Supporting Information

Enantioselective Synthesis of Multi-Substituted Indane Derivatives via Copper-Catalyzed Cascade Reaction

Bing Liu, ${ }^{\text {a }}$ Haile Qiu, ${ }^{\text {b }}$ Xiaofeng Chen, ${ }^{\text {b }}$ Yuanyuan Liu, ${ }^{\text {b }}$ Wenbo Li* ${ }^{*}$ and Junliang Zhang* ${ }^{\text {c }}$
${ }^{\text {aNational Doping Test Laboratory Shanghai, Shanghai University of Sport, shanghai, 200438, China }}$
${ }^{\mathrm{b}}$ Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.
R. China.
${ }^{\text {c }}$ Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.
junliangzhang@fudan.edu.cn

Table Contents

1. General Information S3
2. Table S1 and Table S2 Screening the Ligands S3
3. General Procedure for the Synthesis of products 3-9 S5
4. References S30
5. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR. S31

1. General Information

All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ${ }^{1} \mathrm{H}$ NMR spectra, ${ }^{19} \mathrm{~F}$ NMR spectra, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 300, 400 and 500 MHz spectrometer in CDCl_{3}. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, coupling constant(s) in Hz , integration), coupling constant (Hz), and intergration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak $\left(\mathrm{CDCl}_{3}\right.$: 77.0 ppm). Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Dichloromethane, dichloroethane, toluene were freshly distilled from CaH_{2}; THF, $\mathrm{Et}_{2} \mathrm{O},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and MTBE were freshly distilled from sodium metal prior to use. The ligands were commercial available. The substrates $\mathbf{1}$ were synthesized according to the procedure of references. ${ }^{1}$

Table S1. Screening the Known Ligands ${ }^{\text {a }}$

[a] All reactions were carried out with 0.1 mmol of $\mathbf{1 a}, 0.15 \mathrm{mmol}$ of $\mathbf{2}, 5 \mathrm{~mol} \%$ of catalyst ([Cu] to Ligand $=1: 1.2$), $20 \% \mathrm{LiO}^{t} \mathrm{Bu}\left(1 \mathrm{~N}\right.$ in THF), $\mathrm{H}_{2} \mathrm{O}$ (2.0 equiv) in 1.0 mL THF at rt for 12 h . [b] The ee of the major product were determined by by chiral HPLC.

2. General Procedure for the Synthesis of products 3-9

Typical procedure for asymmetric copper-catalyzed boronation cyclization of alkenes with $\mathbf{B}_{2} \mathbf{p i n}_{2}$.

The solution of $(S, S)-$ - $\operatorname{Pr}-$ FOXAP $(5.5 \mathrm{~mol} \%)$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ in THF $(3 \mathrm{~mL})$ was stirred at room temperature for 30 mins. Alkene $1(0.3 \mathrm{mmol})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}$ (0.45 mmol) were then added sequentially. After stirring for further $10 \mathrm{mins}, \mathrm{LiO}^{\prime} \mathrm{Bu}$ $(0.06 \mathrm{mmol})$ and then $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol})$ were added to the reaction mixture. After the alkene $\mathbf{1}$ was consumed completely determined by TLC analysis, the crude product was then purified by flash column chromatography on silica gel to afford the desired product 3. The enantionmeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak column.
3.1 Synthesis of ethyl $(1 R, 2 R, 3 S)$-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3a).

3a
The reaction of alkene $\mathbf{1}(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{b}_{2} \mathrm{pin}_{2} \mathbf{2}(76.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 3a as a ropy liquid ($41.8 \mathrm{mg}, 63 \%$ yield) with 98% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.25-5.19(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.46,143.90,143.12$, $129.02,126.60,125.59,123.78,84.38,76.03,61.06,54.50,24.60,24.32,14.32$. ESI-MS calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 355.1691\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 355.1691. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=7.2 \mathrm{~min}$, major
enantiomer $\operatorname{tr}=8.1 \mathrm{~min} .[\alpha]_{D^{20}}^{20}=-6.2\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.2 Synthesis of methyl ($1 R, 2 R, 3 S$)-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2 -dioxaborolan-2-yl)-2,3-dihydro-1 H -indene-2-carboxylate (3b).

