Supporting Information

Indium-mediated difunctionalization of iodoalkyl-tethered unactivated alkenes via an intramolecular cyclization and an ensuing palladium-catalyzed crosscoupling reaction with aryl halide

Xuan-Di Song,^a Xiang-Rui Li,^a Ya-Wen Wang,^a Xue-Qiang Chu,^a Weidong Rao,^b Haiyan Xu,^c Guo-Zhi Han,^{a,*} and Zhi-Liang Shen^{a,*}

^a Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China

^b Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

^c School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China

Table of Contents

1.	General informationpage S2
2.	Experimental procedurepage S2
3.	Optimization of reaction conditions by using various Pd catalysts page S6
4.	ESI-MS data of possible alkyl indium reagentpage S7
5.	Characterization data of productspage S9
6.	Referencespage S15
7.	¹ H, ¹⁹ F, and ¹³ C NMR spectra of productspage S17

General information

Commercially available aryl halides were used without further purification. Starting materials **1a-k** were prepared according to reported methods. Analytical grade THF and DMA were used in all the reactions without purification (without the need of precautions to exclude air and moisture unless otherwise noted). Indium powder, metallic salt, palladium catalyst, and lithium chloride were purchased from chemical companies and used directly without further purification. Analytical thin layer chromatography (TLC) was performed using silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm). Flash chromatography was performed using Merck silica gel (200-300 mesh) for column chromatography with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on Jeol 400 MHz spectrometerss. Tetramethylsilane (TMS) served as internal standard for ¹H and ¹³C NMR analysis.

Experimental procedure

General procedure for the synthesis of alkene-tethered alkyl iodides

6-Iodohex-1-ene (1a): This compound was synthesized using 6-bromohex-1-ene according to the described procedure.¹ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.79 (ddt, *J* = 16.9, 10.2, 6.7 Hz, 1H), 5.04-4.95 (m, 2H), 3.19 (t, *J* = 7.0 Hz, 2H), 2.10-2.03 (m, 2H), 1.86-1.79 (m, 2H), 1.57-1.44 (m, 2H) ppm.

EtO₂C CO₂Et

Diethyl 2-allyl-2-(2-iodoethyl)malonate (1b): This compound was synthesized using diethyl 2-allylmalonate and 1,2-dibromoethane according to the described procedure.² Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.62 (ddt, J = 16.6, 10.6, 7.4 Hz, 1H), 5.14-5.08 (m, 2H), 4.18 (q, J = 7.1 Hz, 4H), 3.10- 3.06 (m, 2H), 2.62 (d, J = 7.4 Hz, 2H), 2.48-2.43 (m, 2H), 1.24 (t, J = 7.1 Hz, 6H) ppm.

3-(2-Iodoethoxy)prop-1-ene (1c): This compound was synthesized using 2-(allyloxy)ethan-1-ol according to the described procedure.³ Colorless oil. ¹H NMR

(**400 MHz, CDCl₃**): δ 5.95-5.85 (m, 1H), 5.32-5.18 (m, 2H), 4.03 (d, *J* = 5.6 Hz, 2H), 3.69 (t, *J* = 6.8 Hz, 2H), 3.25 (t, *J* = 6.8 Hz, 2H) ppm.

1-(1-(Allyloxy)-2-iodoethoxy)butane (1d): This compound was synthesized using 3-propoxyprop-1-ene and prop-2-en-1-ol according to the described procedure.⁴ Colorless oil. ¹**H NMR (400 MHz, CDCl₃):** δ 5.89 (ddt, J = 17.2, 10.4, 5.6 Hz, 1H), 5.29 (dq, J = 17.2, 1.7 Hz, 1H), 5.17 (dq, J = 10.4, 1.4 Hz, 1H), 4.63 (t, J = 5.5 Hz, 1H), 4.12 (ddt, J = 12.8, 5.4, 1.5 Hz, 1H), 4.03 (ddt, J = 12.8, 5.9, 1.4 Hz, 1H), 3.58 (dt, J = 9.3, 6.6 Hz, 1H), 3.46 (dt, J = 9.3, 6.6 Hz, 1H), 3.21 (d, J = 5.5 Hz, 2H), 1.61-1.50 (m, 2H), 1.44-1.31 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H) ppm.

(1-(Allyloxy)-2-iodoethyl)benzene (1e): This compound was synthesized by the reaction of styrene with NIS and allyl alcohol according to the described procedure.⁵ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.31 (m, 5H), 5.99-5.89 (m, 1H), 5.32-5.18 (m, 2H), 4.48 (dd, *J* = 8.2, 4.8 Hz, 1H), 4.01 (dd, *J* = 12.8, 5.2 Hz, 1H), 3.85 (dd, *J* = 12.8, 6.2 Hz, 1H), 3.38 (dd, *J* = 10.4, 8.2 Hz, 1H), 3.33 (dd, *J* = 10.4, 4.8 Hz, 1H) ppm.

N-Allyl-*N*-(2-iodoethyl)-4-methylbenzenesulfonamide (1f): This compound was synthesized using 2-aminoethan-1-ol and 3-bromoprop-1-ene according to the described procedure.⁶ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.68 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.68 (ddt, *J* = 17.5, 9.8, 6.5 Hz, 1H), 5.24-5.15 (m, 2H), 3.79 (d, *J* = 6.5 Hz, 2H), 3.42 (dd, *J* = 9.5, 6.9 Hz, 2H), 3.23 (dd, *J* = 9.3, 6.6 Hz, 2H), 2.44 (s, 3H) ppm.

