Wang, H. *RSC Adv.* **2014**, *4*, 48535. (c) Tang, X.; Thomoson, C. S.; Dolbier, W. R. *Org. Lett.* **2014**, *16*, 4594.

(2) Yang, X.; Lu, H.; Zhu, X.; Zhou, L.; Deng, G.; Yang, Y.; Liang, Y. Org. Lett. **2019**, *21*, 7284.

(3) (a) Dang, H. T.; Nguyen, V. T.; Nguyen, V. D.; Arman, H. D.;Larionov, O. V. *Org. Biomol. Chem.* **2018**, *16*, 3605. (b) Nguyen, V. T.; Dang, H. T.; Pham, H. H.; Nguyen, V. D.; Flores-Hansen, C.; Arman, H. D.; Larionov, O. V. *J. Am. Chem. Soc.* **2018**, *140*, 8434.

(4) Gamero-Melo, P.; Villanueva-García, M.; Robles, J.; Contreras, R.; Paz-Sandoval, M. A.; *J. Organomet. Chem.* **2005**, *690*, 1379.

11. Crystallographic data of 3i

Structure of 3i CCDC: 1975373

Datablock:

Bond precision:	C-C = 0.0051 A	Wavelength = 1.54184		
Cell:	a = 15.8851(9)	b=11.9332(7)	c=16.3548(11)	
	alpha=90	beta=90 g	amma=90	
Temperature:	293 K			
	Calculated	Rep	ported	
Volume	3100.2(3)	31	3100.2(3)	
Space group	pbca	р	pbca	
Hall group	-p 2ac 2ab	-p 2ac 2ab		
Moiety formula	C16 H16 F3 N O			
Sum formula	C16 H16 F3 N O	C16 H16 F3 N O		
Mr	295.30	295.30		
Dx,g cm-3	1.265	1.265		
Z	8		8	
Mu (mm-1)	0.882		0.882	
F000	1232.0		1232.0	
F000'	1236.53			
h,k,lmax	18,14,19		19,14,19	
Nref	2780		2779	
Tmin,Tmax	0.900,0.908		0.923,1.000	
Tmin'	0.900			
Correction method =	# Reported T Limits: Tm	nin = 0.923 Tmax =	1.000	
AbsCorr = MULTI-SC	CAN			
Data completeness = 1.000		Theta (max) = 67.232		
R (reflections) = 0.0699(1649)		wR2 (reflections) = 0.2299(2779)		
S = 1.028		Npar = 193		

12. NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

20191104FC0010WXX-CW-6.1.fid

20191104FC0010WXX-CW-6.3.fid

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20191104FC0010WXX-CW-4.3.fid

20191106FC0003WXX-CW-9.2.fid

3g (*Z:E* = 17:1)

20191104FC0010WXX-CW-5.3.fid

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20191107FC0011WXX-CW-2.1.fid

20191108FC0002WXX-CW-2.2.fid

3i (*Z:E* = 18:1)

- 0. 000

20191107FC0011WXX-CW-3.1.fid

20191108FC0002WXX-CW-3.2.fid

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

20191107FC0011WXX-CW-16.1.fid

wxx1-cw-13

S30

20191031fc0002wxx-cw-14-C13.2.fid

20191122FC0003WXX-CW-20.1.fid

S33

20191120FC0007WXX-CW-21.2.fid

$$-0.000$$

20191122FC0003WXX-CW-26.1.fid

20191122FC0003WXX-CW-26.3.fid

554 554 553 534 553 534 901 881 881 881 646 619 603 576	$\begin{array}{c} 171 \\ 129 \\ 076 \\ 072 \\ 069 \\ 061 \\ 042 \\ 042 \\ 042 \end{array}$	230 230 665 665 665 665 651 651 651 651 655	704 701 413	. 000
6.6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	ດ່ດ່ວ່ວ່ວ່ວ່ວ່ວ່ວ່ວ	નંગે ગંગે ગંગે ગંગે ગંગે ગંગે ગંગે ગંગે		Ŷ
			ΥI	1

20191120FC0007WXX-CW-23.1.fid

20191120FC0007WXX-CW-23.2.fid

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S38

20191127FC0003WXX-CW-27.1.fid

20191126FC0006WXX-CW-31.1.fid

20200114FC0001WXX-CW-39.1.fid

20191213FC0004WXX-CW-8-HUANYUAN. 2. fid

20191213FC0012-WXX-CW-8-HUANYUAN.1.fid

60 50 40 30 90 80 70 20 10 0 -10

S49