3b
The reaction of alkene $\mathbf{1}(57.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $2(114 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 b}$ as a ropy liquid ($72.5 \mathrm{mg}, 76 \%$ yield) with 99% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.75,143.72,142.92,129.01,126.60,125.57,123.73$, 84.37, 75.97, 54.23, 52.09, 24.51, 24.27. ESI-MS calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}$ (\%): $341.1534\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 341.1531 . Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol $=9010,0.8 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm})$; minor enantiomer $\operatorname{tr}=9.1 \mathrm{~min}$, major enantiomer $\operatorname{tr}=10.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-6.3(c=$ $\left.0.17, \mathrm{HCl}_{3}\right)$.

3.3 Synthesis of benzyl (1R,2R,3S)-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2 -dioxaborolan-2-yl)-2,3-dihydro-1 H -indene-2-carboxylate (3c).

The reaction of alkene $\mathbf{1}(80.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 c}$ as a ropy liquid ($78 \mathrm{mg}, 66 \%$ yield) with 98% ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H}), 5.20-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.92$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.26, 143.73, 143.02, 135.99, 129.02, 128.44, 128.06, 128.06, 126.62, 125.56, 123.75, 84.41, 76.01, 66.71, 54.41, 24.53, 24.27. ESI-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 417.1848\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 417.1850. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol $=9010,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); major enantiomer $\operatorname{tr}=6.6 \mathrm{~min}$, minor enantiomer $\operatorname{tr}=7.1 \mathrm{~min} .[\alpha]_{\mathrm{D}} 20=-10.5\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.4 Synthesis of 4-chlorobenzyl ($1 R, 2 R, 3 S$)-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3d).

The reaction of alkene $\mathbf{1}(90.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 d}$ as a ropy liquid ($93.7 \mathrm{mg}, 73 \%$ yield) with 96% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29$ (m, 5H), 7.24-7.17 (m, 3H), 5.27-5.21 (m, 1H), 5.20 (d, $J=$ $14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.19, 143.64, 142.91, 134.55, 133.90, 129.43, $129.08,128.61,126.67,125.57,123.76,84.45,76.01,65.87,54.36,24.53,24.26$. ESI-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BClNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 451.1458\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 451.1463. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol $=9010,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=$ 7.5 min , major enantiomer $\operatorname{tr}=8.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-2.6\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.5 Synthesis of 4-fluorobenzyl (1R,2R,3S)-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H -indene-2-carboxylate (3e).

3 e
The reaction of alkene $\mathbf{1}(81.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 3 e as a ropy liquid ($77.9 \mathrm{mg}, 63 \%$ yield) with 97% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.46-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.28-5.15(\mathrm{~m}, 1 \mathrm{H})$, 5.21 (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.98$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ -108.05--118.44 (m). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.17,162.49(\mathrm{~d}, J=246.4 \mathrm{~Hz}$), $143.25(\mathrm{~d}, J=92.3 \mathrm{~Hz}), 131.81(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.00,126.60$, 125.50, 123.70, 115.35, 115.18, 84.35, 75.95, 65.92, 54.31, 24.47, 24.20. ESI-MS calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BFNaO}_{5}: \mathrm{m} / \mathrm{z}$ (\%): $435.1754\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 435.1767. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=7.9 \mathrm{~min}$, major enantiomer $\operatorname{tr}=6.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-54.3\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.6 Synthesis of 4-(trifluoromethyl)benzyl (1R,2R,3S)-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3f).