N-Allyl-*N*-(2-iodoethyl)aniline (1g): This compound was synthesized using 2-(phenylamino)ethan-1-ol and 3-bromoprop-1-ene according to the described procedure.⁷ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.20 (m, 2H), 6.75-6.71 (m, 1H), 6.68-6.66 (m, 2H), 5.85 (dddd, *J* = 17.6, 9.9, 5.2, 4.7 Hz, 1H), 5.20-5.14 (m, 2H), 3.96 (d, *J* = 5.2 Hz, 2H), 3.73-3.69 (m, 2H), 3.25-3.21 (m, 2H) ppm.

2-(But-3-en-1-yl)cyclohexan-1-ol: This compound was synthesized using cyclohexene oxide and 3-butenylmagnesium bromide according to the described procedure.⁸

cis-1-(But-3-en-1-yl)-2-iodocyclohexane (1h): This compound was synthesized using 2-(but-3-en-1-yl)cyclohexan-1-ol according to the described procedure.⁹ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.79 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.04-4.94 (m, 2H), 4.71-4.70 (m, 1H), 2.22-1.94 (m, 3H), 1.78-1.69 (m, 3H), 1.60-1.43 (m, 2H), 1.39-1.22 (m, 4H), 0.48-0.41 (m, 1H). The relative stereochemistry of the structure was confirmed by comparing with the NMR data of the same compound reported earlier.¹⁰

2-(Allyloxy)cyclohexan-1-ol: This compound was synthesized using 7-oxabicyclo[4.1.0]heptane and allyl alcohol according to the described procedure.¹¹

cis-1-(allyloxy)-2-iodocyclohexane (1i): This compound was synthesized using 2-(allyloxy)cyclohexan-1-ol according to the described procedure.¹² Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.95 (ddt, J = 17.4, 10.5, 5.6 Hz, 1H), 5.34-5.28 (m, 1H), 5.19-5.15 (m, 1H), 4.67 (dt, J = 6.5, 3.3 Hz, 1H), 4.07 (ddq, J = 12.8, 5.7, 1.4 Hz, 1H), 3.98 (ddq, J = 12.8, 5.7, 1.4 Hz, 1H), 2.78-2.65 (m, 1H), 2.25-2.13 (m, 1H), 1.85-1.61 (m, 4H), 1.52-1.19 (m, 3H) ppm.

trans-2-Allyloxy3-iodotetrahydro-2*H*-pyran (1j): This compound was synthesized using allyl alcohol and 3,4-dihydro-2*H*-pyran according to the described procedure.¹³ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.99-5.88 (m, 1H), 5.32 (dq, *J* = 17.3, 1.7 Hz, 1H), 5.20 (dq, *J* = 10.5, 1.4 Hz, 1H), 4.68 (d, *J* = 5.4 Hz, 1H), 4.26 (dd, *J* = 12.7, 5.4 Hz, 1H), 4.14-3.96 (m, 3H), 3.59 (ddd, *J* = 11.3, 7.7, 3.6 Hz, 1H), 2.43-2.34 (m, 1H), 2.07-1.97 (m, 1H), 1.82-1.73 (m, 1H), 1.63-1.53 (m, 1H) ppm. The relative stereochemistry of the structure was confirmed by comparing with the NMR data of the same compound reported earlier.¹⁴

trans-2-Allyloxy-3-iodotetrahydrofuran (1k): This compound was synthesized using 2,3-dihydrofuran and allyl alcohol according to the described procedure.¹⁵ Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.87 (dddd, J = 17.3, 10.4, 6.1, 5.2 Hz, 1H), 5.39 (s, 1H), 5.27 (dq, J = 17.3, 1.7 Hz, 1H), 5.18 (dq, J = 10.4, 1.4 Hz, 1H), 4.22-4.08 (m, 3H), 4.03 (td, J = 8.3, 3.6 Hz, 1H), 3.97 (ddt, J = 12.8, 6.1, 1.4 Hz, 1H), 2.63 (dtd, J = 14.4, 8.3, 6.3 Hz, 1H), 2.19 (dddd, J = 14.0, 7.0, 3.6, 2.2 Hz, 1H) ppm. The relative stereochemistry of the structure was confirmed by comparing with the NMR data of the same compound reported earlier.¹⁴

General procedure for the cyclization/cross-coupling sequence (Tables 2-3)

Step 1: Alkyl iodide (0.6 mmol), indium (137.8 mg, 1.2 mmol), cobalt(II) acetylacetonate (42.8 mg, 0.12 mmol), and analytical grade THF (2 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at 60 $^{\circ}$ C for 24 hrs. Then the upper clear solution was carefully separated from the bottom black precipitate by centrifugal. The remaining black precipitate was additionally stirred with THF (3 mL), and the THF layer was carefully separated from bottom precipitate by pipette. The combined organic layers were concentrated under vacuum. The crude mixture was directly used in the next step without further purification.

Step 2: To the above residue was added aryl halide (0.42 mmol), LiCl (50.9 mg, 1.2 mmol), Pd(PPh₃)₄ (34.7 mg, 0.03 mmol), and DMA (2 mL), and the reaction mixture was stirred at 100 °C for 12 hrs. Upon completion of the reaction, the reaction mixture was directly purified by flash silica gel column chromatography using petroleum ether/ethyl acetate as eluent to afford the pure products.