3f
The reaction of alkene $\mathbf{1}(100.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 f}$ as a ropy liquid ($85.9 \mathrm{mg}, 62 \%$ yield) with 97% ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.54-7.45 (m, 4H), 7.36 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 3 \mathrm{H}), 5.27(\mathrm{~d}, J=13.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.13 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-62.59 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.13,143.55,142.84,140.09,130.11\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32.6 \mathrm{~Hz}\right)$, $129.10,127.93,127.93,126.69,125.55,125.34(\mathrm{q}, J=3.7 \mathrm{~Hz}) .123 .75,84.44,76.00$, 65.69, 54.28, 24.46, 24.20. ESI-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BF}_{3} \mathrm{NaO}_{5}: \mathrm{m} / \mathrm{z}$ (\%): $485.1722\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 485.1721. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=7.6 \mathrm{~min}$, major enantiomer $\operatorname{tr}=8.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-12.3(c=0.17$, CHCl_{3}).

3.7 Synthesis of 3,5-bis(trifluoromethyl)benzyl ($1 R, 2 R, 3 S$)-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3g).

The reaction of alkene $\mathbf{1}(80.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2}(76.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 g}$ as a ropy liquid ($68.9 \mathrm{mg}, 65 \%$ yield) with 90% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 2 \mathrm{H}$), $7.82(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ (s, 12H). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.83 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.18,143.44,142.73,138.87,131.76\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.4 \mathrm{~Hz}\right), 129.19,127.78,126.75$, 125.67, 123.76, 121.82, 84.49, 76.04, 64.95, 54.20, 24.41, 24.14. ESI-MS calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BF}_{6} \mathrm{NaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 553.1596\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 553.1599. Enantiomeric excess was determined by HPLC with a Chiralpak IE column (hexanes: 2-propanol = 90:10, $0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=8.7 \mathrm{~min}$, major enantiomer $\mathrm{tr}=$ $9.8 \mathrm{~min} .[\alpha] \mathrm{D}^{20}=-8.8\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.8 Synthesis of 4-fluorophenyl (1R,2R,3S)-1-hydroxy-3-(4,4,5,5-tetramethyl -1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H -indene-2-carboxylate (3h).

The reaction of alkene $\mathbf{1}(81.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: AcOEt $=10: 1$) afforded the product $\mathbf{3 h}$ as a ropy liquid ($72.8 \mathrm{mg}, 61 \%$ yield) with 96% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.35$ $(\mathrm{m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15$ (d, $J=14.7 \mathrm{~Hz}, 12 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.36-124.58$ (m). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.17,160.23(\mathrm{~d}, \mathrm{~J}=243.8 \mathrm{~Hz}), 146.82(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 143.17$ $(\mathrm{d}, \mathrm{J}=121.1 \mathrm{~Hz}), 129.22,126.79,125.68,123.81,123.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}), 116.07$, 115.88, 84.54, 76.32, 54.31, 24.58, 24.27. ESI-MS calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BFNaO}_{5}: \mathrm{m} / \mathrm{z}$ (\%): $421.1597\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 421.1605. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (hexanes: 2 -propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm})$; minor enantiomer $\operatorname{tr}=6.8 \mathrm{~min}$, major enantiomer $\operatorname{tr}=6.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-54.3(c=$ $\left.0.17, \mathrm{CHCl}_{3}\right)$.

3.9 Synthesis of ethyl $(1 S, 2 R, 3 R)$-5-fluoro-3-hydroxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3i).

$3 i$
The reaction of alkene $\mathbf{1}(66.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 i}$ as a ropy liquid ($72.5 \mathrm{mg}, 69 \%$ yield) with 84% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.13-7.08 (m, 2H), 6.96-6.89 (m, 1H), 5.18-5.12 (m, 1H), $4.23(\mathrm{q}, J=69.58 \mathrm{~Hz}, 2 \mathrm{H})$, $4.02(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.33(\mathrm{td}, J=$ 8.5, 4.9 Hz). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.05,161.76(\mathrm{~d}, J=243.9 \mathrm{~Hz}$), 144.83 $(\mathrm{d}, J=7.3 \mathrm{~Hz}), 139.14(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 124.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 116.00(\mathrm{~d}, J=22.6 \mathrm{~Hz})$, $112.45(\mathrm{~d}, ~ J=22.0 \mathrm{~Hz}), 84.41,75.70,75.69,61.07$, 54.80, 24.52, 24.26, 14.23. ESI-MS calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BFNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 373.1596\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 373.1586 . Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 275 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=8.8 \mathrm{~min}$, major enantiomer $\operatorname{tr}=10.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-5.4\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.10 Synthesis of ethyl ($1 R, 2 R, 3 S$)-5-fluoro-1-hydroxy-3-(4,4,5,5-tetramethyl -1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3j).