Control experiment

N-Allyl-*N*-(2-iodoethyl)aniline (**1g**, 172.3 mg, 0.6 mmol), indium (137.8 mg, 1.2 mmol), cobalt(II) acetylacetonate (42.8 mg, 0.12 mmol), and analytical grade THF (2 mL) was added in a flask equipped with a septum and a magnetic stir bar. The reaction mixture was vigorously stirred at 60 °C for 24 hrs. HCl (2 mL; 1 M in H₂O) or DCl (1 mL; 20 wt% in D₂O) was added into the reaction and the solution was stirred at 60 °C for 2 hrs followed by the addition of saturated aqueous NaHCO₃ (20 mL). The reaction mixture was extracted with EtOAc (20 mL × 3), washed with brine, dried over

anhydrous Na₂SO₄, and evaporated to dryness. Purification of the residue by flash silica gel column chromatography using petroleum ether/ethyl acetate (200:1) as eluent afforded the 3-methyl-1-phenylpyrrolidine **6** (aq. HCl: 45.5 mg, 47% yield; DCl in D₂O: 50.6 mg, 52% yield (71% D)) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.22 (m, 2H), 6.66 (t, *J* = 7.3 Hz, 1H), 6.55 (d, *J* = 7.8 Hz, 2H), 3.45 (dd, *J* = 9.0, 7.2 Hz, 1H), 3.40-3.28 (m, 2H), 2.87 (dd, *J* = 8.8, 7.7 Hz, 1H), 2.46-2.34 (m, 1H), 2.17-2.10 (m, 1H), 1.63 (dq, *J* = 12.1, 8.3 Hz, 1H), 1.14 (d, *J* = 6.6 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 147.9, 129.1, 115.2, 111.3, 54.9, 47.4, 33.5, 33.3, 18.4 ppm.

Optimization of reaction conditions by using various Pd catalysts

	I 1. In, Co(acac) ₂ , THF, 60 2. 4-AcC ₆ H ₄ I (2a), Pd cat ligand (10 mol%), LiCl, 100 °C, 12 h	°C, 24 h alyst (5 mol%) DMA	Ac Ba
Entry	Catalyst	Ligand	Yield $(\%)^b$
1	$Pd(acac)_2$	-	37
2	Pd(PPh ₃) ₂ Cl ₂	-	70
3	[PdCl(allyl)]2	-	40
4	Pd ₂ (dba) ₃ ·CHCl ₃	-	42
5	Pd(PPh3)4	-	71
6	Pd(TFA) ₂	S-Phos	51
7	$Pd(OAc)_2$	S-Phos	38
8	Pd(OAc) ₂	X-Phos	35
9	Pd(OAc) ₂	DPEPhos	61
10	$Pd(OAc)_2$	XantPhos	63
11	Pd(OAc) ₂	BrettPhos	38
12	$Pd(OAc)_2$	DPPP ^c	65
13	$Pd(OAc)_2$	$DPPE^d$	43
14	Pd(OAc) ₂	TTMPP ^e	59
15	$Pd(OAc)_2$	PCy ₃	62

Table S1 Optimization of reaction conditions by using various Pd catalysts and ligands for cross-coupling reactions^a

^{*a*} The 1st step was performed at 60 °C for 24 h by using 6-iodohex-1-ene (**1a**, 0.6 mmol), indium powder (1.2 mmol), and Co(acac)₂ (0.12 mmol) in THF (2 mL). The 2nd cross-coupling step was performed at 100 °C for 12 h by using 4-AcC₆H₄I (**2a**, 0.42 mmol), LiCl (1.2 mmol), Pd catalyst (0.03 mmol), ligand (0.06 mmol), and DMA (2 mL). ^{*b*} The yield was determined by ¹H NMR analysis of the crude reaction mixture by using 1,4-dimethoxybenzene as an internal standard. ^{*c*} DPPP = 1,3-bis(diphenyphosphino)propane. ^{*d*} DPPE = 1,2-bis(diphenylphosphino)ethane. ^{*e*} TTMPP = tris(2,4,6-trimethoxyphenyl)phosphine.

ESI-MS data of possible alkyl indium reagent

ESI-MS data of A

HRMS (ESI, m/z): [M+H]⁺, calcd for C₁₆H₃₁IInO⁺: 481.0453, found: 481.0458.

Elemental Composition Report

Page 1

8.02e+012

Page 1

481.0458

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron lons 172 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 14-17 H: 29-32 O: 0-2 Cl: 0-8 Br: 0-8 In: 0-3 I: 1-3 WAC0331 (0.918) Is (1.00,1.00) C16H30IInO 1: TOF MS ES+ 121.0173 161.0205 241.0268 100 121.5190 161.0205 241.0208 100 121.5190 1 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 Minimum: 5.0 10.0 50.0 Maximum:

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	ula			
481.0458	481.0464 481.0458	-0.6 0.0	-1.2 0.0	-0.5 1.5	67.1 115.2	0.000 48.067	100.00 0.00	C15 C16	H31 H31	0 0	I2 In	I

ESI-MS data of B

HRMS (ESI, m/z): $[M+H]^+$, calcd for C₁₀H₂₀I₂InO⁺: 524.8637, found: 524.8643.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 218 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 9-11 H: 19-21 O: 0-2 Cl: 0-8 Br: 0-8 In: 0-3 I: 1-3 WAC0331 (1.252) ls (1.00,1.00) C10H19I2InO 1: TOF MS ES+ 8 56e+012 105.7791131.9719 175.6266 262.9360 524.8643 Minimum: -1.5 Maximum: 5.0 10.0 50.0 PPM DBE Conf(%) Formula Mass Calc. Mass mDa i-FIT Norm 524.8643 524.8642 0.1 0.2 0.5 63.2 0.000 100.00 C10 H20 O In I2 524.8648 524.8636 -0.5 0.7 -1.0 1.3 -1.5 2.5 85.6 128.6 22.383 0.00 65.309 0.00 C9 H20 O I3 C11 H20 O In2 I

ESI-MS data of C

HRMS (ESI, m/z): $[M+H]^+$, calcd for $C_{32}H_{61}I_2In_2O_2^+$: 961.0833, found: 961.0839.