3j
The reaction of alkene $\mathbf{1}(66.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 j}$ as a ropy liquid ($69.3 \mathrm{mg}, 66 \%$ yield) with 91% ee. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.40-7.37 (m, 1H), $6.87(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.17-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 2 \mathrm{H})$, $3.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.17 .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.15,163.49(\mathrm{~d}, J=246.3 \mathrm{~Hz}), 146.44,138.87,126.86$ (d, $J=9.0 \mathrm{~Hz}$), $113.67(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 110.63(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 84.51,75.16,61.13$, 54.89, 24.58, 24.32, 14.25. ESI-MS calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BFNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 373.1596$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 373.1601. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol $=9505,0.8 \mathrm{~mL} / \mathrm{min}, 275 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=10.7 \mathrm{~min}$, major enantiomer $\operatorname{tr}=9.8 \mathrm{~min} .\left[\alpha \mathrm{D}^{20}=-0.8(c=0.17\right.$, CHCl_{3}).

3.11 Synthesis of $1-((1 R, 2 R, 3 S)$-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2 -dioxaborolan-2-yl)-2,3-dihydro-1 H -inden-2-yl)ethan-1-one (3k).

3k
The reaction of alkene $\mathbf{1}(52.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 k}$ as a white solid ($75.2 \mathrm{mg}, 83 \%$ yield) with 99% ee. M.p. $=77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.39-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.70, 144.04, 142.77, 129.06, 126.51, 125.43, 123.86, 84.18, 75.85, 63.65, 27.99, 24.41, 24.29. ESI-MS calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BNaO}_{4}: \mathrm{m} / \mathrm{z}(\%): 325.1585\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 325.1588. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol $=$ 85:15, $0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=6.2 \mathrm{~min}$, major enantiomer $\mathrm{tr}=$ $6.4 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=+9.8\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.12 Synthesis of $1-((1 R, 2 R, 3 S)$-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-inden-2-yl)propan-1-one (31).

31
The reaction of alkene $\mathbf{1}(56.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 31 as a colorless ropy liquid ($67.3 \mathrm{mg}, 71 \%$ yield) with 99% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.30(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $12 \mathrm{H}), 1.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.28,144.08,142.93$, 129.01, 126.45, 125.41, 123.84, 84.14, 75.93, 62.69, 33.65, 24.53, 24.27, 7.67. ESI-MS calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BNaO}_{4}: \mathrm{m} / \mathrm{z}(\%): 339.1741\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 339.1734. Enantiomeric excess was determined by HPLC with a Chiralpak ADH column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=8.5 \mathrm{~min}$, major enantiomer $\operatorname{tr}=6.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=+10.6\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.13 Synthesis of $1-((1 R, 2 R, 3 S)-1$-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H -inden-2-yl)butan-1-one (3m)

The reaction of alkene $\mathbf{1}(60.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 m}$ as a ropy liquid ($72.9 \mathrm{mg}, 73 \%$ yield) with 96% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.36-5.26(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65-3.60 (m, 1H), 2.84-2.73 (m, 1H), 2.63-2.52 (m, 1H), 1.75-1.62 (m, 1H), $1.17(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.80$, 144.03, 142.94, 128.96, 126.41, 125.36, 123.79, 84.08, 75.87, 62.88, 42.34, 24.51, 24.21, 17.04, 13.72. ESI-MS calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BNaO}_{4}: \mathrm{m} / \mathrm{z}$ (\%): 353.1898 $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 353.1894. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=8.8 \mathrm{~min}$, major enantiomer $\operatorname{tr}=9.4 \mathrm{~min} .[\alpha] \mathrm{D}^{20}=+10.9(c=0.17$, CHCl_{3}).