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron lons 1866 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 31-33 H: 60-62 O: 0-3 CI: 0-8 Br: 0-8 In: 0-3 I: 1-3

WAC0331 (0.807) Is (1.00, 1.00) C32H60I2In2O2

1. TOF 103 E3	T												
107.6829	161.0205 241.026	8 321.	0332		481.0459								6.45e+012 961.0839
150	200 250	300	350	400	450 500	550	600	650 700	750	800	850	900	950
Minimum: Maximum:		5.0	10.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula					
961.0839	961.0844 961.0833 961.0839	-0.5 0.6 0.0	-0.5 0.6 0.0	0.5 4.5 2.5	119.2 183.8 183.8	0.000 64.606 64.636	100.00 0.00 0.00	C31 H61 C33 H61 C32 H61	02 In 02 In 02 In	I3 3 I 2 I2			

ESI-MS data of **D**

HRMS (ESI, m/z): $[M+H]^+$, calcd for C₂₀H₃₉I₄In₂O₂⁺: 1048.7201, found: 1048.7207.

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 1336 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 18-21 H: 37-40 O: 1-3 Cl: 0-8 Br: 0-8 In: 0-3 I: 2-5

SXD-3 (3.469) ls (1.00,1.00) C20H38l4In2O2 1: TOF MS ES+

105.7791	175.6266	262.9360	350.2454		524.8643						7.34e+012 1048.7207 m/z
	200	300	400		500	600	7	00	800	900	1000
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
1048.7207	1048.7212 1048.7200 1048.7206	-0.5 0.7 0.1	-0.5 0.7 0.1	-1.5 2.5 0.5	117.2 182.0 182.1	0.000 64.853 64.880	100.00 0.00 0.00	C19 H39 C21 H39 C20 H39	02 In I 02 In3 02 In2	5 I3 I4	

Page 1

Characterization data of products

1-(4-(Cyclopentylmethyl)phenyl)ethan-1-one (3a): 54.6 mg. Yield = 64%. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.77 (m, 2H), 7.33-7.20 (m, 2H), 2.66 (d, *J* = 7.5 Hz, 2H), 2.58 (s, 3H), 2.08 (hept, *J* = 7.5 Hz, 1H), 1.76-1.58 (m, 4H), 1.57-1.42 (m, 2H), 1.25-1.09 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 148.2, 134.8, 128.9, 128.3, 42.0, 41.7, 32.4, 26.5, 24.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₉O: 203.1430, found: 203.1436. FTIR (KBr, neat): *v* 2951, 1683, 1606, 1358, 1268, 1017, 853, 818 cm⁻¹.

4-(Cyclopentylmethyl)benzonitrile (3b): 53.2 mg. Yield = 68%. Colorless oil. ¹H **NMR (400 MHz, CDCl₃):** δ 7.60-7.51 (m, 2H), 7.31-7.22 (m, 2H), 2.66 (d, *J* = 7.5 Hz, 2H), 2.07 (hept, *J* = 7.5 Hz, 1H), 1.75-1.58 (m, 4H), 1.58-1.46 (m, 2H), 1.23-1.12 (m, 2H) ppm. ¹³C **NMR (100 MHz, CDCl₃):** 148.0, 132.0, 129.5, 119.2, 109.4, 42.1, 41.6, 32.3, 24.8 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₃H₁₆N: 186.1277, found: 186.1279. **FTIR (KBr, neat):** v 2951, 2227, 1629, 1606, 1507, 804 cm⁻¹.

1-(Cyclopentylmethyl)-4-nitrobenzene (3c): 61.0 mg. Yield = 71%. Colorless oil. ¹H **NMR (400 MHz, CDCl₃):** δ 8.17-8.08 (m, 2H), 7.35-7.27 (m, 2H), 2.71 (d, *J* = 7.5 Hz, 2H), 2.10 (hept, *J* = 7.5 Hz, 1H), 1.76-1.59 (m, 4H), 1.59-1.46 (m, 2H), 1.24-1.12 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 146.2, 129.5, 123.4, 41.9, 41.6, 32.4, 24.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₂H₁₆NO₂: 206.1176, found: 206.1181. FTIR (KBr, neat): v 2951, 1598, 1518, 1346, 858, 803 cm⁻¹.

1-(Cyclopentylmethyl)-3-nitrobenzene (3d): 66.9 mg. Yield = 78%. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.04-8.01 (m, 2H), 7.50-7.48 (m, 1H), 7.44-7.40 (m, 1H), 2.71 (d, *J* = 7.5 Hz, 2H), 2.11 (hept, *J* = 7.5 Hz, 1H), 1.77-1.60 (m, 4H), 1.59-1.47 (m, 2H), 1.23-1.14 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 144.3, 135.0, 128.9, 123.4, 120.8, 41.6, 32.3, 24.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. For C₁₂H₁₆NO₂: 206.1176, found: 206.1180. FTIR (KBr, neat): v 2951, 1528, 1351, 811, 735 cm⁻¹.

1-(Cyclopentylmethyl)-2-nitrobenzene (3e): 52.6 mg. Yield = 61%. Colorless oil. ¹H **NMR (400 MHz, CDCl₃):** δ 7.86-7.83 (m, 1H), 7.53-7.46 (m, 1H), 7.36-7.29 (m, 2H), 2.92 (d, *J* = 7.3 Hz, 2H), 2.17-2.04 (m, 1H), 1.73-1.58 (m, 4H), 1.58-1.45 (m, 2H), 1.25-1.12 (m, 2H) ppm. ¹³C **NMR (100 MHz, CDCl₃):** δ 149.6, 136.9, 132.4, 132.2, 126.8, 124.5, 40.9, 38.4, 32.5, 24.7 ppm. **HRMS (ESI, m/z):** [M+H]⁺, calcd. for C₁₂H₁₆NO₂: 206.1176, found: 206.1181. **FTIR (KBr, neat):** v 2951, 1526, 1628, 1351, 742 cm⁻¹.

Ethyl 4-(cyclopentylmethyl)benzoate (3f): 64.2 mg. Yield = 66%. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.92 (m, 2H), 7.25-7.21 (m, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 2.66 (d, *J* = 7.5 Hz, 2H), 2.16-2.02 (m, 1H), 1.75-1.58 (m, 4H), 1.57-1.46 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.24-1.12 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 147.8, 129.5, 128.7, 127.9, 60.7, 42.1, 41.7, 32.4, 24.9, 14.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₅H₂₁O₂: 232.1536, found: 232.1539. FTIR (KBr, neat): v 2952, 1719, 1628, 1275, 854, 802 cm⁻¹.

4-(Cyclopentylmethyl)-2-(trifluoromethyl)benzonitrile (3g): 49.8 mg. Yield = 47%. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.60-7.56 (m, 1H), 7.48-7.45 (m, 1H), 2.74 (d, *J* = 7.5 Hz, 2H), 2.15-2.03 (m, 1H), 1.78-1.61 (m, 4H), 1.61-1.50 (m, 2H), 1.23-1.11 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 148.7, 134.6, 132.7, 132.4, 127.0 (q, *J* = 4.7 Hz), 122.5 (q, *J* = 272.3 Hz), 115.8, 107.1, 42.0, 41.4, 32.3, 24.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ -61.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₅F₃N: 254.1151, found: 254.1158. FTIR (KBr, neat): v 2953, 2229, 1611, 1502, 908, 868 cm⁻¹.

4-(Cyclopentylmethyl)benzaldehyde (3h, 3i, 3j): 63.2 mg, 39.4 mg, 19.0 mg. Yield = 80%, 50%, 24%. Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 9.97 (s, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 2.69 (d, *J* = 7.5 Hz, 2H), 2.10 (hept, *J* = 7.5 Hz, 1H), 1.78-1.59 (m, 4H), 1.58-1.45 (m, 2H), 1.25-1.14 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 149.9, 134.3, 129.8, 129.4, 42.3, 41.7, 32.4, 24.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₃H₁₇O: 189.1274, found: 189.1279. FTIR (KBr, neat): v 2950, 1702, 1605, 1213, 1168, 849 cm⁻¹.

N-(4-(Cyclopentylmethyl)phenyl)acetamide (3k): 43.0 mg. Yield = 47%. White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 8.4 Hz, 2H), 7.32 (brs, 1H), 7.11 (d, J = 8.4 Hz, 2H), 2.56 (d, J = 7.5 Hz, 2H), 2.15 (s, 3H), 2.04 (hept, J = 7.5 Hz, 1H), 1.74-1.56 (m, 4H), 1.55-1.46 (m, 2H), 1.23-1.09 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 138.5, 135.4, 129.2, 119.9, 42.0, 41.4, 32.4, 24.9, 24.5 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₂₀NO: 218.1539, found: 218.1545. FTIR (KBr, neat): v 3287, 3186, 2948, 1662, 1600, 1556, 1409, 1324, 836, 758 cm⁻¹.

5-(Cyclopentylmethyl)furan-2-carbaldehyde (3l): 35.9 mg. Yield = 48%. Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.16 (d, *J* = 3.6 Hz, 1H), 6.23 (dt, *J* = 3.6, 0.7 Hz, 1H), 2.71 (d, *J* = 7.4 Hz, 2H), 2.24 (hept, *J* = 7.6 Hz, 1H), 1.78 (dtdd, *J* = 12.7, 6.4, 2.8, 1.3 Hz, 2H), 1.68-1.49 (m, 4H), 1.26-1.14 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 163.8, 151.7, 140.5, 109.0, 38.6, 34.4, 32.4, 25.0 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₁H₁₅O₂: 179.1067, found: 179.1072. FTIR (KBr, neat): v 3185, 3120, 2948, 1661, 1600, 1556, 1513, 1409, 1323, 758 cm⁻¹.

2-(Cyclopentylmethyl)quinoxaline (3m): 37.5 mg. Yield = 42%. Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.13-7.99 (m, 2H), 7.81-7.64 (m, 2H), 3.02 (d, *J* = 7.5 Hz, 2H), 2.47-2.30 (m, 1H), 1.83-1.62 (m, 4H), 1.61-1.49 (m, 2H), 1.37-1.23 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 146.0, 142.2, 141.2, 129.9, 129.1, 128.9, 42.4, 40.5, 32.5, 24.9 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₄H₁₇N₂: 213.1386, found: 213.1392. FTIR (KBr, neat): v 2954, 1679, 1518, 1023, 967, 800 cm⁻¹.

1-(Cyclopentylmethyl)naphthalene (3n): 69.1 mg. Yield = 78%. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, J = 8.2 Hz, 1H), 7.91-7.84 (m, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.54-7.47 (m, 2H), 7.44-7.38 (m, 1H), 7.34 (d, J = 6.9 Hz, 1H), 3.09 (d, J = 7.3 Hz, 2H), 2.32 (hept, J = 7.4 Hz, 1H), 1.82-1.64 (m, 4H), 1.62-1.48 (m, 2H), 1.33 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 138.4, 133.9, 132.0, 128.7, 126.4, 126.4, 125.5, 125.4, 125.3, 124.0, 41.0, 39.1, 32.8, 24.9 ppm. HRMS (ESI, m/z): [M+H]⁺,

calcd. for C₁₆H₁₉: 211.1481, found: 211.1483. **FTIR** (**KBr, neat**): v 2950, 1702, 1605, 1306, 1213, 1168, 849, 780 cm⁻¹.