3.14 Synthesis of $1-((1 R, 2 R, 3 S)$-1-hydroxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-inden-2-yl)hexan-1-one (3n)

The reaction of alkene $\mathbf{1}(69.0 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 n}$ as a ropy liquid ($70.0 \mathrm{mg}, 65 \%$ yield) with 96% ee. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.33-5.29(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63-3.61 (m, 1H), 2.81-2.74 (m, 2H), 2.61-2.55 (m, 1H), 1.67-1.62 (m, 2H) 1.32-1.30 $(\mathrm{m}, 4 \mathrm{H}), 1.17(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.94,143.99,142.88,128.92,126.37,125.33,123.75,84.05,75.84,62.82$, $40.40,31.35,24.47,24.18,23.26,22.38,13.87$. ESI-MS calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{BNaO}_{4}$, m/z (\%): 381.2208, (M+Na+), found: 381.2185. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}$, 210 nm); minor enantiomer $\operatorname{tr}=6.7 \mathrm{~min}$, major enantiomer $\operatorname{tr}=5.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-11.6$ $\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.15 Synthesis of $1-((1 S, 2 R, 3 R)$-3-hydroxy-5-(methoxymethoxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-inden-2-yl)propan-1-one (30)

30
The reaction of alkene $\mathbf{1}(74.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 30 (77.8 $\mathrm{mg}, 69 \%$ yield) with 99% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09$ (dd, $J=18.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91$ (dd, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=$ 19.7, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, ~ J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, 2.87-2.79 (m, 1H), $2.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $12 \mathrm{H}), 1.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.19,156.20,144.17$, $137.21,124.51,117.63,113.20,94.80,84.13,75.99,63.14,55.93,33.63,24.55,24.27$, 7.64. ESI-MS calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{BNaO}_{6}, \mathrm{~m} / \mathrm{z}(\%): 399.1949\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 399.1956. Enantiomeric excess was determined by HPLC with a Chiralpak ADH +ADH column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=22.4 \mathrm{~min}$, major enantiomer $\operatorname{tr}=19.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-14.0(c=0.17$, CHCl_{3}).

3.16 Synthesis of ethyl ($1 R, 2 R, 3 S$)-1-hydroxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-indene-2-carboxylate (3p)

The reaction of alkene $\mathbf{1}(65.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 p}$ as a ropy liquid ($67 \mathrm{mg}, 65 \%$ yield) with 97% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29$ (m, 2H), 7.27-7.21 (m, 2H), 4.27-4.19 (m, 2H), $3.24(\mathrm{q}, ~ J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H})$, $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.11,145.85,142.37,128.80,126.69,124.51,122.82,83.78,80.67,60.71$, 56.65, 26.26, 24.98, 24.43, 14.30. ESI-MS calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}(\%)$: $369.1847\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 369.1853 . Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 90:10, $0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=14.3 \mathrm{~min}$, major enantiomer $\operatorname{tr}=13.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-15.5(c=$ $\left.0.17, \mathrm{CHCl}_{3}\right)$.

3.17 Synthesis of benzyl ($1 R, 2 R, 3 S$)-1-hydroxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-indene-2-carboxylate (3q)

The reaction of alkene $\mathbf{1}(56.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2}(76.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{~} \mathbf{q q}$ as a white solid ($50.6 \mathrm{mg}, 62 \%$ yield) with 99% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.33$ (m, $2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.71,145.73,142.25$, $135.85,128.80,128.43,128.08,128.08,126.66,124.48,122.79,83.72,80.78,66.42$, 56.84, 26.24, 24.83, 24.33. Enantiomeric excess was determined by HPLC with a Chiralpak ADH column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=20.7 \mathrm{~min}$, major enantiomer $\operatorname{tr}=16.5 \mathrm{~min}$. ESI-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 431.2000\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 431.2008. $[\alpha]_{\mathrm{D}}{ }^{20}=-14.3(c=0.17$, CHCl_{3}).