Diethyl 3-(4-acetylbenzyl)cyclopentane-1,1-dicarboxylate (4b): 87.7 mg. Yield = 60%. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.76-2.63 (m, 2H), 2.57 (s, 3H), 2.42-2.20 (m, 3H), 2.13 (ddd, *J* = 13.7, 9.5, 7.5 Hz, 1H), 1.81 (dd, *J* = 13.1, 9.6 Hz, 2H), 1.36 (dtd, *J* = 12.4, 9.6, 8.3 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.8, 172.6, 172.5, 147.0, 135.1, 128.9, 128.5, 61.3, 61.3, 59.8, 41.2, 41.2, 40.2, 33.6, 31.9, 26.5, 14.0, 14.0 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₂₀H₂₇O₅: 347.1853, found: 347.1857. FTIR (KBr, neat): v 2981, 1729, 1683, 1606, 1364, 1267, 1180, 861, 817 cm⁻¹.

1-(4-((Tetrahydrofuran-3-yl)methyl)phenyl)ethan-1-one (4c): 69.8 mg. Yield = 81%. White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 3.87 (td, J = 8.3, 5.0 Hz, 1H), 3.82-3.68 (m, 2H), 3.42 (dd, J = 8.3, 6.7 Hz, 1H), 2.71 (dd, J = 7.7, 2.6 Hz, 2H), 2.55 (s, 3H), 2.53-2.44 (m, 1H), 1.96 (dtd, J = 12.6, 7.6, 5.0 Hz, 1H), 1.58 (dq, J = 12.3, 7.5 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 146.4, 135.2, 128.8, 128.5, 72.7, 67.7, 40.5, 39.2, 32.0, 26.5 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₃H₁₇O₂: 205.1223, found: 205.1225. FTIR (KBr, neat): v 2931, 1682, 1606, 1359, 1269, 905, 863, 819 cm⁻¹.

1-(4-((5-Butoxytetrahydrofuran-3-yl)methyl)phenyl)ethan-1-one (4d): 61.5 mg. Yield = 52%, 75:25 dr. Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.88 (m, 2H), 7.28-7.25 (m, 2H), 5.11 (dd, J = 5.5, 2.4 Hz, 1H), 3.99-3.95 (m, 1×0.25 H), 3.90 (dd, J = 8.4, 7.2 Hz, 1×0.75 H), 3.70 (dt, J = 9.6, 6.8 Hz, 1×0.75 H), 3.65-3.63 (m, 1×0.25 H), 3.62-3.58 (m, 1×0.75 H), 3.57-3.53 (m, 1×0.25 H), 3.41-3.36 (m, 1×0.75 H), 3.35-3.32 (m, 1×0.25 H), 2.85 (dd, J = 7.8, 2.7 Hz, 2×0.75 H), 2.73 (d, J = 2.2 Hz, 2×0.25 H), 2.58 (s, 3H), 2.54-2.44 (m, 1H), 2.19-2.12 (m, 1×0.75 H), 2.02-1.97 (m, 1×0.25 H), 1.72-1.47 (m, 3H), 1.44-1.27 (m, 2H), 0.94 (t, J = 7.3 Hz, 3×0.75 H), 0.86 (t, J = 7.3 Hz, 3×0.25 H) ppm. ¹³C NMR (100 MHz, CDCl₃): *Major Diastereomer* δ 197.7, 146.6, 135.2, 128.8, 128.6, 104.3, 104.3, 71.5, 67.4, 39.4, 38.4, 31.8, 26.5, 19.4, 13.8 ppm. ¹³C NMR (100 MHz, CDCl₃): *Minor Diastereomer* δ 197.7, 146.2, 135.3, 128.8, 128.6, 103.9, 71.4, 67.0, 39.8, 39.0, 38.5, 31.7, 26.5, 19.3, 13.8 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₇H₂₅O₃: 277.1798, found: 277.1803. FTIR (KBr, neat): v 2958, 2872, 1684, 1607, 1359, 1268, 861, 819 cm⁻¹.

1-(4-((5-Phenyltetrahydrofuran-3-yl)methyl)phenyl)ethan-1-one (4e): 56.5 mg. Yield = 48%, 84:16 dr. Light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.87 (m, 2H), 7.35-7.21 (m, 7H), 5.08 (dd, *J* = 7.5, 6.3 Hz, 1×0.84 H), 4.90 (dd, *J* = 9.6, 6.1 Hz, 1×0.16 H), 4.16 (dd, *J* = 8.5, 6.7 Hz, 1×0.84 H), 4.05 (dd, *J* = 8.4, 7.0 Hz, 1×0.16 H), 3.77 (dd, *J* = 8.5, 7.0 Hz, 1×0.16 H), 3.64 (dd, *J* = 8.5, 6.8 Hz, 1×0.84 H), 2.82 (d, *J* = 7.8 Hz, 2H), 2.71-2.61 (m, 1H), 2.58 (s, 3H), 2.47-2.37 (m, 1×0.16 H), 2.11 (ddd, *J* = 12.5, 7.6, 6.4 Hz, 1×0.84 H), 1.98 (ddd, *J* = 12.5, 7.8, 6.2 Hz, 1×0.84 H), 1.56 (dt, *J* = 12.4, 9.1 Hz, 1×0.16 H) ppm. ¹³C NMR (100 MHz, CDCl₃): *Major Diastereomer* δ 197.7, 146.2, 143.4, 135.3, 128.8, 128.6, 128.3, 127.1, 125.4, 79.9, 73.5, 40.4, 40.3, 39.0, 26.5 ppm. ¹³C NMR (100 MHz, CDCl₃): *Minor Diastereomer* δ 197.7, 146.3, 142.8, 135.3, 128.8, 128.6, 128.3, 127.3, 125.5, 81.2, 73.4, 41.8, 41.6, 39.4, 26.5 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₉H₂₁O₂: 281.1536, found: 281.1541. FTIR (KBr, neat): v 3029, 2970, 2851, 1683, 1602, 1492, 1362, 1268, 1046, 868, 817, 762, 705 cm⁻¹.

1-(4-((1-Tosylpyrrolidin-3-yl)methyl)phenyl)ethan-1-one (4f): 49.6 mg. Yield = 33%. Light yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 3.38 (ddd, *J* = 9.8, 8.2, 4.2 Hz, 1H), 3.30 (dd, *J* = 9.8, 7.1 Hz, 1H), 3.17 (dt, *J* = 9.8, 7.7 Hz, 1H), 2.89 (dd, *J* = 9.8, 7.4 Hz, 1H), 2.60 (d, *J* = 7.6 Hz, 2H), 2.56 (s, 3H), 2.42 (s, 3H), 2.32 (hept, *J* = 7.5 Hz, 1H), 1.86 (dtd, *J* = 11.4, 7.0, 4.1 Hz, 1H), 1.48 (dq, *J* = 12.5, 8.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 145.3, 143.4, 135.5, 133.8, 129.6, 128.8, 128.6, 127.5, 52.6, 47.2, 40.0, 39.0, 31.0, 26.5, 21.5 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₂₀H₂₄NO₃S: 358.1471, found: 358.1476. FTIR (KBr, neat): v 2920, 1676, 1604, 1329, 1268, 1159, 812, 707, 664 cm⁻¹.

1-(4-((1-Phenylpyrrolidin-3-yl)methyl)phenyl)ethan-1-one (4g): 69.0 mg. Yield = 60%, Yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.90 (m, 2H), 7.35-7.29 (m, 2H), 7.26 -7.20 (m, 2H), 6.67 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.57-6.51 (m, 2H), 3.46-3.35 (m, 2H), 3.30 (dt, *J* = 9.1, 7.6 Hz, 1H), 3.02 (dd, *J* = 9.2, 7.2 Hz, 1H), 2.83 (d, *J* = 7.6 Hz, 2H), 2.68-2.57 (m, 1H), 2.61 (s, 3H), 2.11 (dtd, *J* = 12.1, 6.9, 3.9 Hz, 1H), 1.76 (dq, *J* = 12.2, 8.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 147.7, 146.4, 135.3, 129.1, 128.9, 128.6, 115.5, 111.4, 52.8, 47.1, 40.1, 39.8, 31.3, 26.5 ppm. HRMS (ESI, 11.4, 52.8, 47.1, 40.1, 39.8, 31.3, 26.5 ppm. 1100 mm.

m/z): $[M+H]^+$, calcd. for C₁₉H₂₂NO: 280.1696, found: 280.1702. **FTIR** (**KBr, neat**): v 2920, 1676, 1604, 1329, 1159, 812, 707, 692 cm⁻¹.

1-(4-(((1R,3aR,7aR)-Octahydro-1*H***-inden-1-yl)methyl)phenyl)ethan-1-one (4h):** 58.1 mg. Yield = 54%, 75:25 dr. White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, J = 8.3, 2.8 Hz, 2H), 7.28-7.25 (m, 2H), 2.81 (dd, J = 13.5, 5.8 Hz, 1×0.25 H), 2.73 (dd, J = 13.6, 7.5 Hz, 1×0.75 H), 2.61-2.55 (m, 1×0.75 H), 2.58 (s, 3H), 2.48-2.40 (m, 1×0.25 H), 2.26-2.16 (m, 1×0.75 H), 2.11-1.99 (m, 1H), 1.97-1.93 (m, 1×0.25 H), 1.71-1.17 (m, 11H), 1.14-0.80 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): *Major Diastereomer* δ 197.9, 148.6, 134.8, 128.7, 128.4, 45.9, 42.0, 39.1, 37.2, 28.5, 27.1, 26.5, 25.4, 25.3, 22.2, 20.8 ppm. ¹³C NMR (100 MHz, CDCl₃): *Minor Diastereomer* δ 197.9, 148.3, 134.8, 129.0, 128.3, 44.8, 42.2, 42.0, 38.8, 29.5, 29.3, 28.3, 26.7, 26.5, 24.2, 22.7 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₈H₂₅O: 257.1900, found: 257.1902. FTIR (KBr, neat): v 2920, 1675, 1604, 1413, 1360, 1267, 855, 809 cm⁻¹.

1-(4-(((3R,3aS,7aS)-Octahydrobenzofuran-3-yl)methyl)phenyl)ethan-1-one (4i): 54.3 mg. Yield = 50%, 70:30 dr. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.88 (m, 2H), 7.29-7.25 (m, 2H), 4.08 (dd, J = 8.8, 7.6 Hz, 1×0.70 H), 4.02 (q, J = 4.5Hz, 1×0.70 H), 3.97 (q, J = 3.0 Hz, 1×0.30 H), 3.89 (t, J = 8.0 Hz, 1×0.30 H), 3.65 (dd, J = 9.4, 8.0 Hz, 1×0.30 H), 3.51 (dd, J = 8.8, 4.7 Hz, 1×0.70 H), 2.86-2.74 (m, 1H), 2.74-2.63 (m, 1H), 2.59 (s, 3H), 2.35-2.27 (m, 1×0.70 H), 2.02-1.94 (m, 1×0.30 H), 1.90-1.70 (m, 2H),1.65-1.06 (m, 7H) ppm. ¹³C NMR (100 MHz, CDCl₃): *Major Diastereomer* δ 197.8, 146.4, 135.2, 128.9, 128.6, 76.1, 71.8, 70.64, 45.5, 42.9, 39.7, 33.6, 28.2, 27.4, 26.5, 23.6, 21.0 ppm. ¹³C NMR (100 MHz, CDCl₃): *Minor Diastereomer* δ 197.7, 146.7, 135.2, 128.9, 128.6, 78.2, 70.6, 45.1, 42.9, 39.9, 33.6, 28.5, 24.4, 22.1, 20.3 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₇H₂₃O₂: 259.1693, found: 259.1698. FTIR (KBr, neat): v 2927, 2855, 1679, 1605, 1358, 1267, 1019, 959, 857, 805 cm⁻¹.