3.18 Synthesis of $1-((1 R, 2 R, 3 S)-1$-hydroxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-inden-2-yl)propan-1-one (3r)

The reaction of alkene $\mathbf{1}(60.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 r}$ as a colorless ropy liquid ($74 \mathrm{mg}, 75 \%$ yield) with 99% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.86-2.75 (m, 2H), 2.66-2.56 (m, 1H), $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 12 \mathrm{H})$, 1.16-1.07 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.60,145.99,142.84,128.66$, 126.41, 123.58, 123.02, 83.79, 79.94, 67.64, 35.54, 26.18, 24.52, 24.31, 7.62. ESI-MS calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BNaO}_{4}: \mathrm{m} / \mathrm{z}$ (\%): $353.1898\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 353.1890. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=7.7 \mathrm{~min}$, major enantiomer $\operatorname{tr}=6.2 \mathrm{~min} .[\alpha] \mathrm{D}^{20}=-8.3\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.19 Synthesis of $1-((1 R, 2 R, 3 S)$-1-hydroxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2 -dioxaborolan-2-yl)-2,3-dihydro-1H-inden-2-yl)butan-1-one (3s).

The reaction of alkene $\mathbf{1}(64.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(76.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 3 s as a white solid ($69 \mathrm{mg}, 67 \%$ yield) with 95% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.31$ (m, 1H), 7.21-7.12 (m, 3H), 4.31 ($\mathrm{s}, 1 \mathrm{H}), 3.53$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.70(\mathrm{~m}, 2 \mathrm{H})$, 2.64-2.53 (m, 1H), $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 12 \mathrm{H}), 0.89(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.14,145.95,142.76,128.60$, 126.34, 123.52, 122.95, 83.7, 79.93, 67.76, 44.20, 26.18, 24.48, 24.24, 16.97, 13.69. ESI-MS calculated for Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{BNaO}_{4}$, Exact Mass: m/z (\%): $367.2051\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 367.2049. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=6.2 \mathrm{~min}$, major enantiomer $\operatorname{tr}=7.5 \mathrm{~min} .[\alpha]_{\mathrm{D}^{20}}=+8.4(c=0.17$, CHCl_{3}).

3.20 Synthesis of $1-((1 R, 2 R, 3 S)$-1-hydroxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-inden-2-yl)hexan-1-one (3t).

3t
The reaction of alkene $\mathbf{1}(73.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 3 t as a white solid ($76 \mathrm{mg}, 68 \%$ yield) with 96% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.72(\mathrm{~m}, 2 \mathrm{H})$, 2.65-2.54 (m, 1H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 12 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.30$, 145.96, 142.79, 128.60, 126.34, 123.52, 122.95, 83.71, 79.93, 67.74, 42.28, 31.34, 26.17, 24.48, 24.24, 23.22, 22.40, 13.87. ESI-MS calculated for C22H33BNaO4: m/z (\%): $395.2364\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 395.2372. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H+ADH column (hexanes: 2-propanol $=90: 10,0.8$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=13.6 \mathrm{~min}$, major enantiomer $\mathrm{tr}=11.4 \mathrm{~min}$. $[\alpha] D^{20}=-70.4\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.21 Synthesis of $1-((1 S, 2 R, 3 S)$-1-hydroxy-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-inden-2-yl)propan-1-one (3u)

$3 u$
The reaction of alkene $\mathbf{1}(79.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathbf{2}(114.0 \mathrm{mg}, 0.45 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 u}$ as a white solid ($86 \mathrm{mg}, 73 \%$ yield) with 96% ee. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (d, J $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.98-6.95 (m, 1H), $6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.87 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=23.0 \mathrm{~Hz}$, $12 \mathrm{H}), 0.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.20,147.61,144.79$, $143.15,128.66,127.89,126.91,126.70,126.44,125.15,123.30,84.46,84.05,70.43$, 34.72, 24.50, 24.30, 7.31. ESI-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BNaO}_{4}: \mathrm{m} / \mathrm{z}(\%): 415.2055$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 415.2060. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H+ADH column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=13.9 \mathrm{~min}$, major enantiomer $\operatorname{tr}=14.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=-82.8(c=$ $\left.0.17, \mathrm{CHCl}_{3}\right)$.