1-(4-(((3R,3aS,7aR)-Hexahydro-4*H***-furo[2,3-***b***]pyran-3-yl)methyl)phenyl)ethan-1-one (4j):** 57.3 mg. Yield = 52%, 88:12 dr. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 5.28 (d, *J* = 3.6 Hz, 1×0.88 H), 5.04 (d, J = 3.5 Hz, 1×0.12 H), 4.17 (t, J = 8.0 Hz, 1×0.12 H), 3.88 (t, J = 7.7 Hz, 1H), 3.82-3.75 (m, 2×0.88 H), 3.70-3.61 (m, 1H), 3.42 (td, J = 11.3, 2.3 Hz, 1×0.12 H), 2.96-2.87 (m, 1×0.12 H), 2.80 (dd, J = 10.6, 6.0 Hz, 1×0.88 H), 2.76-2.62 (m, 2H), 2.59 (s, 3H), 1.99-1.85 (m, 1H), 1.82-1.70 (m, 1H), 1.69-1.50 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): *Major Diastereomer* δ 197.6, 145.8, 135.2, 128.6, 128.5, 101.7, 69.5, 60.8, 42.0, 36.3, 33.3, 26.5, 22.9, 19.4 ppm. ¹³C NMR (100 MHz, CDCl₃): *Minor Diastereomer* δ 197.6, 145.7, 135.2, 128.6, 128.5, 101.9, 73.3, 64.3, 43.8, 39.0, 38.6, 26.5, 22.3, 20.5 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₆H₂₁O₃: 261.1485, found: 261.1490. FTIR (KBr, neat): v 2920, 2881, 1675, 1604, 1360, 1267, 959, 855, 809 cm⁻¹.

1-(4-(((3R,3aS,6aR)-Hexahydrofuro[2,3-*b***]furan-3-yl)methyl)phenyl)ethan-1-one (4k):** 57.9 mg. Yield = 56%, 99:1 dr. Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.72 (d, *J* = 4.9 Hz, 1H), 3.97 (dt, *J* = 9.0, 7.1 Hz, 1H), 3.88 (ddd, *J* = 8.3, 7.0, 5.8 Hz, 2H), 3.57 (dd, *J* = 10.9, 8.5 Hz, 1H), 2.88-2.62 (m, 4H), 2.59 (s, 3H), 2.05-1.95 (m, 1H), 1.87 (ddt, *J* = 13.1, 9.8, 7.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 145.6, 135.5, 128.7, 128.5, 109.7, 71.9, 69.0, 45.3, 43.4, 33.8, 26.5, 25.1 ppm. HRMS (ESI, m/z): [M+H]⁺, calcd. for C₁₅H₁₉O₃: 247.1329, found: 247.1331. FTIR (KBr, neat): v 3064, 2945, 2880, 1676, 1605, 1418, 1359, 1271, 1007, 859, 833 cm⁻¹.

References

- 1. Ashby, M. T.; Enemark, J. H.; Lichtenberger, D. L. Inorg. Chem. 1988, 27, 191-197.
- Millan, A.; Alvarez de Cienfuegos, L.; Miguel, D.; Campana, A. G.; Cuerva, J. M. Org. Lett. 2012, 14, 5984-5987.
- 3. Ramler, J.; Krummenacher, I.; Lichtenberg, C. Angew. Chem. Int. Ed. 2019, 58, 12924-12929.
- 4. McMahon, C. M.; Renn, M. S.; Alexanian, E. J. Org. Lett. 2016, 18, 4148-4150.
- 5. Kita, Y.; Nambu, H.; Ramesh, N. G.; Anilkumar, G.; Matsug, M. Org. Lett. 2001, 3, 1157-1160.
- Hwang, J. Y.; Baek, J. H.; Shin, T. I.; Shin, J. H.; Oh, J. W.; Kim, K. P.; You, Y.; Kang, E. J. Org. Lett. 2016, 18, 4900-4903.
- Cui, J.; Wang, H.; Song, J.; Chi, X.; Meng, L.; Liu, Q.; Zhang, D.; Dong, Y.; Liu, H. Org. Biomol. Chem. 2017, 15, 8508-8512.
- 8. Hon, Y.-S.; Liua, Y.-W.; Hsieh, C.-H. Tetrahedron 2004, 60, 4837-4860.
- 9. Seel, S.; Dagousset, G.; Thaler, T.; Frischmuth, A.; Karaghiosoff, K.; Zipse, H.; Knochel, P. *Chem.-Eur. J.* **2013**, *19*, 4614-4622.
- 10. Stadtmüller, H.; Tucker, C. E.; Vaupel, A.; Knochel, P. Tetrahedron Lett. 1993, 34, 7911-7914.

- 11. Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.; Gonzalez, J. M. Org. Lett. 2002, 4, 2817-2819.
- 12. Deng, W.; Ye, C.; Li, Y.; Li, D.; Bao, H. Org. Lett. 2019, 21, 261-265.
- 13. Ollivier, C.; Renaud, P. J. Am. Chem. Soc. 2001, 123, 4717-4727.
- Guisán-Ceinos, M.; Soler-Yanes, R.; Collado-Sanz, D.; Phapale, V. B.; Buñuel, E.; Cárdenas, D. J. *Chem.-Eur. J.* 2013, 19, 8405-8410.
- 15. Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 5743-5753.

¹H, ¹⁹F, and ¹³C NMR spectra of products

S17

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 fl (ppm)

S30

S32