3.22 Synthesis of 1-((1R,2R,3S)-1-hydroxy-1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-inden-2-yl)-2-phenylethan-1-one (3v)

3v
The reaction of alkene $\mathbf{1}(52.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2}(76 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product $\mathbf{3 v}$ as a colorless ropy liquid ($49.4 \mathrm{mg}, 63 \%$ yield) with 90% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.53$, 145.87, 142.74, 134.03, 129.69, 128.73, 128.51, 126.84, 126.49, 123.57, 123.05, 83.92, 80.16, 66.56, 49.17, 26.51, 24.99, 24.57, 24.28. ESI-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BNaO}_{4}: \mathrm{m} / \mathrm{z}$ (\%): $415.2051\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 415.2047. Enantiomeric excess was determined by HPLC with a Chiralpak ADH column (hexanes: 2-propanol = 90:10, $0.8 \mathrm{~mL} / \mathrm{min}, 200 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=11.4 \mathrm{~min}$, major enantiomer $\mathrm{tr}=$ +8.8 min. $[\alpha]_{\mathrm{D}}{ }^{20}=-5.8\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.23 Synthesis of ethyl $(1 R, 2 R, 3 S)$-1-((4-bromophenyl)amino)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1 H-indene-2-carboxylate (5)

The reaction of alkene $4(71.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2}(76.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 5 as a ropy liquid ($22.3 \mathrm{mg}, 23 \%$ yield) with 94% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.20$ (m, 2H), 7.19-6.97 (m, 1H), 6.61 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dq}, J$ $=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{ddd}, J=15.4,9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $172.67,146.67,143.48,142.35,131.72,128.48,126.45,124.58,124.03,115.11$, 108.30, 83.96, 60.77, 59.53, 52.55, 24.82, 24.60, 13.93. ESI-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BBrNNaO}_{4}: \mathrm{m} / \mathrm{z}(\%): 508.1265\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 508.1269. Enantiomeric excess was determined by HPLC with a Chiralpak ODH column (hexanes: 2-propanol $=90: 10,0.8 \mathrm{~mL} / \mathrm{min}, 275 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=5.1 \mathrm{~min}$, major enantiomer $\mathrm{tr}=$ $6.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=+80.1\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

3.26 Synthesis of benzyl (1S,2R,3S)-3-hydroxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (7).

7
The reaction of alkene $\mathbf{6}(0.2 \mathrm{mmol})$ and $\mathbf{2}(0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 7 as a ropy liquid (77% yield) with 99% ee. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31$ (m, 6 H), 7.14-7.07 (m, 3H), 5.21 (q, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.63 (s, 1H), 3.14-3.08 (m, 3H), 2.95-2.91 (m, 1H), $2.45(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.35,135.74,134.33,131.83,130.12,128.51,128.28,128.17$, 128.04, 126.07, 125.61, 83.71, 66.55, 65.31, 46.42, 36.82, 24.77, 24.30. ESI-MS calculated for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}$ (\%): $431.2005\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 431.2006. Enantiomeric excess was determined by HPLC with a Chiralpak ADH column (hexanes: 2-propanol $=85: 15,0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\mathrm{tr}=11.6 \mathrm{~min}$, major enantiomer $\operatorname{tr}=18.8 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=+11.5\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

*k Table>

eak Table>
 -dioxaborolan-2-yl)-6,7,8,9-tetrahydro-5 H -benzo[7]annulene-6-carboxylate (9)

The reaction of alkene $\mathbf{8}(0.2 \mathrm{mmol})$ and $\mathbf{2}(76.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, after a flash column chromatography (hexanes: $\mathrm{AcOEt}=10: 1$) afforded the product 9 as a ropy liquid (70% yield) with 98% ee. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.22$ (m, 2H), 7.11-7.09 (m, 2H), 7.03-7.00 (m, 1H), 6.95 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{dd}$, $J=24.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $173.92,141.69,138.53,135.44,130.98,129.09,128.48,128.47,128.24,126.52$, 126.22, 83.92, 72.62, 66.27, 48.94, 33.02, 31.35, 24.76, 24.72. ESI-MS calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BNaO}_{5}: \mathrm{m} / \mathrm{z}(\%): 369.1847\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 369.1841. Enantiomeric excess was determined by HPLC with a Chiralpak ODH column (hexanes: 2-propanol $=$ 85:15, $0.8 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$); minor enantiomer $\operatorname{tr}=6.2 \mathrm{~min}$, major enantiomer $\mathrm{tr}=$ $7.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=+13.8\left(c=0.17, \mathrm{CHCl}_{3}\right)$.

References

(1) (a) M. R. Sk, S. S. Bera, and M. S. Maji, Cp*Co(III)-Catalyzed C-H Alkenylation of Aromatic Ketones with Alkenes. Adv. Synth. Catal. DOI: 10.1002/adsc. 201801385 (b) G. Li, L. Wan, G. Zhang, D. Leow, J. Spangler, and J.-Q. Yu, Pd(II)-Catalyzed C-H Functionalizations Directed by Distal Weakly Coordinating Functional Groups. J. Am. Chem. Soc. 2015, 137, 4391-4397.

4 NMR Spectrafor New Compounds

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a

${ }^{\mathbf{1}} \mathbf{H}$ NMR（ $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）and ${ }^{13} \mathbf{C}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3b

 	$\begin{aligned} & \text { Nis } \\ & 0.81 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	ザツiprinj，

3b

측	
ミ	ఱ่ ¢
1	－－－－

MN N®	
－	

3b

180	160	140	120	100	80	60	40	20	0
				（pp					

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 c}$

$16-9-125-2500 \mathrm{c}$

$\frac{9}{0}$	
N	みサलNONNOD
T	

3c

3d

LB-10-1-2 500 C

3d

${ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl_{3}), ${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) of $\mathbf{3 e}$

$1 \mathrm{~b}-10-2-6$

$3 e$

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$1 \mathrm{~b}-10-2-6500 \mathrm{c}$

24.4657
24.1954

3e

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) of $\mathbf{3 f}$

$3 f$

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) of $\mathbf{3 g}$

$3 g$

$3 g$

\qquad
$16-10-1-6500 \mathrm{c}$

39

${ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl_{3}), ${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) of $\mathbf{3 h}$

LB-10-1-8

3h

${ }^{1} \mathbf{H}$ NMR（300 MHz， CDCl_{3} ），${ }^{19} \mathbf{F}$ NMR（ $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）and ${ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$ ， CDCl_{3} ）of $\mathbf{3 i}$
$1 \mathrm{~b}-10-5-2-1$

 	ヘップす	
¢	ザエ゙ヂベへ	－デー

$3 i$

$3 i$

$3 i$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CDCl_{3}) of $\mathbf{3 j}$

$1 \mathrm{~b}-10-5-3-1$
6ILI © \&II--

3j

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 k}$

3k

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 1}$

31

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 m}$

∞

$\substack{+\infty \\ \infty \\ 1 \\ i \\ i}$

200	180	160	140	120	100	80	60	40	20	0
					(pp					

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 n}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 o}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 p}$

3p

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 q}$

$1 \mathrm{~b}-10-41-8500 \mathrm{c}$

3q

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3} \mathbf{r}$
1b-10-19-2

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3s
1b-10-25-1-1

-

$\stackrel{\circ}{\circ}$
$\dot{1}$

3s

${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 t}$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and $\left.{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z , ~} \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 u}$

∞
∞
∞
∞
∞
in
in

3u

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 v}$

18-10-44-2 500 c
등

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9}$

9

